5
What we usually do* Understand the problem

Understand the problem Most often, your first

algorithm is either brute force
or greedy.

Design an algorithm

Design an algorithm

Implement the algorithm

Implement the algorithm

slides by Haleh Ashki

—
<€ < <

Common Types of Approaches for Designing Brute Force

Algorithms
* astraightforward approach to solving a problem

Brute Force - .
* usually it is not the best way to solve a problem but it has

Divide and Conquer the advantage that it is conceptually simple
* Decrease and Conquer

* is a very general problem-solving technique that consists of

systematically enumerating all possible candidates for the
Greedy solution and checking whether each candidate satisfies the
problem's statement

* Transform and Conquer

* Find all possible combinations of feasible solutions and pick
the one which satisfies the given criteria.




Examples

eSearching

If we have an array of names and we want to find the first
occurrence of a particular name, say “smith”, then we compare
“smith” with the first entry and if they are not equal we move to
the second entry and compare it, etc. This is a brute force
approach to searching.

e Sorting

If we have an array of real numbers then a brute force approach
to sorting it in ascending order would be to look through the
array and find the small entry and exchange it with the first
entry in array; then search the second through last entries and
find the smallest entry and exchange it with the second entry,
etc.

Use a brute force approach to sorting the array
a={17,31,6, 4}

— On the first step we find that the smallest entry is in a(4) so we
exchange a(1) and a(4) to get {4, 31, 6, 17}

— On the second step we look at entries two through four of the
new array and see that the smallest is in position 4 so we
exchange to get {4, 6, 31, 17}

— On the third step we see that the fourth entry is larger than
the third so we exchange to get the final sorted array

{4, 6,17, 31}.

Divide and conquer

* The basic idea is to divide the problem into several smaller
problems of the same type; each subproblem may be divided
further.

* Probably the best known general algorithm design technique

Example

As an example consider again the problem of searching an array.
A brute force approach was the exhaustive approach of checking
the first entry, then the second, etc. What would be Divide and
Conquer approach?

Looking for a world in a dictionary or for a name in phone book.
(what we usually do?)

If the array is ordered (say in ascending order or alphabetical
order) then we could check the middle entry in the array and if it
was not equal then we would know whether it was in the first
half of the array or the last half because the array was ordered;
so we have divided the problem into a smaller problem.




Mathematical example

Finding the root of f(x) on [a, b]
Bisection Method

repeatedly bisects an interval and then selects a subinterval in
which a root must lie for further processing

Explicitly, if fla) and f(c) are opposite signs, then the method
sets ¢ as the new value for b, and if f(b) and f(c) are opposite
signs then the method sets ¢ as the new a. (If f(c)=0 then ¢ may
be taken as the solution and the process stops.) In both cases,
the new f(a) and f(b) have opposite signs, so the method is
applicable to this smaller interval.

Example
Find the location where 17 occurs in the sorted array

a0={1,4,7,9,17,31, 33}.

— first we compare 17 with a0(4) and see that 17 > 9 so we know
that 17 € al={17,31, 33}.

—next we compare 17 with al1(2) and see that 17 <31so 17 isin
a2 = {17} and we have located the element.

This approach is called a Binary Search and is a common
example of a divide and conquer approach.

10

Decrease and conquer

* Steps to solve:

1.Reduce problem instance to smaller instance of the same
problem

2.Solve smaller instance

3.Extend solution of smaller instance to obtain solution to
original instance

Probably the best known general algorithm design technique

* This strategy is based on exploiting the relationship between
a solution to a problem of size n and a solution to a smaller
problem.

* Can be implemented either top-down or bottom-up
* Also referred to as inductive or incremental approach

o As an example, consider calculating 7°.

Recall that the brute force approach was to compute T+ T+ T T % T T %
which required 7 multiplications.

A decrease and conquer approach would be to note that 7° = 7'7%. To
compute 7 we note that it is equal to 7°7°. Consequently we form 7>
(1 multiplication), then 7% = 7% (1 multiplication) and 7° = 7n* (1
multiplication); thus we have computed the work in three multiplications
rather than seven.

Of course we would have to modify the algorithm slightly if we wanted to
compute 7. In this case we would simply write 7° = 7% 7 and compute
73 as above and then perform one additional multiplication to get 7.

11

12




* A bottom-up approach (also known as inductive
reasoning and in many cases used as a synonym of synthesis)
is the piecing together of systems to give rise to grander
systems, thus making the original systems sub-systems of the
emergent system. Like as lego!

* A top-down approach (also known as stepwise design
or deductive reasoning and in many cases used as a synonym
of analysis or decomposition) is essentially the breaking down
of a system to gain insight into its compositional sub-systems.

function f(n)=a"
using bottom up (iterative)approach we can multiply a by n-1
time of a.

iterative:
Input: an integer
Output: an integer

function F(a,n)
x=1
fori=1ton:
x=x%*a
end for
return x
end function

13

14

An algorithm for calculating polynomials

ps(x) = ag + a1x + asx® + asa®

P3(xg) = ap+ay XTo+as X xoXTo+agXToXxroXT
That is (1 + 2 + 3) = 6 multiplications and 3 additions.

Horner’s method (from algl)

p3(xo) = ag+ xo (a1 + wo(as + azxo))
ag + o (a1 + xo(as + bswp))
ag + zo(ar + zoby)

= ag+ xoby

= bO

p3(xo) = ap+xox (a1+x9x (ag+asxz))

That is 3 multiplications and 3 additions

So that is an iterative bottom up method

Efficiency:
Naive method:
n(n+1)/2 (multiplications ) + n (additions)

Horner’s: n (multiplications ) + n (additions)

15

16




for recursive:

Using top down(recursive) approach we can write:

Input: an integer
Output: an integer

Function F(a):
if a>1:
return a * F(a-1)

Recursion

Factorial n!:
5=5x4x3x2x1
5!=5x4!
5/=5x4x3!
5/=5x4x3x2!
5=5x4x3x2x1!
5=5x4x3x2x1

A ifn=>0
return a fa.ct.(\ n‘) = ) L
End Function n-factin—1) ifn>0
17 18
Pseudocode: fact(5)
5 x fact(4)
function factorial is: 5 x (4 x fact(3))
5x (4 x (3 x fact(2)))
input: integer n such thatn >=0 5x (4 x (3 x(2xfact(1))))
5x(4x(3x(2x1))
output: [n x (n-1) x (n-2) x ... x 1] 24
1.ifnis O, return 1
2. otherwise, return [ n x factorial(n-1) ]
end factorial
19 20




Memory allocation and data storage

factorial(20) -- allocate 1 word of memory,
call factorial(19) -- allocate 1 word of memory,
call factorial(18) -- allocate 1 word of memory,

call factorial(2) -- allocate 1 word of memory,
call factorial(1) -- allocate 1 word of memory,
call factorial(0) -- allocate 1 word of memory,

at this point 21 words of memory and 21 activation records
have been allocated.

3 Types of Decrease and Conquer

* Decrease by a constant (usually by 1):
— insertion sort
— graph traversal algorithms (DFS and BFS)
— topological sorting
— algorithms for generating permutations, subsets

» Decrease by a constant factor (usually by half)
— binary search and bisection method
— exponentiation by squaring
— multiplication a la russe

return 1. -- release 1 word of memory.
return 1*1.  --release 1 word of memory. « Variable-size decrease
return 2*1.  --release 1 word of memory. — Euclid’ s algorithm
— selection by partition
— Nim-like games
21 22

Transform and Conquer

In this approach we transform the problem into one which is more
amenable to solution.

In Algorithms | you studied Gaussian elimination (GE) for solving a
linear system. For GE you transform the linear system into an
equivalent upper triangular system and we know that solving upper
triangular systems is“easy”.

This is a technique that is used throughout mathematics too. For example,
when you calculate the integral fD(a:2 + %) dzdy where D is the unit
circle it is much easier to transform the integral to polar coordinates using
the transformation z = cosf, y = sin @ to obtain the equivalent integral

2 prl 9
o Jo rir drdo.

Suppose you wanted to see if any two elements of an array
are equal.

transform and conquer approach

first sort the array (i.e., transform the problem). Now all we must
check is to see if two adjacent entries of the sorted array are equal.

If we use an efficient sorting routine then this approach will be faster
than the brute force approach.

Example. Determine if any two entries of the array {61, 17, 32, 4, 17}
are equal.

first sorting the array into

{4,17,17, 32, 61}

and then checks

—1s4=17?1s ?is 17=327? Is 32=61?

23

24




Greedy

A greedy algorithm works in phases. At each phase:

You take the best you can get right now, without regard for
future consequences.

the choice is irrevocable, i.e., it cannot be changed on
subsequent steps of the algorithm.

You hope that by choosing a local optimum at each step, you will
end up at a global optimum

This technique is not as broad as the others and is used for
optimization problems.

An example of where a greedy algorithm might be useful is the
“change problem” faced by cashiers all over the world where
one wants to give the change using the criteria that we use as
small a number of coins as possible.

25

26

example

Use a greedy algorithm to determine the smallest number of coins
needed to give the change of 43 cents assuming that the available
coins are quarters, dimes, nickels and pennies.

— On the first step the available coins are quarter, dime, nickel and
penny because all are less than 43 cents. We choose the largest one
(we are greedy after all! ), a quarter and we now have 43-25=18 cents.

— On the second step the feasible coins are dime, nickel and penny and
we choose the largest, a dime; we now have 18-10 = 8 cents.

— On the third step the feasible coins are a nickel and a penny. We
choose the largest which is a nickel and we have 8-5=3 cents.

— On the fourth step the only feasible coin is a penny.

— The optimal number of coins is 6 - a quarter, a dime, a nickel and
three Pennies.

When greedy fails

Goal: Reaching the largest sum

Greedy Algorithm

® ©

27

28




How we can compare the algorithm

If we have two different algorithms that solve the same problem
then how can we determine if one is “better” than the other?

We can compare the

Storage

The size of memory that is used for solving the problem.

The algorithm that use less space (memory) to do the same thing as
another one is doing better performance.

Example: adding two arrays

. storage (e.g., the size of the arrays required , memory usage). We can creating a new array for result:
(1,2,3,4,5) + (1,2,3,4,5) = (2,4,6,8,10) :3arrays of size 5

. speed (e.g., which one runs faster) Or replace the sum in a same spot of one of the values :
(1,2,3,4,5) +(1,2,3,4,5)

. ficien (2,2,3,4,5) +(1,2,3,4,5)

erency (2,4,3,4,5) +(1,2,3,4,5) No additional array is used.
(2I4I6I4I5) + (1I213I4I5)
(2,4,6,8,5) +(1,2,3,4,5)
(2,3,6,8,10) +(1,2,3,4,5)
29 30
Efficiency

Speed(wall clock time)

If we run both algorithms for a particular problem and Algorithm A
runs faster (i.e., it takes less wall clock time) than Algorithm B then
we might conclude that Algorithm A is better. However, this might
not be the case.

When we do the comparison we are performing the calculations for a
specific value of the problem size (for example, searching an array of
length 100). However, if we run the same algorithms for a different
problem size (such as searching an array of length 100,000) then we
might find that Algorithm B runs faster.

We also have to be concerned about how each algorithm is
implemented and how issues like initialization, etc. are handled.

Then what can we use to compare the efficiency of two algorithms?

Typically we would like to estimate the work, i.e., the number of
operations performed as a function of a parameter that characterizes
the size of the problem.

31

32




What do we mean by the size of the problem?

Usually a problem size is a function of some parameter n. Some
examples include:

—When we multiply a square matrix times a vector than the
parameter is the size of the matrix, i.e., n where the matrix is n x
n. We know that as n increases the number of arithmetic
operations increases

— Another example would be sorting or searching a string of
length n.

If we are solving a small instance of a problem then it probably
doesn’t matter whether we use the most efficient algorithm.

However, if we want to solve large problems (i.e., for large N) or we
need to perform the calculation many times, then we have to be
concerned about storage and the growth rate of the work in terms
of N.

If we want to develop efficient algorithms then we must be able to
state mathematically what we mean by “efficient”; we need to be
able to say something more than “it runs quickly.”

33

34

The question is:

how we can quantify the efficiency of algorithms so that we can
compare them.

* The wall clock time that an algorithm takes to execute for a
specific problem can depend on a lot of factors; for example, the
actual implementation (coding), the language used, the computer
used, etc.

* We want a definition of efficiency that is platform-independent,
instance-independent and of predictive value as the input size is
increased.

Analyzing algorithms involves thinking about how their resource
requirements — the amount of time and space they use — will
scale with increasing input size. In most cases, the value of one
particular input quantity is a measure of how hard the
calculation is going to be.

e Often this quantity is an integer, perhaps N, which might
measure the length of an input vector, the dimension of a
square matrix (i.e., N x N), the number of iterative steps to take,
or some other quantity that affects the amount of work.

¢ It is sometimes possible to estimate the work W, the number
of operations performed, as a function of an input parameter
such as N.

35

36




Suppose we were able to determine an explicit formula involving
N for the work required to use each of two methods (Algorithm
A and Algorithm B)

to solve a problem and found these formulas to be
W,=3N+21 W, =N2+ 10N +5

The first thing to note in formulas like these is that as N grows the
term which has the highest power of N dominates; for example,
in W, itis 3N and in Wy it is N2

N 3N 3N +21 N? 10N N?+4 10N +5
where W, denotes the work for Algorithm A and W, denotes the
work for Algorithm B. 10 30 51 100 100 205

100 300 321 10,000 1000 11,005
We want to investigate the implications of these two formulas 1000 3000 3021 1,000,000 10,000 1,010,005
remembering that we are concerned with how the work grows 100,000 | 300,000 300,021 1010 10° 10,001,000,005
as N increases; if we are performing calculations with small
values of N then it probably doesn’t matter which algorithm we
use.
37 38

We say that W, is linear in N and Wy is quadratic in N.

Next slide you se a plot of the two formulas for the work as a function
of N. Note that this means that if N is doubled (say 1000 to 2000)
then the work W, increases by approximately two (from 3021 to
6021, i.e.,

from 3N +21to 3(2N) + 21

However for W, the work increases by approximately four; i.e., from
NZ+10N+5 to (2N)2+10(2N)+5=4N2+10N+5

This gives us a measure of how complex the problem is in terms of N.

graphs of 3x+21, X2+10x+5
T T T

39

40




Terminology

¢ When the leading term in the work is a constant times N we
say the method

— has linear growth in N or equivalently
—is order N or equivalently
—is O(N)

e When the leading term in the work is a constant times N2 we
say the method

—has quadratic growth in N or equivalently
—is order N2 or equivalently
—is O(N?)

Polynomial Growth

o We have seen two examples of polynomial growth, linear which is O(N),
and quadratic which is O(N?).

o Clearly we could have work which has a leading term of N? and we would
call this method cubic and say it is O(N?).

® So, in general, if a method has polynomial growth then we say it is O(N?)
for some p > 0 which is typically an integer but doesn’t have to be.

® Remember that O(/N?) means that the leading term in the work is ¢ * N?
for some positive constant c.

o |f the value of IV increases from N to 2NN then the amount of work increases
by 2P because we compare cNP and ¢(2N)? = c2P N?.

e These methods are easy to compare because the larger the value of p the
more work required. We can compare these to the plots of the continuous
monomials z, 22, 2, ... We know that as the power of = increases the plot

goes to infinity faster and faster.

41

42

Are there methods which have work which don’t have polynomial growth?
o Suppose we determined that an algorithm has a formula for work which is
logN 45
o First of all we might wonder what this means because there is no base for the

log function. Oftentimes in logarithmic growth formulas the base is omitted;
this is because we can always change between bases by using the formula

logy, =

log,z = .
log, a

The denominator in this formula is a constant so if the method is O(log, N)

then it is also O(log, N).

The function log N 4 5 is clearly not a polynomial but we might want to
compare it to an algorithm which has polynomial growth. For example, does
it require more work or less work than a method with linear or quadratic
growth?

Other examples of logarithmic growth formulas are

NlogN  N?logN  N(log N)?
We can also have exponential growth formulas such as
¥ 15N Y
¢ We can also have a factorial growth N!. Note that
NI =~ NN

due to Stirling’s formula which for all practical purposes means it’s
impossible!

43

44




How compare these formulas with polynomial growth?

One way to do this is to plot the corresponding continuous
function (if appropriate).

For example, for InN + 5 we could plot In x + 5 and compare
with polynomial growth. In the following plot we graph In x + 5
and x.

graphs of x, In x
T T T

45 46
. . Example
* Another way to compare the growth is to use limits
from calculus like: Inz 1
Iim —=1lm%=1m —=0
r—00 I T—00 T—00 I

Inx v

lim — lim —
r—00 I T—00 I

L'Hopital’s rule

f@) _ o @
T—c g(l‘) T—c g’(l‘)

which says that x approaches infinity faster than In x does. This
means that a method which is linear in growth requires more
work than a method which has logarithmic growth. This is
exactly what we concluded from our graph above.

27 27 In 2 27 (In2)? 27 (In2)°
lim inf — = lim inf ne_ lim inf (in2) = ... = liminf ﬂ
T

5t 5047 120

which says that 2 grows faster than x°. Note that this is also true for
xP for any p >= 0. We say that 2* has exponential growth. Exponential
functions growth faster than any polynomial.

47

48




To compare two exponential growth formulas, such as a¥ and bN
we simply look at the base; if a > b then aM grows faster.

It is important to realize that what we are interested in is the
rate of growth. If we have two algorithms which have work 3N2 +
4 and 4N? + 4 it is true that for any N the work for the first is less
than for the second but the rate at which they grow is the same.
For example, for N = 10* they both have O(108) operations.

N|Nlog,N| N?| N° 15" N N!
N=10|<1sec| <lsec|<lsec|<lsec| <lsec|<lsec| 4sec
N=30|<1lsec| <lsec|<lsec|<lsec| <1sec| 18min|10% yrs
N=50|<1sec| <lsec|<lsec|<lsec| Ilmin| 36yrs 00

N=100|< Isec| <1Isec <lsec| 1sec| 12892 yrs| 10 yrs 00
N=10" <1sec| <lsec| 1sec| 18 min 00 00 o0
N=10" <1sec| <lsec| 2min|12days 00 00 00

00

N=10" <lsec| 2sec| 3hrs| 32yrs x| ®

Estimated running times of different algorithms on inputs of increasing size
for a processor performing a million high-level instructions per second. In
cases where the running time exceeds 102° the time is listed as oo. Reference:
Algorithm Design by Kleinberg & Tardos

49

50

If we break our algorithm into two parts and Part | is linear in N
and Part Il is linear in N then the algorithm is linear.

If we break our algorithm into two parts and Part | is linear in N
and Part Il is quadratic in N then the algorithm is quadratic

Worst Case & Best Case Scenarios

e Sometimes it is informative to consider what is the worst (or best)
case scenario for your algorithm.

e It could be the case that your algorithm performs well on most
instances of the input but has a few pathological inputs on which it is
very slow. However, in general, this will not be the case.

e For example consider a scalar array of length N which we want to
search to see if any element is equal to a given value, say 17. If the
first element in the array happens to be 17, then the algorithm is
complete in one step (best case scenario) but if the last element, or
no element, is 17 then we have to check all N elements so we will
perform N comparisons. We say that this “exhaustive search” is
linear in N even though there may be some instances of input where
it performs faster.

51

52




Examples of calculating a formula for the growth rate.

Given two n-vectors i and ¥, the scalar dot product is denoted by

n
A== u;
i=1

where u; denotes the ith entry of the vector .
This can be computed in approximately n operations:

o 1 initialization and 2n “fetches” from memory
o n multiplies

on — 1 adds

o 1 write to memory

If we count only the n+(n-1) computational operations, we have 2n—1 operations
or a linear algorithm, i.e., O(n) algorithm.

Dot product time versus vector size
0.04 T T T T T

0.035

0.03

0.025 ¢

0.02

TicToc Time in Seconds

0.015

i I
0s 1 1.5 2 25 3 35
Number of vector enfries %10

Plot of the time to compute a dot product versus the size of the vector. Clearly
the growth is linear in the size of the vector because as the size is doubled, the
work is also doubled.

53

54

Shortest path

Suppose we have N cities, and we are interested in determining the
shortest driving time st(i, j) to drive from each city i to each city j.

¢ We assume that we start with a table that gives the driving time
dt(i, j) for a direct trip from city i to each city j.

e If there is a direct route from city i to city j then it is easy. However
many cities may not have a direct link. Usually there are many
routes from one city to another and we want to find the shortest of
all possible routes.

e Between city i and city j there are N -2 other cities, so theoretically
there are (N - 2)! routes to check for each city combination. This
seems like an O(N!) problem, also known as “impossible”!

Floyd’s algorithm for shortest path problem

Instead of being impossible, Floyd’s algorithm shows a simple way to
compute

the entire table of possible distances in just a few lines of code:
set st = dt
fork=1:n
forj=1:n
fori=1:n
st(i,j) = min ( st(i,j), st(i,k) + st(k,j) )
end
end
End

Don’t worry about why this algorithm works right now but simply

calculate the work required. What is the growth as a factor of n?

55

56




Floyd computation time versus number of cities
30

25 }t-

m /
Z /
e

0 200 400 600 800 1000 1200
Number of vector entries

TicToc Time in Seconds

Plot of time versus number of cities for Floyd’s algorithm.

Brute Force Algorithms

¢ These are algorithms which take a straightforward and often the
most obvious approach to solving a problem.

¢ The basic idea is often to try all possibilities and see if any of them
works.

¢ These algorithms are rarely called clever or efficient but should
not be overlooked as an important design strategy.

¢ This approach is applicable to a very wide range of problems.

e Sometimes we only need to solve a small problem for an
educational purpose or to verify some theoretical result and in this
case a brute force approach may be the quickest to implement.

57

58

Example
Determine the greatest common divisor (gcd) of two integers, m, n.
for example, determine gcd(54, 99)

e A brute force approach to determining this would be to check
consecutive integers; e.g., check 54, then 53, then 52, etc. until we
find the largest that divides both numbers.

¢ How would we implement such a method?

We could start with 2 and increase our test divisor by one until we
reach either m and n (the smallest one) but it would probably be
better to start with the largest possible divisor and decrease.

— We know that the gcd has to be <= min{m, n}.
— So we set our guess for the gcd to be t = min{m, n}.
— If t divides both m and n (i.e., the remainder is zero) we are done;

— If the remainder is not zero (for either m or n) then we reduce t by
one and continue

Consecutive integer checking algorithm:

Input: two integers, m and n

Output: integer t which is gcd(m, n)

Step 1. Set t = min{m, n}

Step 2. Divide m by t; if the remainder is 0, go to Step 3; otherwise
go to Step 4.

Step 3. Divide n by t; if the remainder is O, return the value of t as
the gcd; otherwise go to Step 4.

Step4.t=t-1;gotoStep2

This is a description of the code but it is not really written in
pseudocode format. However, it is a format that is often used in
books and papers.

59

60




Example gcd(16,36)

t = min{16,36} = 16

t=16 16/16 has remainder 0 | 36/16 does not have remainder 0
t=15 16/15 does not have remainder 0

t=14 16/14 does not have remainder 0

t=38 16/8 has remainder 0, 36/8 does not have remainder 0
t="7 16/7 does not have remainder 0

t

t

5 16/5 does not have remainder 0

4 16/4 has remainder 0 36/4 has remainder 0; return ged=4

Of course this is definitely not the most efficient approach to finding the greatest
common divisor. The worst case scenario would be when we have to check all
numbers from min{m, n} to 2. At each step we have to do one or two divisions
so the work for the worst case scenario is < 2min{m,n} so it is linear.

Sorting a List

Suppose we have a list of n orderable items (names, numbers, etc.) and we
want to sort these based upon some criteria. Dozens of algorithms have been
developed to perform such a task. Clearly it is a task that is prevalent today;
e.g., sorting a list of students by GPA, sorting a list of employees by years of
service, ordering a list of items such as TVs that you want to purchase by price,
ete.

You may already know some methods to do this, but for now, pretend you don’t
and let’s look at a couple of brute force approaches. We want a straightforward
approach but remember what one person may view as straightforward, another
may not so we consider two candidates here.

For simplicity of exposition, we will assume that we are sorting a list of n
numbers in ascending order.

61

62

Selection Sort Algorithm

This algorithm works by putting the smallest entry in the first position of the
array, then putting the second smallest in the second position, etc.

e Scan list to find smallest entry and exchange first entry of list with this
smallest entry.

e Scan second through n entries in list to find smallest entry and exchange
this with the second entry.

e Scan third through n entries in list to find smallest entry and exchange this
with the third entry.

e Continue until you are scanning entries n — 1 through n to find the smallest
entry and exchange it with (n — 1)st entry

e The result is the sorted list.

e An equivalent algorithm would be to start with scanning the array to find
the largest entry and putting it in the nth position, then the second largest
in the (n — 1)st entry, ete.

Selection sort for real array

Input: array a(1:n) of numbers and its length n
Output: the array a(1:n) sorted in ascending order

fori=1, n-1
min loc =i
for j=i+1, n
if (a(j) <a(minloc) ) minloc=j
end for loop over j
swap a(i) and a(min loc)
end for loop over i

63

64




Example How much work does this algorithm take?

Apply the Selection Sort algorithm to the array of numbers o Clearly the amount of work depends upon the length of the array n. We
(49, 61, 19, 12) want to determine precisely how it depends upon n.

e For determining formulas for the work the following results from calculus
are useful.
ii _ m(m — 1) Z o m(m+1)(2m+1)
i=1 2 0
e The key work that has to be done is thc comparison of two elements of the

array. Looking at our algorithm description we see that the outer loop is

For the second sweep we locate the smallest entry in positions 2 from 1 to n — 1 and the inner loop is from i + 1 to n and we have to do
one comparison in the inner loop. Consequently we have

through 4 (the third entry) and exchange it with the second entry to . . L )

get (12, 19, 61, 49). DS [n_ (i+1) +1} ;

For the first sweep we locate the smallest entry in the entire array (the
fourth entry) and exchange it with the first entry to get

(12, 61, 19, 49.)

i=1 j=i+1 i=1 1=1 1=1
For the third and final sweep we find the smallest entry in positions n—1 n—1 _ o
_(n=Dn _n* n
three and four (the fourth entry) and exchange to get (12, 19, 49, 61). = ”21 - Zl =n(n—1) 5 =573
The algorithm is complete.
65 66

* So we say the algorithm is quadratic in n and is O(n32).

¢ Of course we have to swap elements but this is only donen -1
times.

¢ Recall that an algorithm which has quadratic growth increases
the work by a factor of four when n is doubled.

67



