
Programming for Scientific Applications
based on slides from Gordon Erlebacher and Xiaquiang Wang

image from plotly

2

Syllabus

p Class participation (questions,
suggestions, comments): might increase
your grade if otherwise too low

p Homeworks (weekly with lapses): 30%
p Quizzes: 10%
p Labs: 30%
p Midterm: 20%
p Final: 20%

3

Class Attendance

■ Attendance Mandatory
■ Keep your cell phone in your pocket or purse

4

Class Objectives

p to understand the benefits of interpreted and compiled languages and
know when to use each one to best advantage

p to understand Python sufficiently to program applications with
confidence

p to understand C++ sufficiently to program applications
p learn to interface C++ and Python to each other, to take advantage of

the best features of both languages
p through lab work, develop the skills to apply Python and C++ to a

range of practical scientific applications, ranging from graphical user
interfaces, web-based display of results, processing of scientific data,
and visualization

5

Honor Code

p The Academic Honor System of The Florida State University is based on the premise that
each student has the responsibility 1) to uphold the highest standards of academic integrity
in the student's own work, 2) to refuse to tolerate violations of academic integrity in the
University community, and 3) to foster a high sense of integrity and social responsibility
on the part of the University community. Please note that violations of this Academic
Honor System will not be tolerated in this class. Specifically, incidents of plagiarism of
any type or referring to any unauthorized material during examinations will be rigorously
pursued by this instructor. Before submitting any work for this class, please read the
``Academic Honor System" in its entirety (as found in the FSU General Bulletin and in the
FSU Student Handbook and ask the instructor to clarify any of its expectations that you do
no understand.

http://www.eng.fsu.edu/%7Epeterson/fsuhc.html
http://www.eng.fsu.edu/%7Epeterson/fsuhc.html

6

Outline

p Class Work (Tuesday, Thursday)
■ fundamentals of Python and C++

■ example-based

■ use of web to supplement class material

p Lab work (Tuesday)
■ illustration of Python and C++ in practical situations

■ 2.5 hours per week

■ write a report about lab (summary, pictures, tables), and also deliver
code

■ each lab: 1-2 weeks. Reports due weekly

8

Class Contents

p Overview (today)
p Modules, Operating system
p lists, dictionaries, sequences
p functions
p text processing
p files, I/O
p numpy for arrays
p classes
p numpy for statistics
p C/C++ and wrapping

10

What is programming?
p What is a computer program?

■ “A set of coded instructions that enables a machine,
especially a computer, to perform a desired sequence of
operations.” – American Heritage Dictionary

p Programming instructions are written using a “programming
language”

■ Examples: C/C++, Java, Assembly, Fortran, Cobol, BASIC

■ LOTS of programming languages, different uses for different
languages

http://helloworldcollection.de

C++ Back to index

// Hello World in C++ (pre-ISO)

#include <iostream.h>

main()
{
 cout << "Hello World!" << endl;
 return 0;
}

Haskell Back to index

-- Hello World in Haskell

main = putStrLn "Hello World"

Lisp Back to index

;;; Hello World in Common Lisp

(defun helloworld ()
 (print "Hello World!")
)

Assembler-Linux Back to index

 ;; Hello World for the nasm Assembler (Linux)

 SECTION .data

 msg db "Hello, world!",0xa ;
 len equ $ - msg

 SECTION .text
 global main

main:
 mov eax,4 ; write system call
 mov ebx,1 ; file (stdou)
 mov ecx,msg ; string
 mov edx,len ; strlen
 int 0x80 ; call kernel

 mov eax,1 ; exit system call
 mov ebx,0
 int 0x80 ; call kernel

11

Terminology
p Computer program – a set of instructions that tell a computer

exactly what to do

■ The instructions might tell the computer to add up a set of

numbers, or compare two numbers and make a decision based
on the result, or whatever.

p Programming language – a language used by humans to program
computers

■ e.g., Fortran, Cobol, Basic, Pascal, C, C++, Java, Perl

p Compiler – translates a computer program written in a human-
readable computer language (like C++) into a form that a computer
can execute

■ You have probably seen .exe files or .app ‘files’ on your computer.

■ These executable files are the output of compilers.

■ They contain executables -- machine-readable programs

translated from human-readable programs.

12

Programming

p Problem solving
■ Logical/methodical way of solving a problem

p Algorithm/abstraction
■ An algorithm is a series of step-by-step instructions that

produces a solution to a problem
p Step wise refinement

■ Incrementally adding functionality to a program

13

Five steps to writing a program

p Define the problem

p Plan the solution

■ pseudocode

p Code the program

■ Using a programming language

p Test and debug

■ Using a compiler (C++), or interpreter (Python)

p Document

14

Python vs C++

p Python is interpreted

p C++ is compiled

14

Python vs C++ and other languages

p Python is interpreted (and Julia)

p C++ is compiled (and D)

15

Hello World

p In a file named HelloWorld.py

p print ‘Hello World’

17

Scripting vs traditional

p Traditional programming
■ C, C++, Fortran, Java (kind of), C#
■ mostly computation, networking, other low-level activities
■ traditional code if often wrapped with scripting code for

ease of use and integration into scripting framework
p Scripting framework

■ Perl, Python, Ruby, Scheme, Julia, Tcl, ...
■ Integrates text processing, I/O, report writing, and

computation
■ Often sections of programs written in scripting languages

are translated to traditional code for efficiency

18

Why Scripting?

p Easier to use
p Faster development time
p Avoid compilation and linking
p Integration of visualization, networking, datea analysis, etc.
p Python makes it simple to glue together different applications

(plenty of tools, modules)
p Scientific computing is more than number crunching. In

addition:
■ data manipulation, data analysis, visualization, format

conversion, parametric studies, cataloguing, database
access, etc.

■ these tasks are much much easier in Python than C++,
Fortran, etc.

p Graphical user interfaces (use of Tk to wrap existing
programs)

20

Language Classification

p Scripting languages: dynamically typed
■ variables types are not declared

■ syntax closer to natural language

p Traditional programming languages: type
safe
■ declare variable types

■ syntax closer to the hardware

24

Efficiency
p Scripting languages

■ first compiled to byte code (independent of OS)

■ byte code is interpreted, line by line

■ better error messages

■ in general, codes run slower (not important for short codes)

■ sometimes speed is optimal (e.g., regular expressions)

■ inefficient sections of code can be rewritten in C/C++/Fortran/Java

p Traditional (compiled) languages
■ source code is translated to machine code (closer to the hardware)

■ machine code is hardware-dependent

■ in general, codes runs MUCH faster

25

Variable Declaration
p C, C++: type-safe languages

■ protect the user against himself

■ less bugs, safer programming

■ code reuse is harder (types are set in stone)

■ somewhat relaxed with classes and templates (for C++, but not for C)

p Python, Lua, etc.
■ when a variable is needed, assign a value

■ type is determined by the value

■ type conversion is sometimes automatic (Perl), sometimes not (Python)

■ same piece of code can be used in many different contexts

