
ISC4304 Programming Science Applications Spring 2018

Lab 5: Bayesian analysis of a dice toss problem

Due date: Friday March 9, 11:59pm

Short version of the assignment

Each of you get a 4D die: Figure out whether the die is fair or unfair, report most likely probabilities
for each side. Write a report and send your findings (including the code and the data) to Kyle.

Slightly longer version of the assignment

Use the die I gave you to throw, say 50 times,
and record the outcome (it will be 1,2,3, or 4),
this will be your data D for the exercise. We will
construct a program that is doing Bayesian in-
ference and estimate the posterior probabilities
P (p|D) of the probability p of each side of the
die. A short refresher on Bayesian inference:
Bayes theorem suggests that we can get proba-
bility of the parameters of a model (your p) given
the data D but assuming some distribution of the
parameters and also knowing how to calculate
the likelihood that the data fits a particular model
(with a specified set of p values), then we can
formulate:

P (p|D) =
P (p)P (D|p)

P (D)
, (1)

the quantity in the denominator is a scaler so that the posterior distribution integrates to 1.0,
thus we could say the P (D) is the integral over all possible values of p:

∫
p P (p)P (D|p)dp, but for

our analysis we can dodge the calculation of this because we use Markov chain Monte Carlo to
estimate our quantities. We thus can use

P (p|D) ∝ P (p)P (D|p). (2)

Our task can be broken down into 4 steps:

1. Construct the likelihood function

2. Construct the prior

3. Construct Markov chain Monte Carlo sampler (including a method how to change the p using
our prior)

4. Visualize the results, print means etc.

1

ISC4304 Programming Science Applications Spring 2018

1 Likelihood

We observe results that could be summarized like this: 1: 5, 2: 10, 3:6, 4:9. We have 5 throws
that resulted in a 1, 10 throws for 2, 6 throws for 3 and 9 throws for 4, for a total of 30 throws. We
will use this data further as a list [5,10,6,9], or more abstract [a,b,c,d]. If we would use a coin that
we could report heads or tails and would use a binomial distribution, but for our problem we have
4 sides, thus will need an extension of the binomial and use the multinomial distribution, that can
be calculated like this

P (D|p) = n!

a!b!c!d!
pa1p

b
2p

c
3p

d
4 =

30!

5!10!6!9!
p51p

10
2 p

6
3p

9
4 (3)

The problem with this is that the result will be difficult for large numbers of throws, for example 100
or 200 throws will result in problems to calculate the factorials, a remedy to this is to operate all
calculations in logs, if we do that then we get

logP (D|p) = (logf(n)− (logf(a) + logf(b) + logf(c) + logf(d))) + a log p1 + b log p2 + c log p3 + d log p4
(4)

We could calculate logf as the log of a factorial but that breaks with large numbers, we approxi-
mate using this

log(x!) ≡ gammaln(x+ 1) (5)

gammaln is available within numpy or scipy.

2 Prior

we will use prior that can take the p and calculate probability density function, appropriate for our
problem is the Dirichlet distribution that takes p assuming that the p sum to 1 and also uses a set
of parameters, we are laze and use a vector α with all ones, for our problem α = [1, 1, 1, 1], this is
equivalent to flat prior where we believe all p come from the same distribution. The Dirichlet PDF
can be coded using the sample code in this post
http://stackoverflow.com/questions/10658866/calculating-pdf-of-dirichlet-distribution-in-python,
take the code and create a function that may look like this:
def pdf dirichlet(p, alpha): The pdf dirichlet() function delivers a probability and
takes two arguments, a vector p (these are the posterior values of the throw-probabilities and α
these are the weights that lead to p. Recent Scipy versions contain the PDF of the Dirichlet and
you can use scipy.stats.dirichlet.pdf (x, α) with a vector x and the concentration parameter α.

3 Markov chain Monte Carlo (MCMC)

• Propose new values p: We can propose new values for p from the prior, this is easy because
numpy HAS a function for that: np.random.dirichlet(alpha) where alpha is our α from
above.

• Start with an arbitrary value for example p=np.random.dirichlet(alpha), evaluate the pos-
terior with these p, post=pdf dirichlet(p, alpha) * like(data,p), then run for a large
number of cycles through this recipe:

2

ISC4304 Programming Science Applications Spring 2018

1. propose new p

2. evaluate the new posterior new

3. compare new with old (see above the post that probably should better called old); if the
new is better than the old we will accept the new p and record it (for example append
it to results), if new is smaller than old we accept with some probability r, this can be
done easily using a condition r < new/old, but remember, we used logs to calculate all
quantities, so our condition turns into this:

r = numpy.random.uniform(0,1)

if np.log(r) < new - old:

append new p to results

oldp = p

old = new

else:

append old p to results

The results contain now a chain of ’accepted’ p values, a histogram of these will represent the
posterior.

4 Visualize results

Use a histogram to show the bars for each posterior for each side of the die. Check out the hist

examples. Discuss your results, if you are adventurous, try to calculate the credibility intervals.

Peter Beerli February 2017

3

