

g8 = 'cat

lterators

for si in s:

An ITERABLE is: priutied
- anything that can be looped over ¢
(i.e. you can loop over a string or :
file)
- anything that can appear on the

right-side of a for-loop: for x

s. getitem

<method-wrapper ' getitem ' of str object at 0x10

in iterable: ... n=(1,4,16,32]
- anything you can call with cor ni in o
iter() have it return an print ni,
ITERATOR: iter(obj) 1 416 32
- an object that defines __iter iter(n)

that returns a fresh ITERATOR, <listiterator at 0xl0deebcd0>
or it may havea getitem

method suitable for indexed

n. iter

<method-wrapper ' iter ' of list object at 0x10d7
lookup.

S iter

AttributeError Traceback

nt call last)

for k in {"x":

N

1, "Y": 2}:
print Kk

for line in open("/Users/beerli/a.txt"):

print line

The quick fox jumps of the lazy dog

The red fox is running away

>>> ", ", join(["a", "b", "c"1)
at)c

>>> " ", join({"x": 1, "y": 2})
'Y, X'

>>> List("python™)

['p', 'y', 't', 'h', 'o', 'n']
>>> List({"x": 1, "y": 2})
'y', 'x']

Many functions consume iterables

An ITERATOR is:
« an object with state that

remembers where it is during .
>> X = 1ter([1, 2, 3])

iteration
- an object witha __ next 7>z X |
method (Python 3; next before) <listiterator object at 0x1004ca850>
that: >>> X.next()
* returns the next value in the !
iteration >>> X. neXt()
* updates the state to point at -
the next value >>> X.next()
- signals when it is done by 3
raising StopIteration >>> X.next()
- an object that is self-iterable Traceback (most recent call last):
(meaning that it has an File "<stdin>", line 1, 1n <module>

~_iter method that returns StopIteration
self).

Raymond Hettinger

niter = iter(n)

for ni in niter:
print ni

>

32

[terators are implemented as classes. Here 1s an iterator that works like built-in
Xrange function.

class yrange:
def init (self, n):
self.i = 0
self.n = n

def iter (self):
return self

def next(self):
if self.i < self.n:
1 = self.i
self.i += 1
return i
else:
raise StopIteration()

The __iter__ method is what makes an object iterable. Behind the scenes, the iterfunction calls

__iter__ method on the given object.

The return value of __iter__ isaniterator. |t should have a next method and raise StopIteration

when there are no more elements.

y = yrange(4)

y.next()

StopIteration Traceback (most rece
nt call last)

<ipython-input-27-75a92ee8313a> in <module>()

--==> 1 yv.next()

How would we write a reverse Iterator
given our class yrange ?

class yrange:
def init (self, n):
self.i 0
self.n n

def iter (self):
return self

def next(self):
if self.i < self.n:
1 = self.1i
self.i += 1
return i
else:
raise StopIteration()

>>> 1t = reverse_iter([1, 2, 3, 4])
>>> 1t.next()

>>> 1t.next()
>>> 1t.next()

>>> 1t.next()

1

>>> 1t.next()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

class Reverse:

>>2> rev

mnn

def

def

def

Iterator for looping over a sequence backwards.

~ init (self, data):
self.data = data
self.index = len(data)

___iter (self):
return self
next(self):
if self.index == 0:
raise StoplIteration
self.index = self.index - 1

return self.data[self.index]

= Reverse(spam')

>>> iter(rev)

< malin__.Reverse object at 0x00A1lDB50>

>>> for char in rev:

nT o3 .

print char

N

(Generators

facilitate the construction of iterators

def zrange(n):

i=20

while i1 < n:
vield 1
i +=1

http://anandology.com/python-practice-book/iterators.html

z = zrange(3)

Z

<generator object zrange at 0x10def4500>

z.next()

0

z.next ()

Z.next ()

z.next()

StopIteration Traceback (most recent call last)
<ipython-input-34-6c49ed4clla56> in <module>()
———=> 1 z.next()

StopIteration:

So a generator 1s also an 1terator. You don’t have to worry about the iterator protocol.

The word “generator” 1s confusingly used to mean both the function that generates and
what it generates.

We will use the word “generator” to mean the generated object and “generator function™
to mean the function that generates it.

Can you think about how it 1s working internally?

When a generator function is called, i1t returns an generator object without even
beginning execution of the function. When next method 1s called for the first time, the
function starts executing until it reaches y1 el d statement. The yielded value is returned

by the heXt call.
The following example demonstrates the interplay between y1eld and call to next
method on generator object.

http://anandology.com/python-practice-book/iterators.html

>>> def foo():
print "begin”
for 1 in range(3):
print "before yield", 1
yield 1
print "after yield", 1i
print "end"

>>> f = foo()

>>> f.next()

begin

before yield 0

Y

>>> f.next()

after yield 0@

before yield 1

1

>>> f.next()

after yield 1

before yield 2

2

>>> f.next()

after yield 2

end

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

>>>
http://anandology.com/python-practice-book/iterators.html

def integers():
"""Infinite sequence of integers.

mran

i=0

while True:
yield 1
i=1+1

def squares():
for i in integers():
vield i * i

def take(n, seq):
"""Returns first n values from the given sequence."""

seq = iter(seq)
result = []
try:
for 1 in range(n):
result.append(seqg.next())
except StoplIteration:
pass
return result

print take(5, squares())

(0, 1, 4, 9, 16]

print take(6,integers())

def take(n, seq):
"""Returns first n values from the given sequence.

seq = lter(seq)
result = []
try:

for 1 in range(n):
result.append(seg.next())
except Stoplteration:
pass
return result

def fibonacchi():
last = 1
gecondlast = 0
yield 1
for 1 in integers():
vield (secondlast + last)
secondlast, last = last, secondlast + last

print take(20,fibonacchi())

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

610,

987,

1597,

2584,

4181,

6765]

5.3. Generator Expressions

Generator Expressions are generator version of list comprehensions. They look like list
comprehensions, but returns a generator back instead of a list.

>>> a = (x*x for x in range(10))
>>> a
<generator object <genexpr> at @x4Q1f08>

>>> sum(a)
285

We can use the generator expressions as arguments to various functions that consume iterators.

>>> sum(((x*x for x in range(19)))
285

When there is only one argument to the calling function, the parenthesis around generator
expression can be omitted.

http://anandology.com/python-practice-book/iterators.html

Another example:
Lets say we want to find first 10 (or any n) pythagorian triplets.
A triplet (X, Y, Zz) is called pythagorian triplet if X*X + y*y == z*z.

It 1s easy to solve this problem if we know till what value of z to test for.
But we want to find first n pythagorian triplets.

pyt = ((X, vy, 2z) for z in integers() for y in xrange(l, z) for x in range(l, y) if X*X + y*y == z*z)

take (10, pyt)

[(3l 4’ 5)’
(6I 8l 10)'
(5, 12, 13),
(9, 12, 13),
(8, 15, 17),
(12, 16, 20),
(15, 20, 25),
(7, 24, 25),
(10, 24, 26),
(20, 21, 29)]

http://anandology.com/python-practice-book/iterators.html

5.3.1. Example: Reading multiple files

Lets say we want to write a program that takes a list of filenames as arguments and prints contents of
all those files, like cat command in unix.

The traditional way to implement it is:

def cat(filenames):
for f in filenames:
for line in open(f):
print line,

Now, lets say we want to print only the line which has a particular substring, like grep command in

unix.

def grep(pattern, filenames):
for f in filenames:
for 1line in aopen(f):
if pattern in line:
print line,

Both these programs have lot of code in common. It is hard to move the common part to a function.
But with generators makes it possible to do it.

http://anandology.com/python-practice-book/iterators.html

def readfiles(filenames):
for f in filenames:
for line in open(f):
yield line

def grep(pattern, lines):
return (line for line in lines if pattern in lines)

def printlines(lines):
for 1line in lines:
print line,

def main(pattern, filenames):
lines = readfiles(filenames)
lines = grep(pattern, lines)
printlines(lines)

The code is much simpler now with each function doing one small thing. We can move all these
functions into a separate module and reuse it in other programs.

http://anandology.com/python-practice-book/iterators.html

5.4. Itertools

The itertools module in the standard library provides lot of intersting tools to work with iterators.
Lets look at some of the interesting functions.

chain - chains multiple iterators together.

>>> 1tl = iter([1, 2, 31D

>>> 1tZ2 = iter([4, 5, 6])
>>> 1tertools.chain(itl, it2)
[1, 2, 3, 4, 5, 6]

izip - iterable version of zip

>>> for x, y in itertools.izip(["a", "b", "c¢"]1, [1, 2, 31):
print x, y

http://anandology.com/python-practice-book/iterators.html

import itertools

dir(itertools)

[' doec ',
‘' file ',
' name ',
' _package ',
'chain',
'combinations’,
'combinations with replacement',
'compress ',

'count’,
'cycle',
"dropwhile’,
'groupby’,
'"ifilter',
'ifilterfalse’,
"imap’',
'islice',

to scroll output; double click to hide

. 'izip longest',
'permutations’,
'product’,
'repeat’,
'starmap’,
'takewhile’,
"tee']

help(itertools)

Help on module itertools:

NAME logy.com/python-practice-book/iterators.html
itertools - Functional tools for creating and using iterators.

Problem 2: Write a program that takes one or more filenames as arguments and prints all the lines
which are longer than 40 characters.

Problem 3: Write afunction findfiles that recursively descends the directory tree for the

specified directory and generates paths of all the files in the tree.

Problem 4: Write a function to compute the number of python files (.py extension) in a specified
directory recursively.

Problem 5: Write a function to compute the total number of lines of code in all python files in the
specified directory recursively.

Problem &: Write a function to compute the total number of lines of code, ignoring empty and
comment lines, in all python files in the specified directory recursively.

Problem 7: Write aprogram split.py ,thattakes aninteger n and afilename as command line

arguments and splits the file into multiple small files with each having n lines.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

