ISC4304 Programming Science Applications Spring 2015

Lab 7: Bayesian analysis of a dice toss problem using C++ instead of
python

Due date: Thursday March 26, 11:59pm

Short version of the assignment

Take your python file from lab 6 and convert it into lab7 in C++; or reduce the problem to finding
the only the probability of throwing a 2 using the C++ programming language.

Slightly longer version of the assignment

There are two possible ways to solve the as-
signment: (a) produce a full replacement of the
python code in C++ (do not use any converter
etc, but write the code yourself); (b) create a
C++ program that solves a simpler solution: the
coin tossing problem, except that we use it for
the sides of the dice, for example, calculate the
probability of throwing a 2 or a a "not-2”. Use
the same data D as in lab 6 for the exercise. We
will construct a program that is doing Bayesian
inference and estimate the posterior probabili-
ties P(p|D) of the probability p of each side of
the die. A short refresher on Bayesian inference:
Bayes theorem suggests that we can get proba-
bility of the parameters of a model (your p) given
the data D but assuming some distribution of the parameters and also knowing how to calculate
the likelihood that the data fits a particular model (with a specified set of p values), then we can
formulate:

P(p)P(Dlp) 1)
PD)
the quantity in the denominator is a scaler so that the posterior distribution integrates to 1.0,
thus we could say the P(D) is the integral over all possible values of p: fp P(p)P(D|p)dp, but for
our analysis we can dodge the calculation of this because we use Markov chain Monte Carlo to
estimate our quantities. We thus can use
P(p|D) o< P(p)P(Dlp). ()

Our task can be broken down into 4 steps:

P(plD) =

1. Construct the likelihood function
2. Construct the prior

3. Construct Markov chain Monte Carlo sampler (including a method how to change the p using
our prior)

4. Visualize the results, print means etc.

ISC4304 Programming Science Applications Spring 2015

1 Likelihood

We observe results that could be summarized like this: 1: 5, 2: 10, 3:6, 4:9. We have 5 throws
that resulted in a 1, 10 throws for 2, 6 throws for 3 and 9 throws for 4, for a total of 30 throws. We
will use this data further as a list [5,10,6,9], or more abstract [a,b,c,d]. For (b) we treat our dice like
coins for which we could report heads (for example rolling the 2) or tails (all other: 1 3 4) then we
would use a binomial distribution, bur for (a) we have 4 sides, thus will need an extension of the
binomial and use the multinomial distribution, that can be calculated like this

30!
gfﬂjﬁiéjp?Péopgpi (3)

[if you solve (b) simply reduce the multinomial to 2 objects instead of using 4]

The problem with this is that the result will be difficult for large numbers of throws, for example 100
or 200 throws will result in problems to calculate the factorials, a remedy to this is to operate all
calculations in logs, if we do that then we get

a, b, c

n! d
P (D \P) = mplpngm =

log P(Dlp) = (logt(n) — (logf(a) + logt(b) + logf(c) + logf(d))) + alog py + blog ps + clog ps + dlog py
(4)

[again for (b) use 2 instead of 4]
We could calculate logf as the log of a factorial but that breaks with large numbers, we approxi-
mate using this

log(z!) = gammaln(z + 1) (5)

gammaln is available in the math.h files, here a code snippet that prints a result of the Igamma
function:

/* lgamma example */
#include <stdio.h> /* printf x/
#include <math.h> /* lgamma */

double mylogf(double value)
{
return lgamma(value+1.0);

}

int main ()
{
double param, result;
param = 5;
result = mylogf (param);
printf ("lgamma(%f) = %f\n", param, result);
return O;

}

2 Prior

we will use prior that can take the p and calculate probability density function, appropriate for our
problem is the Dirichlet distribution that takes p assuming that the p sum to 1 and also uses a set

ISC4304 Programming Science Applications Spring 2015

of parameters, we are laze and use a vector a with all ones, for our problem o = [1, 1,1, 1], this is
equivalent to flat prior where we believe all p come from the same distribution. The Dirichlet PDF
needs to be coded because neither numpy nor scipy have it (weirdly enough). There is sample

code in this post
http://stackoverflow.com/questions/10658866/calculating-pdf-of-dirichlet-distribution-in-python,
take the code and create a function that may look like this:

double pdf dirichlet(double x[], double alphal[]l) , the translation of the python code to

C++ should be straightforward, for the simpler problem you could use a uniform prior, the PDF of

the uniform distribution is PDF(x, a,b) = 1/(b—a) where a, b are the lower and upper bounds, pick

0.0 and 1.0 for these.

3 Markov chain Monte Carlo (MCMC)

Thi section will be the same for both versions (a) or (b) take your python code or the pseudocode
below and translate into a C++. Instead of appending to an array | suggest to print directly to the
standard out.

e Propose new values p: We can propose new values for p from the prior, for the simple
solution draw uniform random number on the interval 0,1 the get a single p value and use
1—p for the other value. Check out the function rand(). For the more complex problem you will
need to draw random numbers from the Dirichlet distribution, this is somewhat convoluted,
you could use the stick breaking algorithm that uses a stick of size 1, then breaks of a piece
using a random number for Beta(1, a1), the remaining stick is again broken using Beta(1, a2),

until Beta(1, a,,), this will lead to a set of p values for the sides of the dice. How to
generate a Beta(1,ax) random variable: if X and Y are indpendent random draws from a
Gamma distribution with parameters a5, and 1 then X /(X +Y') is a Beta(1, a;) random draw.
In modern C++11 you can get a Gamma deviated number easily, try out this code snippet:

#include <random>
#include <iostream>
int main()
{
typedef std::mt19937 G;
typedef std::gamma_distribution<> D;
G g; // seed if you want with integral argument
double k = .5; // http://en.wikipedia.org/wiki/Gamma_distribution
double theta = 1.0;
D d(k, theta);
std::cout << d(g) << ’\n’;

Look up the stick breaking algorithm in
http://mayagupta.org/publications/FrigyikKapilaGuptalntroToDirichlet.pdf There they give a
way to simulate a sample from the Dirichlet using Beta random numbers. If you find a better
solution let me know.

e Start with an arbitrary value for example p=np.random.dirichlet (alpha), evaluate the pos-
terior with these p, post=pdf dirichlet(alpha) * like(data,p),then run for alarge num-
ber of cycles through this recipe:

ISC4304 Programming Science Applications Spring 2015

1. propose new p
2. evaluate the new posterior new

3. compare new with o1d (see above the post that probably should better called 014); if the
new is better than the o1d we will accept the new p and record it (for example append
it to results), if new is smaller than o1d we accept with some probability r, this can be
done easily using a condition r < new/old, but remember, we used logs to calculate all
quantities, so our condition turns into this:

r = numpy.random.uniform(0,1)
if np.log(r) < new - old:
append new p to results (or print to standard out)
oldp = p
old = new
else:
append old p to results (or print to standard out)

The results contain now a chain of ‘accepted’ p values, a histogram of these will represent the
posterior.

4 Visualize results

Write a short python program to read the printed out values and plot the result, this can be done
by reusing some of your original lab 6 code. Use a histogram to show the bars for each posterior
for each side of the die. Check out the hist examples. Discuss your results, if you are adventours,
try to calculate the credibility intervals.

Peter Beerli March 2015

