
Worst)Case)&)Best)Case)Scenarios)
•)Some?mes)it)is)informa?ve)to)consider)what)is)the)worst)(or)best))
case)scenario)for)your)algorithm.)
)
•)It)could)be)the)case)that)your)algorithm)performs)well)on)most)
instances)of)the)input)but)has)a)few)pathological)inputs)on)which)it)is)
very)slow.)However,)in)general,)this)will)not)be)the)case.)
)
•)For)example)consider)a)scalar)array)of)length)N)which)we)want)to)
search)to)see)if)any)element)is)equal)to)a)given)value,)say)17.)If)the)
first)element)in)the)array)happens)to)be)17,)then)the)algorithm)is)
complete)in)one)step)(best)case)scenario))but)if)the)last)element,)or)
no)element,)is)17)then)we)have)to)check)all)N)elements)so)we)will)
perform)N)comparisons.)We)say)that)this)“exhaus?ve)search”)is)
linear)in)N)even)though)there)may)be)some)instances)of)input)where)
it)performs)faster.)

52

Examples)of)calcula?ng)a)formula)for)the)growth)rate.)

Examples of calculating a formula for the growth rate.

Scalar or dot product of two vectors.

Given two n-vectors u⃗ and v⃗, the scalar dot product is denoted by

u⃗T v⃗ = u⃗ · v⃗ =
n

∑

i=1

uivi

where ui denotes the ith entry of the vector u⃗.

This can be computed in approximately n operations:

• 1 initialization and 2n “fetches” from memory
• n multiplies
• n− 1 adds
• 1 write to memory

If we count only the n+(n-1) computational operations, we have 2n−1 operations
or a linear algorithm, i.e., O(n) algorithm.

53

Plot)of)the)?me)to)compute)a)dot)product)versus)the)size)of)the)vector.)Clearly)
the)growth)is)linear)in)the)size)of)the)vector)because)as)the)size)is)doubled,)the)
work)is)also)doubled.)

54

Shortest)path)
Suppose)we)have)N)ci?es,)and)we)are)interested)in)determining)the)
shortest)driving)?me)st(i,)j))to)drive)from)each)city)i)to)each)city)j.)
)
•)We)assume)that)we)start)with)a)table)that)gives)the)driving))))?me)
dt(i,)j))for)a)direct)trip)from)city)i)to)each)city)j.)
)
•)If)there)is)a)direct)route)from)city)i)to)city)j)then)it)is)easy.)However)
many) ci?es) may) not) have) a) direct) link.) Usually) there) are) many)
routes)from)one)city)to)another)and)we)want)to)find)the)shortest)of)
all)possible)routes.)
)
•)Between)city)i)and)city)j)there)are)N)−2)other)ci?es,)so)theore?cally)
there) are) (N)−) 2)!) routes) to) check) for) each) city) combina?on.) This)
seems)like)an)O(N!))problem,)also)known)as)”impossible”!)

55

Floyd’s)algorithm)for)shortest)path)problem)
Instead)of)being)impossible,)Floyd’s)algorithm)shows)a)simple)way)to)
compute)
the)en?re)table)of)possible)distances)in)just)a)few)lines)of)code:)
set)st)=)dt)
for)k)=)1):)n)

)for)j)=)1):)n)
))for)i)=)1):)n)
)))st(i,j))=)min)()st(i,j),)st(i,k))+)st(k,j))))

)))end)
))end)
End)
)
Don’t) worry) about) why) this) algorithm) works) right) now) but) simply)
calculate)the)work)required.)What)is)the)growth)as)a)factor)of)n?)

56

Plot)of)?me)versus)number)of)ci?es)for)Floyd’s)algorithm.)

57

Brute)Force)Algorithms)
•)These)are)algorithms)which) take)a)straighjorward)and)oken)the)
most)obvious)approach)to)solving)a)problem.)
)
•)The)basic)idea)is)oken)to#try#all#possibili,es#and#see#if#any#of#them#
works.#
)
•) These) algorithms) are) rarely) called) clever) or) efficient) but) should)
not)be)overlooked)as)an)important)design)strategy.)
)
•)This)approach)is)applicable)to)a)very)wide)range)of)problems.)
)
•) Some?mes) we) only) need) to) solve) a) small) problem) for) an)
educa?onal)purpose)or)to)verify)some)theore?cal)result)and)in)this)
case)a)brute)force)approach)may)be)the)quickest)to)implement.)

58

Example))
Determine)the)greatest)common)divisor)(gcd))of)two)integers,)m,)n.)
for)example,)determine)gcd(54,)99))
•) A) brute) force) approach) to) determining) this) would) be) to) check)
consecu?ve) integers;)e.g.,) check)54,) then)53,) then)52,)etc.)un?l)we)
find)the)largest)that)divides)both)numbers.)
•)How)would)we)implement)such)a)method?)
)We)could)start)with)2)and)increase)our)test)divisor)by)one)un?l)we)
reach) either)m) and) n) (the) smallest) one)) but) it) would) probably) be)
beoer)to)start)with)the)largest)possible)divisor)and)decrease.)
–)We)know)that)the)gcd)has)to)be)<=))min{m,)n}.)
–)So)we)set)our)guess)for)the)gcd)to)be)t)=)min{m,)n}.)
–)If)t)divides)both)m)and)n)(i.e.,)the)remainder)is)zero))we)are)done;)
–)If)the)remainder)is)not)zero)(for)either)m)or)n))then)we)reduce)t)by)
one)and)con?nue)

59

Consecu?ve)integer)checking)algorithm:)

)

Input:)two)integers,)m)and)n)

Output:)integer)t)which)is)gcd(m,)n))

Step%1.)Set)t)=)min{m,)n})
Step%2.)Divide)m)by)t;)if)the)remainder)is)0,)go)to)Step)3;)otherwise)

go)to)Step)4.)

Step%3.)Divide)n)by)t;)if)the)remainder)is)0,)return)the)value)of)t)as)

the)gcd;)otherwise)go)to)Step)4.)

Step%4.)t)=)t)−)1;)go)to)Step)2)
)

This)is)a)descrip?on)of)the)code)but)it)is)not)really)wrioen)in)

pseudocode)format.)However,)it)is)a)format)that)is)oken)used)in)

books)and)papers.)

60

Example)))gcd(16,36))Example Use this brute force algorithm to find gcd(16,24).

t = min{16, 36} = 16

t = 16 16/16 has remainder 0 , 36/16 does not have remainder 0

t = 15 16/15 does not have remainder 0

t = 14 16/14 does not have remainder 0
...

t = 8 16/8 has remainder 0, 36/8 does not have remainder 0

t = 7 16/7 does not have remainder 0
...

t = 5 16/5 does not have remainder 0

t = 4 16/4 has remainder 0 36/4 has remainder 0; return gcd=4

Of course this is definitely not the most efficient approach to finding the greatest
common divisor. The worst case scenario would be when we have to check all
numbers from min{m, n} to 2. At each step we have to do one or two divisions
so the work for the worst case scenario is < 2 min{m, n} so it is linear.

61

Sor?ng)a)List)
Example Sorting a list.

Suppose we have a list of n orderable items (names, numbers, etc.) and we
want to sort these based upon some criteria. Dozens of algorithms have been
developed to perform such a task. Clearly it is a task that is prevalent today;
e.g., sorting a list of students by GPA, sorting a list of employees by years of
service, ordering a list of items such as TVs that you want to purchase by price,
etc.

You may already know some methods to do this, but for now, pretend you don’t
and let’s look at a couple of brute force approaches. We want a straightforward
approach but remember what one person may view as straightforward, another
may not so we consider two candidates here.

For simplicity of exposition, we will assume that we are sorting a list of n
numbers in ascending order.

In your first lab you will implement both of these algorithms and apply them
to a problem.

62

Selec?on)Sort)Algorithm)Selection Sort Algorithm

This algorithm works by putting the smallest entry in the first position of the
array, then putting the second smallest in the second position, etc.

• Scan list to find smallest entry and exchange first entry of list with this
smallest entry.

• Scan second through n entries in list to find smallest entry and exchange
this with the second entry.

• Scan third through n entries in list to find smallest entry and exchange this
with the third entry.

• Continue until you are scanning entries n−1 through n to find the smallest
entry and exchange it with (n− 1)st entry

• The result is the sorted list.

• An equivalent algorithm would be to start with scanning the array to find
the largest entry and putting it in the nth position, then the second largest
in the (n− 1)st entry, etc.

63

SelecAon)sort)for)real)array)
)
Input:)array)a(1:n))of)numbers)and)its)length)n)
Output:)the)array)a(1:n))sorted)in)ascending)order)
)
for)i=1,)n[1)

)min)loc)=)i)
)for)j=i+1,)n)
))if)()a(j))<)a(min)loc))))min)loc)=)j)
)end)for)loop)over)j)
)swap)a(i))and)a(min)loc))

end)for)loop)over)i)

64

Example))
Apply)the)Selec?on)Sort)algorithm)to)the)array)of)numbers)
(49,)61,)19,)12))
)
For)the)first)sweep)we)locate)the)smallest)entry)in)the)en?re)array)(the)
fourth)entry))and)exchange)it)with)the)first)entry)to)get)
)(12,)61,)19,)49.))
)
For)the)second)sweep)we)locate)the)smallest)entry)in)posi?ons)2)
through)4)(the)third)entry))and)exchange)it)with)the)second)entry)to)
get)(12,)19,)61,)49).)
)
For)the)third)and)final)sweep)we)find)the)smallest)entry)in)posi?ons)
three)and)four)(the)fourth)entry))and)exchange)to)get)(12,)19,)49,)61).)
The)algorithm)is)complete.)

65

How much work does this algorithm take?

• Clearly the amount of work depends upon the length of the array n. We
want to determine precisely how it depends upon n.

• For determining formulas for the work the following results from calculus
are useful.

m
∑

i=1

i =
m(m− 1)

2

m
∑

i=1

i2 =
m(m + 1)(2m + 1)

6

• The key work that has to be done is the comparison of two elements of the
array. Looking at our algorithm description we see that the outer loop is
from 1 to n − 1 and the inner loop is from i + 1 to n and we have to do
one comparison in the inner loop. Consequently we have

n−1
∑

i=1

n
∑

j=i+1

1 =
n−1
∑

i=1

[

n− (i + 1) + 1
]

=
n−1
∑

i=1

n−
n−1
∑

i=1

i

= n
n−1
∑

i=1

1−
n−1
∑

i=1

i = n(n− 1)−
(n− 1)n

2
=

n2

2
−

n

2

66

•)So)we)say)the)algorithm)is)quadra?c)in)n)and)is)O(n2).)
)
•)Of)course)we)have)to)swap)elements)but)this)is)only)done)n)−)1)
?mes.)
)
•)Recall)that)an)algorithm)which)has)quadra?c)growth)increases)
the)work)by)a)factor)of)four)when)n)is)doubled.)

67

Bubble&sort&&

•  Movie&
•  h/p://www.youtube.com/watch?
v=lyZQPjUT5B4&

68

&
A& second& brute& force& approach& to& sorGng& is& the& Bubble& Sort&
which&gets&its&name&from&the&fact&that&the&largest&entry&“bubbles&
up”& to& the& top.&Recall& that&SelecGon&sort& started&by&finding& the&
smallest&entry.&In&the&first&sweep&of&Bubble&sort&the&largest&entry&
is&moved&unGl&it&reaches&the&last&posiGon&in&the&array.&In&the&next&
sweep& the& second& largest& entry& makes& its& way& to& the& n& −& 1&
posiGon,&etc.&

69

•&In&the&first&sweep&geUng&the&largest&entry&to&the&last&posiGon&is&
accomplished&by&first&checking&the&first&and&second&entries;&if&the&first&
is&larger&than&the&second&then&they&are&interchanged.&
&
•&Next,&the&second&and&third&entries&are&checked&and&if&the&second&is&
larger&than&the&third&then&they&are&interchanged;&if¬,&then¬hing&
is&done.&
&
•&This&conGnues&unGl&the&(n&−&1)st&and&nth&entries&are&compared&and&
interchanged&if&the&(n&−&1)st&is&larger&than&the&nth&entry;&the&first&
sweep&is&completed.&
&
•&Then&one&starts&over&but&we&only&have&to&compare&entries&in&the&
first&through&(n&−&1)st&components&because&we&have&already&moved&
the&largest&component&to&the&last&entry.&This&procedure&is&conGnued&
unGl&the&enGre&array&is&sorted.&

70

Bubble&Sort&for&real&array&
&
&
Input:&array&a(1:n)&of&numbers&and&its&length&n&
Output:&the&array&a(1:n)&sorted&in&ascending&order&
for&i=1,&n[1&

&for&j=1,n[i&
& &if&(&a(j+1)&>&a(j&)&)&swap&a(j)&and&a(j+1)&
&end&for&loop&over&j&

end&for&loop&over&i&

71

Example&&
&
Apply&the&Bubble&Sort&algorithm&to&the&array&of&numbers&(49,&61,&19,&12)&
For&the&first&sweep&we&have&the&following&steps&
49&<&61&so&do¬hing&&&&&&&&&&&&&&&(49,&61,&19,&12)&
61&>&19&so&interchange&to&get&(49,&19,&61,&12&)&
61&>&12&so&interchange&to&get&(49,&19,&12,&61&)&
&
For&the&second&sweep&
49&>&19&so&interchange&to&get&(19,&49,&12,&61)&
49&>&12&so&interchange&to&get&(19,&12,&49,&61)&
&
Note&that&we&do¬&have&to&compare&the&third&and&fourth&entries&because&in&the&first&
sweep&we&have&moved&the&largest&entry&to&the&fourth&posiGon.&
&
For&the&third&sweep&
19&<&12&so&interchange&to&get&(12,&19,&49,&61&)&
&
Note&that&we&do¬&have&to&compare&the&second&and&third&or&third&and&fourth&
entries&because&in&the&first&sweep&we&have&moved&the&largest&entry&to&the&fourth&
posiGon&and&in&the&second&sweep&we&have&moved&the&second&largest&to&the&third&
posiGon.&
Algorithm&is&complete.&

72

How much work does this algorithm take?

Remember that the Selection Sort Algorithm took O(n2) operations. It turns
out that the Bubble Sort Algorithm takes the same amount of work. We have

n−1
∑

i=1

n−i
∑

j=1

1 =
n−1
∑

i=1

(n− i) = n
n−1
∑

i=1

−
n−1
∑

i=1

i

= n(n− 1)−
(n− 1)n

2
=

n2

2
−

n

2

and thus the algorithm is O(n2).

73

SequenGal&Search&
•&Suppose&that&we&want&to&search&elements& in&a& list&or&array&with&a&
given&value&called&a&search&key.&For&example,&we&might&want&to&find&
the&element&in&an&array&that&equals&17&or&’Tallahassee’.&
&
•&The&brute&force&approach&is&to&be&given&a&list&say&a&and&a&search&key&
say&K.&
&
–&Check&if&a(1)&=&K;&if&so&terminate,&otherwise&conGnue.&
–&Check&if&a(2)&=&K;&if&so&terminate,&otherwise&conGnue.&
–&ConGnue&unGl&one&finds&i&such&that&a(i)&=&K&or&the&list&is&exhausted&

74

SequenGal&Search&Algorithm&
Input:&an&array&a(1&:&n)&and&a&search&key&K&
Output:&the&index&of&the&first&element&of&a&that&matches&K&or&0&if&no&
match&
&
i=0&
while&i&<&n&and&a(i)&&≠&K&do&

&i&!&i+1&
if&i&<&n&return&i&
else&return&0&
&
As&we&discussed&last&Gme,&the&worst&case&scenario&is&that&we&have&to&
check&all&n&elements&in&the&array&so&we&have&linear&growth&O(n)&,&
whereas&the&best&case&scenario&is&O(1)&when&the&first&entry&of&the&array&
equals&the&key.&

75

ExhausGve&Searches&
This& brute& force& approach&determines& all& possible& combinaGons&of& every&
feasible&soluGon&and&picks& the&one&which&saGsfies& the&given&criteria.&This&
approach&is&impracGcal&for&all&but&the&smallest&problems&because&the&work&
is&n!.&
&
Traveling&Salesman&Problem&
The&Traveling&Salesman&Problem&(TSP)&is&to&find&the&shortest&tour&through&
n&ciGes&with&known&distances&between&them.& It&was&first&formulated&as&a&
mathemaGcal&problem&in&1930&and&is&one&of&the&most&intensively&studied&
problems& in& opGmizaGon.& Even& though& the& problem& is& computaGonally&
difficult,& a& large& number& of& heurisGcs& and& exact&methods& are& known,& so&
that&some&instances&with&tens&of&thousands&of&ciGes&can&be&solved.&
The&brute&force&approach/exhausGve&search&would&be&to&find&all&possible&
routes&and&then&pick&the&shortest.&
&
It& has& applicaGons& in& planning,& logisGcs,µchip& design& and& even&DNA&
sequencing.&

76

Example&Consider&4&ciGes&A,&B,&C,&and&D&and&suppose&we&are&given&the&following&
direct&distances&between&ciGes&which&we&denote,&e.g.,&d(A,B).&Use&the&

77

brute force approach to find the minimum distance to travel to all cities if we
have the constraint that we want to start and end at city A.

d(A,B) = 10 d(A,C) = 70 d(A, D) = 110

d(B,C) = 40 d(B,D) = 60 d(C,D) = 30

We determine the distances for all possible routes and take the smallest

A→ B → C → D → A =10+40+30 +110=190

A→ B → D → C → A=10+ 60+30+70=160

A→ C → D → B → A=70+30+60+10=170

A→ C → B → D → A=70+40+60+110=280

A→ D → B → C → A=110+60+40+70=280

A→ D → C → B → A=110+30+40+10=190

So the shortest path is A→ B → D → C → A.

78

4/19/2011

1

CS361: Algorithms and Data Structures

Coping with the limitations of algorithm power

Professor David Akers

Efficiency classes
intractabletractable

Source: Skiena, The Algorithm Design Manual, Second Edition

Traveling salesman problem

A
B

17
15

4

12 A, B, C ,D, A = 58
A, B, D, C, A = 36
A, C, B, D, A = 42

C

D
14

176
, , , ,

A, C, D, B, A = 36
A, D, B, C, A = 42
A, D, C, B, A = 58

Exhaustive search

Knapsack problem

item weight value
1 2 $12

subset weight value
{1} 2 $12
{2} 1 $10
{3} 3 $20
{4} 2 $15

{1 2} 3 $22
2 1 $10
3 3 $20
4 2 $15

Capacity(K) = 5

{1,2} 3 $22
{1,3} 5 $32
{1,4} 4 $27
{2,3} 4 $30
{2,4} 3 $25
{3,4} 5 $35

{1,2,3} 6 not feasible
{1,2,4} 5 $37
{1,3,4} 7 not feasible
{2,3,4} 6 not feasible

{1,2,3,4} 8 not feasible

0 1 2 3 4 5
0 0 0 0 0 0 0

item weight value
1 2 $12

Capacity(j)

Example

0 0 0 0 0 0 0

1 0 0 12 12 12 12

2 0 10 12 22 22 22

3 0 10 12 22 30 32

4 0 10 15 25 30 37

2 1 $10
3 3 $20
4 2 $15

Capacity(W) = 5

Index of
last item

(i)

79

Knapsack&Problem&
In&this&problem,&we&are&given&a&set&of&items,&each&with&a&weight&and&a&
value&and&we&want&to&determine&the&number&of&each&item&to&include&
in&a&collecGon&so&that&the&total&weight&is&less&than&or&equal&to&a&given&
limit&and&the&total&value&is&as&large&as&possible.&

80

In&the&example&illustrated&we&are&trying&to&keep&the&total&weight&
under&15&kg&while&maximizing&the&dollar&amount.&
As&with&the&traveling&salesman&problem,&the&brute&force&approach/
exhausGve&search&is&to&find&all&possible&combinaGons&which&are&
feasible&ones&(within&the&restricGon&given&on&total&weight)&and&
choose&the&one&which&has&the&largest&value.&
&
For&example,&for&the&case&illustrated&we&look&at&all&possible&
combinaGons&such&as&
1&green&=&12&kg&and&$4&value&
1&green&+&1&blue&=&14&kg&and&$6&value&
1&green&+&1&blue&+&1&red&=&15&kg&and&$7&value&
1&green&+&1&blue&+&1&grey&&=&15&kg&and&$8&value&
1&green&+&1&red&=&13&kg&and&$5&value&
etc.&

81

4/19/2011

1

CS361: Algorithms and Data Structures

Coping with the limitations of algorithm power

Professor David Akers

Efficiency classes
intractabletractable

Source: Skiena, The Algorithm Design Manual, Second Edition

Traveling salesman problem

A
B

17
15

4

12 A, B, C ,D, A = 58
A, B, D, C, A = 36
A, C, B, D, A = 42

C

D
14

176
, , , ,

A, C, D, B, A = 36
A, D, B, C, A = 42
A, D, C, B, A = 58

Exhaustive search

Knapsack problem

item weight value
1 2 $12

subset weight value
{1} 2 $12
{2} 1 $10
{3} 3 $20
{4} 2 $15

{1 2} 3 $22
2 1 $10
3 3 $20
4 2 $15

Capacity(K) = 5

{1,2} 3 $22
{1,3} 5 $32
{1,4} 4 $27
{2,3} 4 $30
{2,4} 3 $25
{3,4} 5 $35

{1,2,3} 6 not feasible
{1,2,4} 5 $37
{1,3,4} 7 not feasible
{2,3,4} 6 not feasible

{1,2,3,4} 8 not feasible

0 1 2 3 4 5
0 0 0 0 0 0 0

item weight value
1 2 $12

Capacity(j)

Example

0 0 0 0 0 0 0

1 0 0 12 12 12 12

2 0 10 12 22 22 22

3 0 10 12 22 30 32

4 0 10 15 25 30 37

2 1 $10
3 3 $20
4 2 $15

Capacity(W) = 5

Index of
last item

(i)

82

Example&
&Suppose&our&limit&to&the&weight&of&the&knapsack&is&10&kg.&We&
have&four&items&
Item&weighs&7&kg&and&has&a&value&of&$42&
Item&weighs&3&kg&and&has&a&value&of&$12&
Item&weighs&4&kg&and&has&a&value&of&$40&
Item&weighs&5&kg&and&has&a&value&of&$25&
&
Make&a&table&of&all&possible&combinaGons,&their&weight&and&total&
value;&then&determine&the&soluGon.&&

83

7&+&3&&=&10&&&&&&&&&&&&&&&&&&&&&&&&&&&42$+12$=54$&
3&+&4&&=&7&&&&&&&&&&&&&&&&&&&&&&&&&&&&&12$&+&40$&=&52$&
3&+&5&=&8&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&12$&+&25$&=&37$&
4&+&5&=&9&& & & & & &40$&+&25$=65$&
??&
&
&
If&a&combinaGon&weighs&more&than&10&kg&indicate&that&
it&is¬&feasible.&
&
&

84

Divide&and&Conquer&Algorithms&

A&popular&approach&to&algorithm&design&is÷&and&conquer.&
The&basic&idea&is&to&
&
•÷&the&problem&into&several&smaller&problems&of&the&same&
type&where&ideally&the&smaller&problems&are&of&the&same&size;&
•&solve&each&smaller&problem;&
•&combine&solu@ons&of&smaller&problems&to&form&desired&
solu@on.&
&
Divide&and&conquer&algorithms&are&ideally&suited&for¶llel&
computa@ons.&

85

As& an& example,& consider& the& problem&of& summing& 100& numbers&a1,$
a2,$.$.$.$,$a100.&
The&brute&force&approach&is,&of&course,&to&add&a1$and&a2$then&add&the&
result&to&a3,&etc.&A÷&and&conquer&approach&might&be&to&sum&the&
first&fiFy&numbers,&a1,$.$.$.$,$a50$and&then&sum&the& last&fiFy&numbers&
a51,$.$.$.$,$a100$$and&then&add&the&
result&of&summing&the&first&fiFy&numbers&and&the&last&fiFy&numbers.&
&
&
&
However,&there&doesn’t&appear&to&be&any&advantage&for&this&approach&
compared&to&the&brute&force&approach&(on&a&serial&machine).&So¬&
every& divide& and& conquer& algorithm& is& more& efficient& than& a& brute&
force&approach.&
However,& there& are& divide& and& conquer& algorithms&which& are&more&
efficient&than&brute&force&approaches.&

result of summing the first fifty numbers and the last fifty numbers.

α = a1 + a2 + · · · + a50 β = a51 + a52 + · · · + a100

answer = α + β

However, there doesn’t appear to be any advantage for this approach compared to
the brute force approach (on a serial machine). So not every divide and conquer
algorithm is more efficient than a brute force approach.

However, there are divide and conquer algorithms which are more efficient than
brute force approaches.

86

Sor@ng&Algorithms&using&Divide&and&Conquer&Sorting Algorithms using Divide and Conquer

We saw two brute force approaches to sorting an array – Selection Sort and Bubble
Sort. Both algorithms were O(n2). We now want to look at two important sorting
routines which take the divide and conquer approach and are O(n log n).

MergeSort

The basic idea is simple.

• We divide the array a(1 : n) into two smaller arrays a(1 : n/2), a(n/2+1, n).

• Each of the two smaller arrays is divided again; continue this procedure until
you have arrays of length one.

• Merge smaller arrays into a sorted array of length n.

87

•  hMp://www.youtube.com/watch?
v=XaqR3G_NVoo&

88

As an example consider the array

(45, 12, 61, 19, 71, 22, 4, 33)

We divide it into two arrays

(45, 12, 61, 19) (71, 22, 4, 33)

Now each of these arrays of length 4 is divided into two arrays of length two

(45, 12) (61, 19) (71, 22) (4, 33)

and finally we have

(45) (12) (61) (19) (71) (22) (4) (33)

We merge each array to form sorted arrays of length two

(12, 45) (19, 61) (22, 71) (4, 33)

Now we continue to reassemble the array by merging to form two sorted arrays
of length 4

(12, 19, 45, 61) (4, 22, 33, 71)

and finally merge these two sorted arrays to form the final sorted array

(4, 12, 19, 33, 45, 61, 71)

89

90

Lets&consider&the&last&step&where&we&want&to&merge&the&two&sorted&
arrays&of&length&4&above.&Let&u&=&(3,10,23,54),&v&=&(1,5,25,75).&We&set&
up&an&array&of&length&8,&call&it&w,&for&the&merged&array.&

&

•&Lets&use&the&pointer&i&to&indicate&the&next&u&value&to&select;&j&to&
indicate&the&next&v&value&to&select&and&k&to&indicate&the&next&w&value&
to&fill.&Ini@ally&

i&=&j&=&k&=&1.&

&

•&At&each&step&we&check:&

&&&&&–&if&u(i)&<=&v(j)&then&we&set&w(k)&=&u(i)&and&increment&i,&k;&

&&&&&–&otherwise&w(k)&=&v(j)&and&increment&j,&k;&

&

91

Merge&sort&
Input:&u,v,&two&sorted&arrays&of&length&n&
Output:&w,&an&array&of&length&2n&which&is&the&sorted&array&formed&by&
merging&u&and&v&
&
Set&i=j=k=1&
while&i<&n&and&j<n&

&if&u(i)&<&v(j)&
& &w(k)&$!$u(i);&k&$!$k+1;&i&$!$i+1&
&else&
& &w(k)&!$v(j);&k&!$k+1;&j&$!$j+1&

end&while&
if&i=n&

©&v(j:n)&into&w(k:2n)&
else&

©&u(i:n)&into&w(k:2n)&

92

Merging%(cont.)%%

3 10 23 54 1 5 25 75 X: Y:

Result:

93

Merging%(cont.)%%

3 10 23 54 5 25 75

1

X: Y:

Result:

94

Merging%(cont.)%%

10 23 54 5 25 75

1 3

X: Y:

Result:

95

Merging%(cont.)%%

10 23 54 25 75

1 3 5

X: Y:

Result:

96

Merging%(cont.)%%

23 54 25 75

1 3 5 10

X: Y:

Result:

97

Merging%(cont.)%%

54 25 75

1 3 5 10 23

X: Y:

Result:

98

Merging%(cont.)%%

54 75

1 3 5 10 23 25

X: Y:

Result:

99

Merging%(cont.)%%

75

1 3 5 10 23 25 54

X: Y:

Result:

100

Merging%(cont.)%%

1 3 5 10 23 25 54 75

X: Y:

Result:

101

Level$ Problem$Size$ #$Problems$

0& 8& 1&

1& 4& 2&

2& 2& 4&

3& 1& 8&

We&can&summarize&the&steps&before&the&merge&in&the&table&below.&

Before&we&present&the&algorithm&and&argue&that&it&is&indeed&
more&efficient&than&Selec@on&Sort&or&Bubble&Sort&we&need&to&
clarify&how&to&perform&the&merge.&
&
The&shortcoming&of&this&approach&is&that&the&merge&requires&an&
extra&array&of&length&n.&

102

Note& that&we&could&easily&modify& this& rou@ne& so& that& the& input&arrays&

had&different&lengths.&

&

Why& do& we& think& that& Merge& sort& is& more& efficient& that& Selec@on& or&

Bubble& sort& which& are&O(n2).& Recall& that& if& an& algorithm& if&O(n2)$ then&
when&n$ is&doubled,&then&the&work& is& increased&by&a&factor&of&4.& Is& that&
the&case&for&Merge&sort?&

&

Consider& the& example&we&had& an& array&of& length&8;&we÷d& it& into&

arrays& of& length& 4& then& of& length& 2& and& finally& of& length& 1& and& then&

merged&the&arrays&of&length&2&and&finally&the&arrays&of&length&4.&What&if&

our& original& array& was& of& length& 16?& Then& basically& we& have& to& first&

divide&into&two&arrays&of&length&8&and&then&proceed&as&before&except&we&

have&one&addi@onal&merge&–& the& two&arrays&of& length&8.&So&when&n$ is&
doubled&we& do& not& increase& the&work& by& a& factor& of& 4& but& rather&we&

simply& added&one&more& level& of&work.& This& is& indica@ve&of& logarithmic&

growth.&

103

T(n)&=&2&T(n/2)&+&n&
=&2&(2T(n/4)&+n/2)&+&n&
=4T(n/4)+n+n&
=4T(n/4)+2n&
=4&(2T(n/8)&+n/4)&+&2n&
=8T(n/8)+n+2n&
=8T(n/8)+3n&
=2k&T(n/2k)&+&kn&&&&&&&&&&&&&&&&&&n=2k&&&&&log(n)=k&
=&nT(1)&+n&logn&&&&&&&&&&&&&&&&
=&n+&n&log&n&
O(n&log&(n))&

104

Binary&Search&Binary Search

Suppose you have an array and you want to search with a key K. The brute
force or sequential approach is to check the first entry, then the second, then the
third, etc. until you have found the desired entry.

However, if the list is sorted then we can use this fact to create a more efficient
sort routine. If you had an unsorted array which you need to search many times
(such as a phone book) it is advantageous to first sort the array and then use a
more efficient search algorithm than sequential search.

Binary Search has some similarity to the Bisection Method which you studied for
finding the roots of a function f(x) in [a, b] where f(a)f(b) < 0.

Suppose we are given an array a(1 : n) already sorted in ascending order to search
using the key K.

105

106

• Check if K > a(n) or K < a(1) then not in array.

• Set iL = 1, iR = n.

• First check the middle value of the list, say m = n/2 = (iL + iR)/2. If
a(m) = K then we are done; if a(m) < K then K must be in the smaller
list a(m : n) so set iL = m; otherwise it is in a(1 : m) so set iR = m. We
now know that K ∈ a(iL, iR).

• Set m = (iL + iR)/2. (Recall that in Matlab we have to make sure this is
an integer; the correct Matlab command is m=floor((iL+iR)/2).) If
a(m) = K then we are done; if a(m) < K then K must be in the smaller
list a(m : n) so set iL = m; otherwise it is in a(1 : m) so set iR = m. We
now know that K ∈ a(iL, iR).

• Continue in this manner until K is found.

107

Binary Search Input: sorted array a of length n, search key K

Output: index of the array element = K or 0 if not in array

if K < a(1) or K > a(n) return 0

left=1; right =n

while left ≤ right do

m=(left+right)/2

if a(m)=K return m

if a(m) > K

set right=m

else

set left = m

end while

108

Example Use Binary Search to search the array

a = {5, 9, 12, 17, 21, 45, 81, 109, 122}

for the element 17.

- set iL = 1, iR = 9 and m = 5

- 17< a(5) = 21 so set iR = 5; key is in a(1 : 5)

- m = (iL + iR)/2 = 3

- 17 > a(3) = 12 so set iL = 3; key is in a(3, 5)

- m = (iL + iR)/2 = (3 + 5)/2 = 4

- 17 = a(4) so we are done; return 4

109

What&about&the&efficiency&of&Binary&Search?&Is&it&O(n)?&Recall&
that&if&it&is&O(n)$then&when&we&double&n$the&work&should&be&
increased&by&two.&However,&in&this&case&if&we&double&the&length&
of&the&array&we&only&increase&the&work&by&one&
level&which&is&indica@ve&of&logarithmic&growth.&One&can&show&
that&the&method&is&O(log$n).&
&
&&&&&&&&&n=2k&&&&&log(n)=k&
&
&
&

13 Growth Rates

How does the time to iterate through a recursive algorithm
grow with the size of the input? We answer this question
for two algorithms, one for searching and the other for
sorting. In both case, we find the answer by solving a
recurrence relation.

Binary Search. We begin by considering a familiar al-
gorithm, binary search. Suppose we have a sorted array,
A[1..n], and we wish to find a particular item, x. Starting
in the middle, we ask whether x = A[(n + 1)/2]? If it is,
we are done. If not, we have cut the problem in half. We
give a more detailed description in pseudo-code.

l = 1; r = n;
while l ≤ r do m = (l + r)/2;
if x = A[m] then print(m); exit
elseif x < A[m] then r = m − 1;
elseif x > A[m] then l = m + 1

endif
endwhile.

Assuming n = 2k − 1, there are 2k−1 − 1 items to the left
and to the right of the middle. Let T (n) be the number
of times we check whether l ≤ r. We check once at the
beginning, for n = 2k − 1 items, and then some number
of times for half the items. In total, we have

T (n) =

{

T (n−1
2

) + 1 if n ≥ 2;

1 if n = 1.

In each iteration, k decreases by one and we get T (n) =
k+1. Since k = log2(n+1), this gives T (n) = 1+log2 n.
We could verify this by induction.

A similar recurrence relation. Let us consider another
example, without specific algorithm. Suppose we solve a
problem of size n by first solving one problem of size n/2
and then doing n units of additional work. Assuming n is
a power of 2, we get the following recurrence relation:

T (n) =

{

T (n

2
) + n if n ≥ 2;

0 if n = 1.
(1)

Figure 11 visualizes the computation by drawing a node
for each level of the recursion. Even though the sequence
of nodes forms a path, we call this the recursion tree of
the computation. The problem size decreases by a factor

of two from one level to the next. After dividing log2 n
times, we arrive at size one. This implies that there are
only 1 + log2 n levels. Similarly, the work at each level
decreases by a factor of two from one level to the next.
Assuming n = 2k, we get

T (n) = n +
n

2
+ . . . + 2 + 1

= 2k + 2k−1 + . . . + 21 + 20

= 2k+1
− 1.

Hence, T (n) = 2n − 1.

n

/2

/4

/8

n

n

n

n

/2

/4

/8

n

n

n

n

/2

/4

/8

n

n

n

level #nodes size

1 1

2 1

3 1

4 1

work
per
node

work
per
level

Figure 11: The recursion tree for the relation in Equation (1).

Merge Sort. Next, we consider the problem of sorting a
list of n items. We assume the items are stored in unsorted
order in an array A[1..n]. The list is sorted if it consists
of only one item. If there are two or more items then we
sort the first n/2 items and the last n/2 items and finally
merge the two sorted lists. We provide the pseudo-code
below. We call the function with ℓ = 1 and r = n.

void MERGESORT(ℓ, r)
if ℓ < r then m = (ℓ + r)/2;
MERGESORT(ℓ, m);
MERGESORT(m + 1, r);
MERGE(ℓ, m, r)

endif.

We merge the two sorted lists by scanning them from left
to right, using n comparisons. It is convenient to relocate
both lists from A to another array, B, and to add a so-
called stopper after each sublist. These are items that are
larger than all given items. In other words, we assume the
two lists are stored in B[ℓ..m] and B[m + 2..r + 1], with
B[m + 1] = B[r + 2] = ∞. When we scan the two lists,
we move the items back to A, one at a time.

37

110

Mul@plying&Large&Integers&
•  & Some&applica@ons,& such&as&modern&cryptology& require&mul@plying& integers&

which&are&over&100&digits&long.&These&integers&are&too&long&to&fit&into&a&single&
word&of&a&computer&so&they&require&special&treatment.&

•  & What& is& the& brute& force& approach& (the& usual& method& we& were& taught& in&
elementary& school)& to& mul@plying& two& integers& A& and& B& of& length& n?& We&
simply& take& the& first& digit& of& A& and& mul@ply& it& by& all& n& digits& of& B& (n&
mul@plica@ons).&Then&we& take& the& second&digit&of&A&and&mul@ply& it&by&all&n&
digits&of&B.&Con@nuing&in&this&manner&we&see&that&we&have&n2&mul@plica@ons&
followed&by&fewer&(n&−&1)$addi@ons&so&the&method&is&O(n2).&

•  & Can&we& design& an& algorithm&which& has& fewer& opera@ons& than& O(n2)?& The&
answer&is&yes,&using&the&Divide&and&Conquer&strategy.&

•  &The&easiest&way&to&see&how&to&do&this&is&to&look&at&an&example.&

111

Example Multiply 29 by 13 (=377) using a Divide and Conquer approach.

We first note that

29 = 2 ∗ 101 + 9 ∗ 100 13 = 1 ∗ 101 + 3 ∗ 100

so that

29 ∗ 13 =
(

2 ∗ 101 + 9 ∗ 100
)

∗
(

1 ∗ 101 + 3 ∗ 100
)

= (2 ∗ 1) ∗ 102 + (9 ∗ 3) ∗ 100 + (9 ∗ 1 + 2 ∗ 3) ∗ 101 = 200 + 27 + 150 = 377

But if we multiplied the two numbers by the usual approach we would have 4
multiplications and that’s exactly what we have here!

The idea is to compute the coefficient (9*1+2*3) of 101 by taking advantage of
the two multiplications we have already done which are 2*1 and 9*3; if we can
do the computation 9*1+2*3 in one multiplication then we have improved upon
the brute force approach. We note that this can be done if we write the

(9 ∗ 1 + 2 ∗ 3) = (9 + 2) ∗ (1 + 3)− (2 ∗ 1)− (9 ∗ 3)

Now because we have already computed 2*1 and 9*3 we are only performing one
multiplication but of course we have added some additions.

112

In general, if we have two two-digits numbers a = a1a0, b = b1b0 then

c = a ∗ b = c2 ∗ 102 + c1 ∗ 101 + c0 ∗ 100

where c2 = a1 ∗ b1 (the product of the tens digits), c0 = a0 ∗ b0 (the product of
the ones digits) and c1 = (a1 + a0) ∗ (b1 + b0) − (c0 + c2), the product of the
sum of the digits minus c0 and c2 which were previously computed.

Where is the divide and conquer strategy in this algorithm?

Well, it’s not there yet! We want to use this idea of multiplying two two-digit
integers to integers with more digits.

Suppose we want to multiply two 6-digits integers,

a = a5a4a3a2a1a0 b = b5b4b3b2b1b0

We now divide each in half (here’s the divide part)

α1 = a5a4a3 α0 = a2a1a0 β1 = b5b4b3 β2 = b2b1b0

The resulting product a ∗ b can be formed using the ideas above

c = a ∗ b = (α1 ∗ 103 + α0) ∗ (β1 ∗ 103 + β0)

Where&is&the÷&and&conquer&strategy&in&this&algorithm?&

113

In general, if we have two two-digits numbers a = a1a0, b = b1b0 then

c = a ∗ b = c2 ∗ 102 + c1 ∗ 101 + c0 ∗ 100

where c2 = a1 ∗ b1 (the product of the tens digits), c0 = a0 ∗ b0 (the product of
the ones digits) and c1 = (a1 + a0) ∗ (b1 + b0) − (c0 + c2), the product of the
sum of the digits minus c0 and c2 which were previously computed.

Where is the divide and conquer strategy in this algorithm?

Well, it’s not there yet! We want to use this idea of multiplying two two-digit
integers to integers with more digits.

Suppose we want to multiply two 6-digits integers,

a = a5a4a3a2a1a0 b = b5b4b3b2b1b0

We now divide each in half (here’s the divide part)

α1 = a5a4a3 α0 = a2a1a0 β1 = b5b4b3 β2 = b2b1b0

The resulting product a ∗ b can be formed using the ideas above

c = a ∗ b = (α1 ∗ 103 + α0) ∗ (β1 ∗ 103 + β0)

= (α1 ∗ β1) ∗ 106 + (α1 ∗ β0 + α0 ∗ β1) ∗ 103 + (α0 ∗ β0)

= c2 ∗ 106 + c1 ∗ 103 + c0

where c2 is the product of their first halves; c0 is the product of their second
halves and c1 = (α1 + α0) ∗ (β1 + β0)− (c2 + c0) as before.

If n/2 is even (not in this case) we can apply the algorithm recursively until the
integers are deemed small enough to multiply in the usual way.

Example Use the Divide and Conquer approach to multiply

4127 ∗ 3456 = 14, 262, 912.

4127 = 41 ∗ 102 + 27, 3456 = 34 ∗ 102 + 56

4127 ∗ 3456 =
(

41 ∗ 102 + 27
)

∗
(

34 ∗ 102 + 56
)

= (41 ∗ 34) ∗ 104 + (27 ∗ 34 +
41 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

The cross term is computed as (27 ∗ 34 + 41 ∗ 56) = (41 + 27) ∗ (34 + 56) −
41 ∗ 34− 27 ∗ 56

We apply the algorithm recursively to compute the products 41*34, 27*56 and

114

68*90&and&then&subs@tute&into&the&formula&
&(41&*&34)&*&104&+&(68&*&90−41&*&34&−&27&*&56)&*&102&+&(27&*&56)&
&

= (α1 ∗ β1) ∗ 106 + (α1 ∗ β0 + α0 ∗ β1) ∗ 103 + (α0 ∗ β0)

= c2 ∗ 106 + c1 ∗ 103 + c0

where c2 is the product of their first halves; c0 is the product of their second
halves and c1 = (α1 + α0) ∗ (β1 + β0)− (c2 + c0) as before.

If n/2 is even (not in this case) we can apply the algorithm recursively until the
integers are deemed small enough to multiply in the usual way.

Example Use the Divide and Conquer approach to multiply

4127 ∗ 3456 = 14, 262, 912.

4127 = 41 ∗ 102 + 27, 3456 = 34 ∗ 102 + 56

4127 ∗ 3456 =
(

41 ∗ 102 + 27
)

∗
(

34 ∗ 102 + 56
)

= (41 ∗ 34) ∗ 104 + (27 ∗ 34 +
41 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

The cross term is computed as (27 ∗ 34 + 41 ∗ 56) = (41 + 27) ∗ (34 + 56) −
41 ∗ 34− 27 ∗ 56

We apply the algorithm recursively to compute the products 41*34, 27*56 and

68*90 and then substitute into the formula (41 ∗ 34) ∗ 104 + (68 ∗ 90− 41 ∗
34− 27 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

To form 41*34 we write 41 ∗ 34 = (4 ∗ 101 + 1) ∗ (3 ∗ 101 + 4) = 4 ∗ 3 ∗ 102 + 4 ∗
1+(1∗3+4∗4)∗101 = 1200+4+(1∗3+4∗4)∗101. Again the cross term
is written as (1 ∗ 3 + 4 ∗ 4) = (1 + 4) ∗ (3 + 4)− 4− 12 = 5 ∗ 7− 16 = 19.
Thus 41 ∗ 34 = 1204 + 19 ∗ 101 = 1204 + 190 = 1394.

Similarly 27 ∗ 56 = 1512 and 68*90=6120.

We now return to our formula and substitute these values in (41∗34)∗104+(68∗
90−41∗34−27∗56)∗102+

(

27∗56
)

= 1394∗104+(6120−1394−1512)∗
102 + 1512 = 13, 940, 000 + 3214(100) + 1512 = 13, 941, 512 + 321, 400 =
14, 262, 912

= (α1 ∗ β1) ∗ 106 + (α1 ∗ β0 + α0 ∗ β1) ∗ 103 + (α0 ∗ β0)

= c2 ∗ 106 + c1 ∗ 103 + c0

where c2 is the product of their first halves; c0 is the product of their second
halves and c1 = (α1 + α0) ∗ (β1 + β0)− (c2 + c0) as before.

If n/2 is even (not in this case) we can apply the algorithm recursively until the
integers are deemed small enough to multiply in the usual way.

Example Use the Divide and Conquer approach to multiply

4127 ∗ 3456 = 14, 262, 912.

4127 = 41 ∗ 102 + 27, 3456 = 34 ∗ 102 + 56

4127 ∗ 3456 =
(

41 ∗ 102 + 27
)

∗
(

34 ∗ 102 + 56
)

= (41 ∗ 34) ∗ 104 + (27 ∗ 34 +
41 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

The cross term is computed as (27 ∗ 34 + 41 ∗ 56) = (41 + 27) ∗ (34 + 56) −
41 ∗ 34− 27 ∗ 56

We apply the algorithm recursively to compute the products 41*34, 27*56 and

115

Matrix&Mul@plica@on&
Matrix Multiplication

Suppose we want to multiply two n × n matrices A and B. The standard way
we have learned to do this, is to dot each row of A into each column of B. For
each dot product of a row and column we perform n multiplications and (n− 1)
additions. So when we dot the first row of A into all n columns of B we have
n2 multiplications and n(n − 1) additions. Now there are n rows of A to use
so we have n(n2) multiplications and n(n(n − 1)) additions. Consequently the
method grows with n like n3.

Is it possible to obtain an algorithm that does it in less than O(n3)? The answer
is actually yes; the approach parallels that of the integer multiplication. The
first algorithm to be developed was the Strassen Matrix Multiplication algorithm
(1969) which is approximately O(n2.8); there are modifications to it that have a
growth rate of O(n2.376). The algorithms are not widely used because there is
some instability for some matrices.

116

Strassen’s algorithm is an application of Divide and Conquer strategy. We will
just look at the result (similar to the one of multiplying two 2-digits integers)
which allows us to perform less multiplications. The algorithm will be applied
recursively as we did with integer multiplication.

The algorithm is based upon the following observation about multiplying two
2× 2 matrices, A, B with entries aij.

C =

(

c11 c12

c21 c22

)

=

(

a11 a12

a21 a22

)(

b11 b12

b21 b22

)

=

(

m1 + m4 −m5 + m7 m3 + m5

m2 + m4 m1 + m3 −m2 + m6

)

where

m1 = (a11 + a22) ∗ (b11 + b22)

m2 = (a21 + a22) ∗ b11, m3 = (b12 − b22) ∗ a11 m4 = (b21 − b11) ∗ a22

m5 = (a11+a12)∗b11, m6 = (b11+b12)∗(a21−a11) m7 = (b21+b22)∗(a12−a22)

117

118

Thus there are 7 multiplications required instead of the usual 8. Not much of a
savings but we wouldn’t use the algorithm to multiply 2× 2 matrices. As n goes
to infinity it is asymptotically faster than the straightforward approach.

If we have two 4× 4 matrices to multiply then we divide them into 2× 2 blocks
and use the approach above. If the matrices are of an odd dimension then we
can pad with a row of zeros.

(

C11 C12

C21 C22

)

=

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

where each Aij, Bij, Cij is a 2× 2 block.

119

Decrease'and'Conquer'Algorithms'
Decrease and Conquer Algorithms

The next design strategy we encounter is based on exploiting the relationship
between a solution to a given instance of a problem and a solution to a smaller
instance of the same problem.

For example, consider again the problem of computing an for a given scalar a
and integer n. This is the given instance of the problem with n specified. We
now reduce it to a smaller instance of the same problem. One obvious way is to
write

an =
[

an/2]2

Of course this only works if n is even. If n is odd, then (n − 1) is even so we
write an as

an = aan−1 = a
[

a(n−1)/2
]2

120

So to summarize, we apply the strategy recursively and use the formula

an =

⎧

⎪

⎨

⎪

⎩

[

an/2
]2

if n is even
[

a(n−1)/2]2 if n is odd and > 1

a if n = 1

In this case we have decreased the problem by a constant each time with constant
1/2 when n is even.

Example:'
'
''π8='π4'''π4'
''π4''='π2'''π2''
''π2''='π'π'

121

Inser?on'Sort'Insertion Sort

• This sorting routine is an example of the paradigm to decrease the size by a
constant (one in this case) whereas in the previous example we reduced the
problem by a factor (1/2 in that case) each time.

• Assume we have a list a(1 : n) which we need to sort. If we reduce it by one
then that means we need to sort the smaller list a(1 : n− 1).

• Assume for now that the smaller list a(1 : n− 1) is sorted. Then to sort the
original list a(1 : n) we just need to determine where a(n) must be inserted
in a(1 : n− 1). There are several ways to do this.

• One way to do this is scan a(1 : n− 1) from left to right and find the first
element which is greater than or equal to a(n); then we simply insert a(n)
before this element.

• Of course we can scan a(1 : n − 1) from right to left and find the first
element which is less than or equal to a(n); then we simply insert a(n) after
this element. These are essentially equivalent but scanning from right to left
is usually the one implemented. This is called (straight) insertion sort.

122

• We have already encountered another technique to search an array besides
sequential search; remember that binary search was, in general, more effi-
cient. If we use binary search to locate the position to insert a(n) then the
method is called binary insertion sort.

• Of course the algorithm is applied recursively as the following example demon-
strates.

123

124

Straight Insertion Sort

Input: An array a(1 : n) of orderable elements

Output: An array a(1 : n) which is sorted in nondecreasing order

for i = 2:n

v= a(i)

j=i-1

while j ≥ 0 and a(j)> v

a(j+1) ←a(j)

j=j-1

end while

a(j+1) ←v

end for

125

Example Apply the (straight) Insertion sort algorithm to sort the array

a = {56, 43, 48, 22, 67, 29}

Apply the algorithm recursively in a “bottom up” manner, i.e., by starting with
an array of length one. Scan from right to left.

1. Start with the sorted array {56} and we want to insert 43; we see that
56 > 43 so we now have the sorted list {43, 56}.

2. We have the sorted list {43, 56} and we want to insert 48; we scan to see
that 56 > 48 and 43 < 48 so we add 48 before 56 to get {43, 48, 56}

3. We have the sorted list {43, 48, 56} and we want to insert 22; we scan to see
that the all elements including the first element are > 22 so we put 22 at
the beginning to get {22, 43, 48, 56}

4. We have the sorted list {22, 43, 48, 56} and we want to insert 67; we scan to
see that element 56 < 67 so we put 67 at the end to get {22, 43, 48, 56, 67}

5. We have the sorted list {22, 43, 48, 56, 67} and we want to insert 29; we scan
to see that all elements are > 29 and we reach the first 22 < 49 so we put
29 after the first element to get the final sorted array {22, 29, 43, 48, 56, 67}

126

What'is'the'complexity?'
'
in'worst'case'We'have'n2'comparison'and'swamp.'

127

Fake'Coin'Problem'

There'are' several' versions'of' this' famous'problem'but' the'one'
we'consider'is'that'we'are'given'n'coins'which'look'exactly'alike'
but'one'is'fake.'For'now'assume'the'fake'is'slightly'lighter'than'
the'real'coins.'The'problem'is'to'determine'the'fake'coin'using'a'
balance.'
'
'
Even' if' you' didn’t' know' about' the' Decrease' and' Conquer'
strategy,' you' would' probably' solve' the' problem' using' this'
approach:'

128

•  If'n'is'even'then'we'put'half'the'coins'on'each'side'of'the'
balance.'The'side'which'is'lightest'contains'the'fake'coin.'

•  If'n'is'odd,'then'(n−1)%is'even'and'we'split'the'(n−1)%coins'in'
half'and'put'each'half'on'the'balance.'If'both'sides'are'equal'
weight,'then'we'are'done'because'the'coin'we'leO'out'is'the'
fake'one.'If'the'balance'is'not'even'then'we'choose'the'
lightest'pile'of'coins'to'be'the'one'containing'the'fake.'

•  We'con?nue'in'this'manner'un?l'we'have'found'the'''fake'
coin'by'reducing'the'problem'to'weighing'one'on'each'side'of'
the'balance'or'found'it'by'it'being'the'one'we'didn’t'weigh.'

129

Example Suppose we have 8 coins and we want to find which one is the fake
coin; assume that we know the fake coin is lighter than the real ones. In how
many steps can you guarantee to find the fake coin? What are the steps?

1. Put 4 coins on each side of the balance. Discard the coins on the side that
is heavier because we know the fake coin is on the lighter side.

2. From the 4 put 2 coins on each side of the balance. Discard the coins on the
side that is heavier. We now know that the fake coin is one of two.

3. Put one coin on each side. The coin that is lighter is the fake coin.

Example What is the difference in the strategy if we have 9 coins? Will it take
more steps to do 9 coins?

We start by putting 4 coins on each side of the balance and keep one to the side.
If the balance is level then the fake coin is the one to the side. If the balance is
not level then we know the coin to the side is not fake but rather the fake is on
the side of the balance that is lighter and we proceed as in the previous example.
It should take no more than 3 steps.

130

Example Suppose we have 12 coins and we want to find which one is the fake
coin; assume that we know the fake coin is lighter than the real ones. In how
many steps can you guarantee to find the fake coin? What are the steps? How
do the number of steps compare with the 8 coin example?

1. Put 6 coins on each side of the balance. Discard the coins on the side that
is heavier because we know the fake coin is on the lighter side.

2. From the 6 put 3 coins on each side of the balance. Discard the coins on the
side that is heavier. We now know that the fake coin is one of three.

3. Put one coin on each side and leave the other off the balance. If one of the
coins on the balance is lighter, then it is the fake. If the balance is level then
the coin to the side is the fake.

Note that this took the same number of steps as the 8 coins.

Example Suppose we have 8 coins and we want to find which one is the fake
coin; assume that we do NOT know whether the fake coin is lighter or heavier
than the real ones. How can we modify our algorithm to handle this case?

1. Put 4 coins on each side of the balance. For now set aside the 4 coins on the

131

Example Suppose we have 12 coins and we want to find which one is the fake
coin; assume that we know the fake coin is lighter than the real ones. In how
many steps can you guarantee to find the fake coin? What are the steps? How
do the number of steps compare with the 8 coin example?

1. Put 6 coins on each side of the balance. Discard the coins on the side that
is heavier because we know the fake coin is on the lighter side.

2. From the 6 put 3 coins on each side of the balance. Discard the coins on the
side that is heavier. We now know that the fake coin is one of three.

3. Put one coin on each side and leave the other off the balance. If one of the
coins on the balance is lighter, then it is the fake. If the balance is level then
the coin to the side is the fake.

Note that this took the same number of steps as the 8 coins.

Example Suppose we have 8 coins and we want to find which one is the fake
coin; assume that we do NOT know whether the fake coin is lighter or heavier
than the real ones. How can we modify our algorithm to handle this case?

1. Put 4 coins on each side of the balance. For now set aside the 4 coins on the

side that is heavier.

2. From the 4 lighter coins put 2 coins on each side of the balance.
- If the balance is level we know that the fake coin is heavier and that it

is one of the four coins we set aside. Thus we have to weigh the four
heavier coins with two on each side to detect which is heavier.

- If the balance is not level then we know the fake coin is lighter and we
choose the 2 lighter coins

3. We now know that the take coin is one of two so we put one coin on each
side. The coin that is lighter/heavier is the fake coin.

It may cost us one additional measurement to determine whether the fake coin
is lighter or heavier so in general it will take 4 steps to decide which is the fake
coin when we start with 8 coins.

132

Challenge'yourself''

•  hPp://www.primarygames.com/math/
coinweighing/'

133

Transform'and'Conquer'Algorithms'

A' common' approach' to' solving' a' problem' is' to'
transform' it' into' one' that' is' easier' to' solve.' If' the'
transforma?on'costs'are'not'prohibi?ve'this'can'be'an'
effec?ve'strategy.'
'
In'Gaussian' elimina?on'we' transform'a' general' linear'
matrix' problem' Ax' =' b' into' an' equivalent' one'where'
the'coefficient'matrix'is'upper'triangular'which'is'much'
simpler'to'solve.'

134

Checking'element'uniqueness'in'an'array'

Transform and Conquer Algorithms

A common approach to solving a problem is to transform it into one that is easier
to solve. If the transformation costs are not prohibitive this can be an effective
strategy.

In Gaussian elimination we transform a general linear matrix problem Ax = b
into an equivalent one where the coefficient matrix is upper triangular which is
much simpler to solve.

Checking element uniqueness in an array.

Suppose we have an array of length n and we want to see if any two elements
are equal. The brute force approach is to check all possible pairs; the worst case
scenario for this is O(n2) because we have to check a(1) with a(i), i = 2, n;
then we check a(2) with a(i), i = 3, n. However, if we transform the array into
a sorted array first, then all we have to do is check consecutive elements. Now

the efficiency is determined by the work required for sorting and for the check
of consecutive elements. The later is only (n − 1) comparisons but the former
depends on which sorting routine we choose. If we use Selection Sort or Bubble
Sort these are O(n2) and so the overall performance is O(n2) which is the same
as brute force. However, if we choose Mergesort then it is O(n log n) and the
overall result is O(n log n) which is an improvement over brute force.

Searching in an array.

Suppose we want to search an array of length n using a search key K. The brute
force approach is Sequential Search which just checks the n elements in the array
so it is O(n). However, in the previous problem we found that sorting the list
first improved the growth factor. If we sort the array first then the best we can
do is O(n log n) and if we use Binary Search then it is an additional O(log n)
so overall we have O(n log n). So the result is worse! However, if we want to
search an array multiple times with different keys it will pay to presort the array
if you have enough searches.

Example Suppose we have an array of length 1000 which we want to search

135

Searching'in'an'array'

the efficiency is determined by the work required for sorting and for the check
of consecutive elements. The later is only (n − 1) comparisons but the former
depends on which sorting routine we choose. If we use Selection Sort or Bubble
Sort these are O(n2) and so the overall performance is O(n2) which is the same
as brute force. However, if we choose Mergesort then it is O(n log n) and the
overall result is O(n log n) which is an improvement over brute force.

Searching in an array.

Suppose we want to search an array of length n using a search key K. The brute
force approach is Sequential Search which just checks the n elements in the array
so it is O(n). However, in the previous problem we found that sorting the list
first improved the growth factor. If we sort the array first then the best we can
do is O(n log n) and if we use Binary Search then it is an additional O(log n)
so overall we have O(n log n). So the result is worse! However, if we want to
search an array multiple times with different keys it will pay to presort the array
if you have enough searches.

Example Suppose we have an array of length 1000 which we want to search

136

Example:%
Suppose'we'have'an'array'of'length'1000'which'we'want'to'search'm'
?mes.'If'm'='1'then'it'is'not'efficient'to'first'sort'the'array'but'if'm'is'
large,'then'it'is'bePer'to'sort'first.'Approximately'how'large'should'm'
be'so'that'it'is'more'efficient'to'sort'first?'

'

If'we'do'm'sequen?al'searches'of'a'nonXsorted'list'then'the'work'is'
approximately'm(n).'Some?mes'this'is'wriPen'as'm(n/2)'because'on'
average'we'will'find'the'key'by'the'?me'we'have'searched'half'way'
through'the'array.'However,'the'½'is'just'a'constant'and'won’t'affect'
the'power'of'n'so'we'omit'it'here.'

'

If' we' sort' the' list' first' by'Mergesort' then' that' requires'O(n' log' n).'
Then'to'perform'm'searches'of'a'sorted'array'of'length'n'using'Binary'
Search'requires'mO(log'n).'

137

m times. If m = 1 then it is not efficient to first sort the array but if m is large,
then it is better to sort first. Approximately how large should m be so that it is
more efficient to sort first?

If we do m sequential searches of a non-sorted list then the work is approximately
m(n). Sometimes this is written as m(n/2) because on average we will find the
key by the time we have searched half way through the array. However, the 1/2
is just a constant and won’t affect the power of n so we omit it here.

If we sort the list first by Mergesort then that requires O(n log n). Then to
perform m searches of a sorted array of length n using Binary Search requires
mO(log n).

Comparing these we determine when

mn = n log n + m log n = (n + m) log n

for our choice of n = 1000. We have

1000m = (1000 + m)(6.9) = 6900 + 6.9m =⇒ 993m ≈ 6900

where we have chosen base e, i.e., ln n. This says that if we do 7 searches it is

probably better to sort first. (6900/993=6.95)

138 139

