Boost-Python

First take

‘\ boo S t Getting Started on Windows

C +» LI BERARIES

A note to Cygwin and MinGW users

If you plan to use your tools from the Windows command prompt, you're in the right place. If you plan to build from the Cygwin bash shell, you're actually running on a POSIX platform
and should follow the instructions for getting started on Unix variants. Other command shells, such as MinGW's MSYS, are not supported —they may or may not work.

Index

Get Boost
The Boost Distribution
Header-Only Libraries
Build a Simple Program Using Boost
4.1 Build From the Visual Studio IDE
4.2 Or, Build From the Command Prompt
4.3 Errors and Warnings
5 Prepare to Use a Boost Library Binary
5.1 Simplified Build From Source
5.2 Or, Build Binaries From Source
5.2.1 Install Boost.Build
5.2.2 Identify Your Toolset
5.2.3 Select a Build Directory
5.2.4 Invoke b2
5.3 Expected Build Output
5.4 In Case of Build Errors
6 Link Your Program to a Boost Library
6.1 Link From Within the Visual Studio IDE
6.2 Or, Link From the Command Prompt
6.3 Library Naming
6.4 Test Your Program
7 Conclusion and Further Resources

& WON -

bOOSt Getting Started on Unix Variants

¢ LI BRARI ES

Index

Get Boost
The Boost Distribution
Header-Only Libraries
Build a Simple Program Using Boost
4.1 Errors and Warnings
Prepare to Use a Boost Library Binary
5.1 Easy Build and Install
5.2 Or, Build Custom Binaries
5.2.1 Install Boost.Build
5.2.2 I|dentify Your Toolset
5.2.3 Select a Build Directory
5.2.4 Invoke b2
5.3 Expected Build Output
5.4 In Case of Build Errors
6 Link Your Program to a Boost Library
6.1 Library Naming
6.2 Test Your Program
7 Conclusion and Further Resources

SO -

(&)

1 Get Boost

The most reliable way to get a copy of Boost is to download a distribution from SourceForge:
1. Download boost 1 57 0.tar.bz2.

2. In the directory where you want to put the Boost installation, execute

tar --bzip2 -xf /path/to/boost_1 57 0.tar.bz2

2 The Boost Distribution

This is a sketch of the resulting directory structure:

boost_1 57 0/ ..vvvivnennnnnnns The “boost root directory”
index.htmA copy of www.boost.org starts here
BOOBL/ ccccsscccccsnssccsscssnsses All Boost Header files
1ibs/ v eennnnns Tests, .cpps, docs, etc., by library
index.html Library documentation starts here
algorithm/
any/
array/

~more libraries..
SBLtAtUS/ ... iiirrrrnnnenssssseess BOOSt-wide test suite

tools/ ...iiiiinnn Utilities, e.g. Boost.Build, quickbook, bcp
BOESS 000080 0cs bttt ittt tttsenssss Policy documents, etc.
300/ .ccccsssnsssesus A subset of all Boost library docs

It's important to note the following: . .
® fmporfant fo note Te ToTowing Header Organization
1. The path to the boost root directory (often /usr/local/boost_1 57 0)is
sometimes referred to as $B00OST ROOT in documentation and mailing lists . The organization of Boost library headers isn't entirely uniform,
but most libraries follow a few patterns:
2. To compile anything in Boost, you need a directory containing the boost/
subdirectory in your #include path. e Some older libraries and most very small libraries place

. . o all public headers directly into boost/.
3. Since all of Boost's header files have the . hpp extension, and live in the

boost/ subdirectory of the boost root, your Boost #include directives will e Most libraries' public headers live in a subdirectory of

look like: boost /, named after the library. For example, you'll find
the Python library's def . hpp header in

#include <boost/whatever.hpp>
boost/python/def.hpp.

or e Some libraries have an “aggregate header” in boost/
that #includes all of the library's other headers. For

B .Python" i
#include "boost/whatever.hpp" example, Boost.Python's aggregate header is

depending on your preference regarding the use of angle bracket includes. el st L

)))) e Most libraries place private headers in a subdirectory
4. Don't be distracted by the doc/ subdirectory; it only contains a subset of the called detail/, or aux /. Don't expect to find anything
Boost documentation. Start with 1ibs/index.html if you're looking for the you can use in these directories.
whole enchilada.

Just get the source, and compile Boost yourself it has become very easy. Here is an example for
the current version of Boost (1.50.0) on the current OSX (10.7.4) as of this writing:

1. Download the the .tar.gz from http://sourceforge.net/projects/boost/files/boost/1.50.0/
2. Unpack and go into the directory:

tar -xzf boost_1 50 O.tar.gz
cd boost_1 50 0

3. Configure (and build bjam):

./bootstrap.sh --prefix=/some/dir/you/would/like/to/prefix

4. Build:
./b2
5. Install:

./b2 install

Depending on the prefix you choose in Step 3, you might need to sudo Step 5, if the script tries
copy files to a protected location.

// Copyright Ralf W. Grosse-Kunstleve 2002-2004. Distributed under the Boost
// Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_ 0.txt)

#include <boost/python/module.hpp>
#include <boost/python/def.hpp>
#include <string>

namespace { // Avoid cluttering the global namespace.

// A couple of simple C++ functions that we want to expose to Python.
std::string greet() { return "hello, world"; }
int square(int number) { return number *x number; }

}

namespace python = boost::python;

// Python requires an exported function called init<module—name> in every
// extension module. This is where we build the module contents.
BOOST_PYTHON_MODULE(getting_startedl)
{

// Add regular functions to the module.

python::def("greet", greet);

python::def("square", square);

location of the Python header files on Standard Ule

PYTHON_VERSION
PYTHON_INCLUDE

2.7
/usr/include/python$(PYTHON_VERSION)

location of the Boost Python include files and library

BOOST_INC = /usr/include
BOOST_LIB = /usr/lib
compile

TARGET = hello_ext

$(TARGET) .so: $(TARGET).o

g++ —-shared -W1,——export-dynamic $(TARGET).o -L$(BOOST_LIB) -1boost_python-$

(PYTHON_VERSION) -L/usr/lib/python$(PYTHON_VERSION)/config —1lpython$(PYTHON_VERSION) -0 $
(TARGET) . so

$(TARGET).o: $(TARGET).C
g++ —I$(PYTHON_INCLUDE) -I$(BOOST_INC) —-fPIC -c $(TARGET).C

OoNn Macs

clang++ —-shared —undefined dynamic_lookup $(TARGET).o -L$(BOOST_LIB) -1boost_python -L/
usr/lib/python$(PYTHON_VERSION)/config -1lpython$(PYTHON_VERSION) -o $(TARGET).so

$(TARGET) .o: $(TARGET).C
clang++ —I$(PYTHON_INCLUDE) -I$(BOOST_INC) —-fPIC —-c $(TARGET).C

