
Supplementary materials for this article are available online.
Please go to www.tandfonline.com/r/JCGS

Automated Factor Slice Sampling
Matthew M. TIBBITS, Chris GROENDYKE, Murali HARAN,

and John C. LIECHTY

Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for
sampling from arbitrary distributions. However, designing and tuning MCMC algo-
rithms for each new distribution can be challenging and time consuming. It is partic-
ularly difficult to create an efficient sampler when there is strong dependence among
the variables in a multivariate distribution. We describe a two-pronged approach for
constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice
sampler,” a generalization of the univariate slice sampler where we treat the selection
of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an
approach for automatically selecting tuning parameters to construct an efficient factor
slice sampler. In addition to automating the factor slice sampler, our tuning approach
also applies to the standard univariate slice samplers. We demonstrate the efficiency and
general applicability of our automated MCMC algorithm with a number of illustrative
examples. This article has online supplementary materials.

Keywords: Adaptive methods; Heuristic optimization; Markov chain Monte Carlo;
Slice sampling.

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) algorithms provide the knowledgeable researcher
with a very general approach for generating samples from and approximating integrals
(expectations) with respect to a wide range of complicated distributions. However, while the
theory underlying the MCMC algorithm guarantees that the accuracy of these integrals will
eventually get arbitrarily close to the truth, in practice the precision of these approximations
depends upon how well the algorithm is tailored to the particular distribution of interest.

While the standard sampling techniques such as the random-walk Metropolis–Hastings
algorithm appear adequate for many simple statistical models, the necessary sampling
time to estimate covariance structures, nonlinear link functions, and/or more complicated
hierarchical models vastly diminishes their utility as a generic MCMC sampler. For many

Matthew M. Tibbits (E-mail: tibbits@gmail.com) and Murali Haran (E-mail: mharan@stat.psu.edu), Department
of Statistics, Pennsylvania State University, University Park, State College, PA 16801. Chris Groendyke, De-
partment of Mathematics, Robert Morris University, Pittsburgh, PA 15108 (E-mail: groendyke@rmu.edu). John
C. Liechty, Department of Statistics, Pennsylvania State University and Department of Marketing, Pennsylvania
State University, University Park, State College, PA 16801 (E-mail: jcl12@psu.edu).

C⃝ 2014 American Statistical Association, Institute of Mathematical Statistics,
and Interface Foundation of North America

Journal of Computational and Graphical Statistics, Volume 23, Number 2, Pages 543–563
DOI: 10.1080/10618600.2013.791193
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/r/jcgs.

543

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

544 M. M. TIBBITS ET AL.

complicated models and distributions, the resulting Markov chain does not result in accurate
estimates of the interesting features of the target distribution. In addition, standard samplers
like the random-walk algorithm are serial in nature and are not typically designed in a
manner to take advantage of modern parallelized computing hardware. Recently, Tibbits,
Haran, and Liechty (2011) demonstrated that it is possible to construct versions of the slice
sampler (Neal 2003) that take advantage of parallel computing.

In this article, we provide a significant improvement to the approach in Tibbits, Haran,
and Liechty (2011) by constructing proposals within a rotated reference frame. By sam-
pling within a transformed space, the rotated or “factor” slice sampler can generate nearly
independent draws from a highly correlated, high-dimensional target distribution, eliminat-
ing the construction of an expensive approximate multivariate slice as required by Tibbits,
Haran, and Liechty (2011). The factor slice sampler offers a potentially robust, general sam-
pler that can be applied to a wide range of distributions. In addition, we will also address
another, seldom discussed, challenge of constructing an efficient MCMC sampling: the
selection of optimal tuning parameters. Although identifying reasonable tuning parameters
is often thought of as more art than science, we demonstrate that a heuristic optimization
technique can robustly identify efficient interval widths (the only tuning parameter for a
univariate slice sampler) with minimal, if any need for supervision. In addition, we incor-
porate the techniques for parallelizing the univariate slice sampler from our previous work
using modern computational hardware (multithreaded CPUs, graphics cards, etc.). This
allows us to provide an automatic, efficient, and parallelizable MCMC sampling algorithm
with an example implementation in R (R Development Core Team 2009).

The outline for the article is as follows. In Section 2, we introduce the rotated or
“factor” slice sampler and demonstrate its utility within the context of a toy example. In
Section 3, we describe a procedure for automatically tuning univariate slice samplers. In
Section 4, we describe, in detail, a fully automated factor slice sampler (AFSS). Working
in concert with parallelization techniques, we demonstrate via examples that the AFSS
algorithm obtains a dramatic improvement in computational efficiency over the standard
slice sampler. Furthermore, we demonstrate the AFSS’s performance for high-dimensional
distributions. We conclude in Section 5 by summarizing the AFSS algorithm’s performance
and outlining areas of future research.

2. FACTOR SLICE SAMPLING

The slice sampling algorithm (e.g., Damien, Wakefield, and Walker 1999; Mira and
Tierney 2002; Neal 1997, 2003) exploits the equivalence between drawing directly from a
K-dimensional probability distribution and drawing uniformly from the K + 1-dimensional
region, which lies below the corresponding probability distribution. Constructing a K +
1-dimensional random walk, the slice sampler uses uniform deviates to draw from an
arbitrary density function. Although the algorithm for slice sampling, Algorithm 1, does
not depend on the dimensionality of the target distribution, f (β), in this article, we will
restrict our attention to single-dimension (univariate) implementations of the slice sampler.
When applying the univariate slice sampler to a multivariate target distribution, we sample
component-at-a-time, augmenting each dimension with its own auxiliary variable. For
clarity, the subscript k will index the dimension of the parameter, βk . The superscript
(i) will index the iteration of the Markov chain.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 545

1. Sample h(i) ∼ Uniform
{
0, f

(
β(i−1)

)}
.

2. Sample β(i) ∼ Uniform on A =
{
β : f (β) ≥ h(i)

}
.

Algorithm 1. Slice sampling update algorithm for parameter β with density ∝ f (β)

The slice sampler augments the target distribution, adding the h parameter, to more
easily sample from a complicated target distribution, f (β). The ith step of the algorithm
may be described as follows. First, a “height” under the density function, h(i), is drawn
uniformly from the interval (0, f (β(i−1))). This height, h(i), then defines a horizontal
slice across the target density, A = {β : f (β) ≥ h(i)}. Second, a sample, β(i), is drawn
uniformly from A. Typically, a closed-form solution for the boundary of A is unavailable;
hence, an intermediate step is usually inserted to construct an approximation, Ã(i), to A
from which β(i) is drawn subject to the constraint: β(i) ∈ A. Note that in the univariate
case, the set A is either an interval or the union of several intervals (e.g., in the presence of
multiple modes). In a multivariate setting, A may have a much more complicated geometry.
We will assume for the remainder of Section 2 that an efficient means for constructing an
approximating interval Ã exists (for the univariate slice sampler) and proceed as if A is
known precisely.

It has been known for some time that a simple rotation of the sampling reference
frame or block updating can dramatically improve the efficiency of an MCMC algorithm.
This fact is often used in practice through either correlated multivariate updates (e.g.,
Roberts and Sahu 1997; Roberts and Rosenthal 2009), or through a reparameterization
of the target distribution to minimize the dependence among parameters (e.g., Gelfand,
Sahu, and Carlin 1996; Gilks and Roberts 1996; Yan et al. 2007). While these approaches
offer improved mixing, they can often be challenging to implement. The first approach
requires either an adaptive scheme capable of navigating complicated dependence structures
or prior knowledge of the correlation structure to avoid highly autocorrelated samples.
The second approach is often unusable as it may not be possible to construct orthogonal
reparameterizations.

The primary contributions of our work are as follows: (1) we propose a factor slice sam-
pler that can be automatically constructed using a rotated orthogonal basis without prior
knowledge of the correlation structure, and (2) we provide an approach for automatically
tuning the proposed sampler. In Algorithm 2, updates are proposed using linear combina-
tions, "k’s, of the vector components, βk , in such a way that ! forms an orthogonal basis
that spans the parameter space and leaves the target distribution unaltered.

It is particularly difficult to create an efficient sampler when there is strong dependence
among the variables in a multivariate distribution. The benefit of the factor slice sampler is
that univariate updates of η(k) are performed in an orthogonalized space, where correlation
between the steps of the Markov chain is minimized. Further, a priori knowledge of the
correlation structure of f (β) is unnecessary. In such cases, one may construct a quadratic
approximation, f ∗(β) ∝ |$|− 1

2 exp(− 1
2 (β − µf)T $−1(β − µf)), of the target distribution,

f (β), where µf and $ represent the mean and covariance of the target distribution, respec-
tively. One can compute the eigenvectors of $, which form an orthogonal basis, !̂. The

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

546 M. M. TIBBITS ET AL.

1. Sample h(i) ∼ Uniform on
{
0, f

(
β (i−1))} .

2. Set β(∗) = β (i−1).

3. For each basis vector "k ∈ !:
(a) Sample η

(i)
k ∼ Uniform on A =

{
ηk : f

(
ηk"k + β (∗)) ≥ h(i)

}
,

(b) Update β (∗) = β (∗) + η
(i)
k "k .

4. Set β(i) = β (∗).

Algorithm 2. Univariate factor slice sampling update algorithm for β ∈ RK with density
proportional to f (β). Note: ηk ∈ R1 is a parameter in the orthogonalized space. The basis
vectors, "k ∈ RK , are chosen as eigenvectors of the covariance matrix of β.

columns of !̂ are then used to construct linearly independent updates of the original pa-
rameters following Algorithm 2. The examples which follow demonstrate that an iterative
approximation of ! using a sample covariance matrix is sufficient for efficient exploration
of f (β). Further, one can use the summation in Step 5 of Algorithm 3 during an initial
tuning phase to gauge the accuracy of the approximation, !̂, to !.

1. Set !̂
(0) = I, $(0) = I, and t = 1, where I is an identity matrix.

2. Draw N samples using !̂
(t−1)

, an orthogonal basis for the factor slice sampler.

3. Compute $(t) and its corresponding eigenvectors !(t).

4. Find A, where A is a rotation matrix such that $(t−1) A = $(t). Set t = t + 1.

5. Repeat Steps 2 through 4 until
∑

(A − I) is below a preset threshold.

Algorithm 3. Iterative procedure for parameter covariance estimation.

There are clear limits to the factor slice sampler. The factor-based technique will only
reduce the impact of linear dependence among the parameters β and will not help in the case
of nonlinear dependence (as seen in the online Appendix). Further, if the covariance matrix,
$, is highly ill conditioned, the factor slice sampler may perform less than optimally;
however, if $ is ill conditioned, it is possible to use the left-singular vectors from a
singular value decomposition of $ and allow $ to be singular. In this case, the factor
slice sampler would gracefully decay to sequentially lower dimensional subspaces even
if a given distribution was overparameterized or partially nonidentifiable. This would be
useful, for example, when one desires to sample from a distribution with imposed linear
constraints: given a vector whose elements are constrained to sum to one, the distribution
can be sampled efficiently by using the basis of the space, P ⊥, orthogonal to the linear
(sum-to-one) constraint. However, for purposes of this article, we limit our scope to models
whose parameters have a full-rank covariance matrix. If the parameters β of a distribution
f (β) exhibit strong linear dependence, then the factor slice sampler will provide a significant

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 547

performance improvement, as can be demonstrated using a stylized example of Bayesian
linear regression.

Example 1 (Linear Regression With an Intercept). Consider a simple linear regression
model using k predictors. We assume that the errors ϵj are iid standard normal:

Yj = Xjβ + ϵj ϵj ∼ N (0, 1) j = 1, . . . , N.

We use a Bayesian approach to model specification and complete the model by assigning
flat priors to the regression coefficients: P(β) ∝ 1.

This is a toy example as we can sample directly from the posterior distribution; however,
it provides a nice test bed for studying our algorithm. By rearranging terms, we see that the
posterior covariance of the coefficients, β, is given by (XT X)−1. Hence, we can obtain the
optimal sampling basis explicitly by calculating the eigenvectors "k of (XT X)−1. To com-
pare the performance of Algorithms 1 and 2, we generate 20,000 pairs {Yj , Xj } according
to the above model with 10, 50, 100, and 500 correlated predictors as follows:

1. Set &m,n ≡
{

1.0 if m = n

0.6 if m ̸= n
3. Draw Xj ∼ N (0,&∗)

2. Draw &∗ ∼ Wishart
(

1
2p

&, 2p

)
4. Draw Yj ∼ N (Xjβ, 1)

Algorithm 4. Data generation procedure for regression example (# 1).

The Wishart draw in Step 2 of Algorithm 4 was simply used to perturb the off-diagonal
elements of the correlation matrix while ensuring that it remains positive definite. We drew
the correlated predictors, Xj , according to Step 3, and similarly the response observations
according to Step 4 (from the model in Example 1) using a vector of known coefficients β.
The efficiency of competing MCMC algorithms can be compared using effective sample
size (ESS) and effective samples per second (ES/sec) as described by Kass et al. (1998)
and Chib and Carlin (1999). ESS is defined as the ratio of the number of steps in a Markov
chain over its autocorrelation time, τ , given by τ = 1 + 2

∑N
i=1 ρ(m), where ρ(m) is the

autocorrelation at lag m. This summation is often truncated when the autocorrelation drops
below 0.1, though more sophisticated approaches are possible (see Geyer 1992). Hence,
ESS estimates the number of iid draws to which a given Markov chain is equivalent. ESS
weighted by computation time is also reported as a metric of computational efficiency.

For comparison, we ran three univariate (component-at-a-time) update algorithms to
sample from the posterior distribution of β as described in Example 1 using data generated
via Algorithm 4. We varied the length of the tuning phase as well as the tuning parameters
values between the three samplers to ensure that each sampler functioned at peak perfor-
mance. The ES/sec times reflect the total run time (including time spent in the tuning phase),
so that a fair comparison can be made. The univariate slice sampler was run for a shorter
tuning phase of 10,000 samples during which the interval widths were tuned to ensure op-
timal performance (see Algorithm 5 in Section 3.2). The univariate factor slice sampler ran

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

548 M. M. TIBBITS ET AL.

Table 1. Toy example for performance comparison of MCMC sampling algorithms for β, a vector of regression
coefficients from Example 1 with P = 10, 50, 100, and 500 dimensions. All ESS estimates were obtained from
500,000 “post-tuning” draws

P = 10 P = 50 P = 100 P = 500

Algorithm ESS ES/sec ESS ES/sec ESS ES/sec ESS ES/sec

Univariate RWMH 20,195 2684 15,822 180 15,865 32 17,004 0.30
Univariate slice sampler 75,169 3462 39,576 150 36,235 25 19,763 0.13
Univariate factor slice sampler 498,808 14,376 495,132 1130 490,794 241 457,337 2.64

NOTE: The computation time used in ES/sec includes time spent in the tuning phase. (Random-Walk Metropolis–
Hastings, RWMH)

for a much longer tuning phase of 120,000 samples during which the interval widths were
also tuned to ensure optimal performance using Algorithm 5 of Section 3.2. Algorithm 3
was used to tune the factor slice sampler for iteration number 10,000 through 110,000. The
univariate random-walk Metropolis–Hastings sampler was tuned via the method outlined
in Roberts and Rosenthal (2009) to an acceptance rate of 0.44 during a tuning phase of
100,000 samples.

In comparing the performance of the samplers shown above in Table 1, we see that
the factor slice sampler clearly dominates the performance of the other two algorithms
in both mixing efficiency, generating nearly independent draws, as well as computational
efficiency, with the highest ES/sec. The univariate factor slice sampler requires roughly
50% more time to run than the univariate slice sampler (including the tuning period), but
this time is easily recouped in ES/sec as the generated samples are nearly independent (ESS
is nearly 500,000). The model from Example 1 may unfairly favor the factor slice sampler
because the complicated dependency between the β coefficients can be easily removed
by orthogonalizing the covariates. In an uncorrelated setting, the factor slice sampler will
have identical performance with the standard univariate slice sampler, but one would,
algorithmically, require a longer tuning phase; hence, the ES/sec of the factor slice sampler
will be slightly lower than the ES/sec of the standard slice sampler, but only with a perfectly
linearly independent distribution. However, with more challenging models which employ
nonlinear link functions or complicated hierarchies, removing the collinearity among the
parameters may be difficult if not impossible and there the true utility of the AFSS algorithm
becomes evident, as we shall see in Section 4.

3. AUTOMATED INTERVAL WIDTH SELECTION

In practice, the most challenging aspect of using a slice sampler is constructing an
efficient approximation to the slice A = {β : f (β) ≥ h} because for most models one lacks
a closed form representation for A. We overcome this by following the method from Neal
(2003) for constructing and sampling from an approximate slice and propose a method
for automatically identifying efficient tuning parameters (initial interval widths) for this
method. In Tibbits, Haran, and Liechty (2011), we discussed how in a multivariate slice
sampler, approximating A is a challenging or impossible problem; however, in a single
dimension, it is quite straightforward to find upper and lower bounds, which are guaranteed

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 549

to contain A (given that f (β) is a proper probability distribution). The computational
cost of constructing an approximate slice depends directly on the number of likelihood
evaluations, which are required. We start by quantifying the functional dependence of the
computational cost on the choice of the initial interval width. We then show how a Robbins–
Monro recursion from the optimization literature may be used to automatically tune the
slice sampler, thereby minimizing the computational burden.

3.1 COMPUTATIONAL COST ESTIMATION

To quantify the computational cost of our general slice sampling approach, we must
account for both the time spent constructing the approximate slice, Ã, as well as the time
needed to sample from A using Ã. There are clearly trade-offs between these two. A highly
accurate approximate slice will require many likelihood evaluations to construct, but only
a few proposals as Ã is very similar to A. Conversely, a poor approximate slice will require
few (if any) likelihood evaluations to construct, but many more proposals as Ã is a very
inefficient approximation to A.

3.1.1 Approximate Slice Construction. We first explain how to construct an approxi-
mation to the slice. Two methods for iteratively constructing an approximate slice in one
dimension were outlined in Neal (2003): “step-out” and “doubling.” To clearly illustrate
our approach, we will examine the step-out method in detail and derive the functional de-
pendence of the computational cost (the expected number of likelihood evaluations) on the
choice of tuning parameter (initial interval width). The approximation methods of Neal both
construct Ã by randomly positioning an initial interval width and then expanding it until
both bounds fall outside the target slice. Initially, we assume that the target distribution is
unimodal as this provides a well-defined stopping criterion for the interval approximation,
that is, once the approximate interval bounds fall outside the target slice, then A ⊆ Ã. We
then extend our approach to consider multimodal distributions where A is a collection of
disjoint intervals and hence, while a portion of A must be contained in Ã, Ã may not contain
all of A.

In the step-out algorithm proposed by Neal (2003), an initial interval of width ω is
randomly positioned such that it overlaps the current location, and then the lower and upper
bounds are examined and extended in steps equal to ω until they fall outside the target slice.
We let s represent the true (unknown) width of the target slice A, and define κ to be the
ratio s

ω
. Let X denote the number of expansions required, so that the approximate interval

completely contains A. Intuitively, κ is the expected value of X. If ω is s
2 , half the size it

must be to fully contain s, then the interval will be expanded twice. Similarly, if ω is 3 × s,
then the interval will only expand (exactly once) a third of the time. We now formally
construct this result.

If we first consider the case where the target slice is smaller than the initial interval width
(κ < 1), as in the example shown in Figure 1, we see that either (1) the initial interval will
completely cover the target slice and not expand, or (2) one of the bounds (either the upper,
or the lower, but not both) will need to be extended exactly once. Further, if we consider
the placement of the lower bound with respect to the target slice, we see that the probability
of expanding is equal to the probability of the lower bound falling within a region of size

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

550 M. M. TIBBITS ET AL.

Initial Interval

Target Slice
s

Number of Expansions

s ≤w

w

1 0

Figure 1. Expansion of a randomly positioned initial interval of width ω ≡ 3s
2 . Hence, κ ≡ 2

3 , and we make
either ⌈κ⌉ ≡ 1, or ⌊κ⌋ ≡ 0 expansions.

s divided by its total flexibility ω. When κ > 1, as in the example in Figure 2, X can only
take the integer values of either ⌈κ⌉ or ⌊κ⌋. In Figure 2, where κ ≡ 8

3 , the initial interval
will either be expanded ⌊κ⌋ ≡ two times or ⌈κ⌉ ≡ three times. As a result, the expected
number of expansions for all values of κ can be summarized in Equation (1).

P (X = ⌈κ⌉) = s − ⌊κ⌋ω
ω

= κ − ⌊κ⌋ P (X = ⌊κ⌋) = ω − (s − ⌊κ⌋ω)
ω

= ⌈κ⌉ − κ

E[X] = ⌈κ⌉P (X = ⌈κ⌉) + ⌊κ⌋P (X = ⌊κ⌋) =⇒ E[X] = κ (1)

The expected number of interval expansions derived in Equation (1) is interesting as it
does not depend on the actual size of the target slice, but only on the ratio κ of the target slice
to the initial interval width. In practice, as s is unknown, we can only vary ω, not κ . However,
if ω remains fixed after a small tuning phase and is not varied by height h or for different
values of s, then ω and s are independent. Hence, for a given initial interval width, ω(0),
we can compute E[X|ω = ω(0)] = E[κ|ω = ω(0)] = 1

ω(0) × E[s|ω = ω(0)] = 1
ω(0) × E[s],

where the expectation of s is integrated with reference to target probability distribution and
the distribution of the auxiliary variable, h.

To examine Equation (1), we used a univariate, step-out slice sampler to sample from a
standard normal distribution in R1. In the first of two simulations, we analytically computed
the target slice width at each iteration—as it is easily determined for the standard normal
distribution—varying ω in each iteration to keep κ fixed and then recorded the average
number of expansions over 10,000 iterations at different levels of κ . In Figure 3, we see
that the result, E[X] = κ , is an exact fit to the simulation. In the second simulation, we
varied ω, and likewise, we see in Figure 4 that E[X] = κ = 1

ω
E[s] also provides an exact

fit to the results. Note that the value E[s] for the standard normal distribution is an integral

Initial Interval

Target Slice
s

Number of Expansions
23

s
3

s
2

w

Figure 2. Expansion of a randomly positioned initial interval of width ω ≡ 3s
8 . Hence, κ ≡ 8

3 , and we make
either ⌈κ⌉ ≡ 3, or ⌊κ⌋ ≡ 2 expansions.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 551

Figure 3. Number of expansions versus κ .

that can be evaluated using Maple:

E[s] =
√

2
π

∫ ∞

0

∫ ∞

−∞
(
√

x2 + 2y)e−ye− x2
2 dxdy = 4

√
2
π

≈ 3.19154.

Note that E[X] = 1
ω
E[s] regardless of the skew, kurtosis, or other higher order moments

of the target distribution, as long as the underlying distribution is unimodal. Two additional
terms must be added to Equation (1) for each additional mode in the distribution. Further,
these two terms are multiplied by the probability of the approximate slice overlapping both
modes without expansion. This probability is important because the step-out approximation

Figure 4. Number of expansions versus s/ω.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

552 M. M. TIBBITS ET AL.

method may now violate our assumption that: “expansion of the initial interval width will
only cease after s is wholly contained in the approximate interval.” If this probability (of
overlapping both modes initially) is near zero, then the step-out approximation method will
tend to stick in one mode (Neal 2003). The doubling method of Neal (2003) was devised
to mitigate the possibility of being trapped in one mode; however, the doubling method
also requires a costly construction to ensure that moving from the proposed location back
to the initial location is possible. This additional step to ensure reversibility makes the
identification of an optimal initial interval width for the doubling slice sampler highly
distribution dependent and beyond the scope of this article.

3.1.2 Sampling From the Approximate Slice. To aid in situations where Ã grossly
over-estimated the size of A, an interval shrinkage procedure was also devised in Neal
(2003). The interval is contracted toward the current parameter value after each rejected
proposal. By construction, Ã is guaranteed to contain a portion of the target slice with
probability one. Hence, there is a well-defined stopping criterion for the proposal phase
because eventually a proposal must fall within the target slice, A. This leads us to estimate
the number of interval contractions, C, required before a generated proposal falls within
the target slice—as this will be one less than the number of proposals (and likelihood
evaluations) needed. Let ϖ denote the width of the approximate slice (after expansion).
If we again consider only unimodal distributions for the moment, the approximate slice is
guaranteed to contain the entirety of the slice A. The expanded interval width ϖ is then
equal to the width of the target slice s plus some additional region ϵ, which falls outside
the target slice. As in deriving E[X], we find it useful to work with a ratio, and here we
define ξ ≡ ϵ

s
.

We first note that no contractions are necessary if the first proposal falls within A;
therefore, we can easily construct P(C = 0) = s

ϖ
= 1

1+ξ
. If the first proposal does not fall

within the target slice, then the second proposal will be sampled (uniformly) from a smaller
interval. Since the first proposal was rejected, the only portion of the interval to shrink is the
excess, ϵ, as the proposal must have fallen within this region to be rejected. We denote the
width of this contracted proposal interval by s + λϵ, where λ is the fraction of the excess
which remains after contraction. However, this formulation is slightly misleading because
in general a portion of the excess, ϵ, falls below the lower bound (ϵl) and a portion of the
excess falls above the upper bound (ϵu). While λ is random, every proposal is independent
given the interval width, so the expected value can easily be computed, E[λ] = 5

8 . To
calculate the probability of a successful second proposal (C = 1), we must first condition
on the selection of the left or right tail:

P(C = 1) =
(
P

(
β(1) ∈ A|β(0) ∈ ϵl

)
P

(
β(0) ∈ ϵl

)
+ P

(
β(1) ∈ A|β(0) ∈ ϵu

)
P

(
β(0) ∈ ϵu

))
,

where β(j) denotes the jth proposal. We compute the expected number of interval contrac-
tions as a weighted summation across a binary tree of proposals. We define a recursive set
of equations and numerically estimate the expected number of interval contractions. Note
that all probabilities below are computed given {β(0)), . . . , β(j−1)} /∈ A, N

(j)
u , and N

(j)
l .

These are abbreviated to “−” for brevity where N
(j)
l denotes the number of proposals in

{β(0), . . . ,β(j−1)}, which led to the contractions of the excess in the lower bound, ϵl and

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 553

similarly N
(j)
u , for the upper bound.

P
(
β(j) ∈ ϵl| −

)
=

ξ
2 λ(N (j)

l)

1 + ξ
2

(
λ(N (j)

l) + λ(N (j)
u)

) , P
(
β(j) ∈ ϵu| −

)
=

ξ
2 λ(N (j)

u)

1 + ξ
2

(
λ(N (j)

l) + λ(N (j)
u)

) ,

P
(
β(j) ∈ A| −

)
= 1

1 + ξ
2

(
λ(N (j)

l) + λ(N (j)
u)

) ,

and

E[C] =
∞∑

m=1

m

m+1∑

n=1

(

P
(
β(n) ∈ A|−

)
×

m∏

t=1

P
(
β(t) /∈ A|−

)
)

. (2)

As with earlier notations in this article, superscripts here reflect an iteration index. For
example, the term λ(N (j)

l) represents the fraction of excess interval remaining below the
lower bound after N

(j)
l proposals were made in the region less than the lower bound of the

target slice (out of j rejected proposals). Note that Equation (2) does not reduce to a binomial
random variable as the probabilities of proposing in s, ϵl , or ϵu are not constant. Further, the
termP(β(j) /∈ s|−) must account, recursively, for the order in which the lower, ϵl and upper,
ϵu, excesses were contracted. However, the computation of E[C] was greatly simplified by
summing across the m + 1 leaves of binary tree instead of eliciting all 2m possible paths.
We truncated the infinite summation in Equation (2) to the first 100 terms, and overlaid it
(dashed line) on the experimental results in Figures 5 and 6.

We numerically verified Equation (2) by sampling from a standard normal distribution
in R1. In the first simulation, we analytically computed the target slice width, s, at each
iteration and allowed ω (and hence ϖ) to vary allowing us to record the average number
of contractions over all 10,000 iterations at fixed levels of κ . For large values of κ ≡ s

ω
in

our simulations, many expansions led to an interval that closely approximates the target

Figure 5. Number of contractions versus κ.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

554 M. M. TIBBITS ET AL.

Figure 6. Number of contractions versus ω.

slice and very few contractions occurred. For small values of κ , the initial interval width
was too large, few expansions were made, many proposals were rejected, and, hence, many
contractions occurred. Note that as κ decreases, more contractions will occur; hence, this
will require larger and larger trees to yield an accurate approximation. This will become
computationally burdensome, but by only using the first 100 terms, we see a near perfect
fit to the simulation results in Figure 5. In the second simulation, we recorded the average
number of contractions over 10,000 iterations at fixed levels of ω. In Figure 6, we use an
approximate value, ω/E[s], in place of κ when constructing ξ for Equation (2) and find a
reasonable fit to the second simulation results. While the results presented apply chiefly to
unimodal distributions, one could consider extending these results to multimodal situations.
However, it would be highly distribution dependent as it is possible to contract and remove
entire modes from the approximate interval (altering both ϵ and s).

3.2 TUNING BY HEURISTIC OPTIMIZATION

The efficiency of the univariate slice sampler depends on the number of likelihood eval-
uations required. Therefore, we want to find values of ω that minimize E[X|ω] + E[C|ω].
The second contribution of this article is to propose an automated algorithm for identi-
fying efficient ω’s. As evidenced in Sections 3.1.1 and 3.1.2, E[X] and E[C] as func-
tions of κ are quite well behaved. Almost any optimization technique could find the
minimum in Figure 7; however, these estimates of E[X] and E[C] were generated by
integrating over the space of all true target widths, s, globally across the distribution.
If the Markov chain is randomly initialized in the tails of the distribution, a local grid
search, for example, might limit the slice sampler’s ability to efficiently explore the rest
of the distribution. Hence, we propose an adaptive optimization technique to sequen-
tially adjust the slice sampler’s initial interval width as it explores a larger fraction of the
distribution.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 555

Figure 7. Total number of likelihood evaluations versus κ.

Instead of continually adapting with “diminishing magnitude” as in Roberts and Rosen-
thal (2009), our approach stops tuning after a prespecified threshold is met or a prespecified
number of tuning iterations is exceeded. Then, ω is fixed and the proposals are constructed
using a constant (nonadaptive) transition kernel. To tune the univariate slice sampler, we
propose a simple heuristic approach that uses the ratio of the number expansions to the
total number of expansions and contractions. We construct a simple Robbins–Monro re-
cursion (see Benveniste, Métivier, and Priouret 1990; Borkar 2008). The standard form of
this recursion is: ω(t+1) ← ω(t) + γ (t)(h(ω(t)) − α), where h(ω) is some approximation to
an unobservable function of interest g(ω) (with E[h(ω)|ω] = g(ω)), and it is used to find
the roots of the equation g(ω) − α = 0, (see Shaby and Wells 2010). Hence, we derive
Algorithm 5 by taking α = 1

2 , γ (t) = 2ω(t), and g(ω) = E[X|ω]
E[X|ω]+E[C|ω] :

1. Draw N (0) samples using an initial guess, ω(0). Set t = 0.

2. Tally the number of expansions, X(t) and contractions, C(t).

3. Set ω(t+1) = ω(t) × 2
(

X(t)

X(t) + C(t)

)
and N (t+1) = 2 × N (t). Set t = t + 1.

4. Repeat Steps 2 and 3 until
(

X(t)

X(t) + C(t)

)
− 1

2
∈ [−ϕ,ϕ].

Algorithm 5. Heuristic algorithm for initial interval width selection.

In practice, if X(t) is zero for a given iteration, we set it equal to one to prevent an
undefined update. Note also that using the interval contraction procedure, it is much better
to consider an ω that is too large versus an ω that is too small (see Figure 7). To prevent
multiple draws from using an ω, which is too small, we generally choose N (0) (the initial

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

556 M. M. TIBBITS ET AL.

Figure 8. Convergence of interval width (ω).

number of samples drawn before adjusting ω) to be a small number, often a single sample.
Note that Neal (2003) also proposed terminating the interval expansion after performing an
arbitrary number of expansions, which will also help with an initially undersized ω while
maintaining the integrity of the heuristic procedure. In addition, we must also select an
appropriate tolerance for the stopping criterion. In practice, we recommend ϕ ≈ 0.1 as the
minimum in Figure 7 is nearly two orders of magnitude wide.

To test the performance of Algorithm 5, we again sampled from a standard normal
distribution in R1. We initialized 50 samplers to a uniform distribution for ω(0) of roughly
13 orders of magnitude on the interval [e−5, e20]. We see in Figure 8, that the convergence
is quite rapid. The sampler interval widths (ω) have all converged to within a single order
of magnitude of the posterior mean in under eight iterations. Because the number of slice
sampler draws is increased in powers of two after each iteration of Algorithm 5, eight
iterations require only 512 samples. In the examples presented in Sections 4.1 and 4.2,
the samplers also often require fewer than eight tuning iterations (with N (0) = 1, and
ϕ = 0.1) to find a nearly optimal initial interval width. However, we typically desire at least
10 tuning iterations to allow more time for the samplers to reach the general vicinity of
posterior support. Further, when applying Algorithm 5 to the univariate factor slice sampler,
which also uses Algorithm 3, we reset i = 0 and N (i) = 1 in Algorithm 5 every time the
factors are updated to obtain an optimal selection of ω with regard to the newly rotated
frame of reference. Algorithm 5 appears to very efficiently tune the standard and factor
slice samplers (initial interval widths). With a reasonable initial guess of the spread of the
target distribution, the convergence will be faster; however, it appears that starting even

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 557

from a naive guess of 1.0 for the initial interval width and tuning using Algorithm 5 will
work in general and provide reasonable performance.

4. APPLICATIONS TO DATA EXAMPLES

In Section 2, we demonstrated the utility of rotating the sampling reference frame within
the context of a stylized example. To demonstrate the robustness of these approaches,
we consider two more challenging and realistic examples from spatial statistics where an
orthogonalizing transformation of the target parameterization does not exist. While one
could generate perfectly uncorrelated draws from the distribution in our toy example, there
are no such simplifications for these two examples. The improved performance of the
univariate factor slice sampler over the standard univariate slice sampler translates directly
to an improved ability to use these ubiquitous Gaussian process models.

An efficient univariate slice sampler will, on average, only require five likelihood evalua-
tions (where at most only two or three are performed simultaneously). Hence, the algorithm
does not provide as much of an opportunity for parallel decomposition as, for example,
a multivariate slice sampler; however, the improved efficiency due to the rotation of the
factors more than compensates for this drawback and further, additional parallel processing
capacity can then be dedicated to each likelihood computation. We find that an optimal
level of parallelism is obtained for these models by using either three cores of an Intel Core
i7 processor through OpenMP, or using two GTX 480 graphics cards from nVidia through
CUDA. For details on the parallel implementation, we refer the interested reader to Tibbits,
Haran, and Liechty (2011).

4.1 LINEAR GAUSSIAN PROCESS MODEL

In the next example, we use a linear Gaussian process to model the mean surface
temperature over the month of January 1995 on a 24 × 24 grid covering Central America.
This dataset was obtained from the NASA Langley Research Center Atmospheric Science
Data Center.

Example 2 (ASDC Surface Temperature Dataset). We model the mean surface tem-
perature as a spatially referenced response, Y (sj), measured at 576 locations sj with a
set of covariates, X(sj), including an intercept, the latitude, and the longitude of each sj .
The responses, Y (sj), are correlated based on their magnitude of separation and it decays
exponentially:

Y (sj) = X(sj)β + ϵ(sj), ϵ(sj) ∼ N (0,&) with

&mn =

⎧
⎪⎨

⎪⎩

σ + ψ m = n

σ exp
(||sm − sn||2

φ

)
m ̸= n.

We place a uniform prior on β as in Example 1. We place inverse gamma (shape = 2,
scale = 1) priors on σ and ψ, so that the prior means for σ and ψ are 1.0 and the prior

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

558 M. M. TIBBITS ET AL.

Table 2. Comparison of effective sample size (ESS), effective samples per second(ES/sec), and relative speedup
of ES/sec for σ , ψ , and φ from Example 2. All algorithms were run for 110,240 iterations, but the first 10,240 were
discarded to allow for sampler tuning (using Algorithms 3 and 5). The sampling algorithms were parallelized
using OpenMP with three processor cores and using CUDA with two nVidia GTX 480s as described in Tibbits,
Haran, and Liechty (2011)

ψ σ φ

Parallel ES/sec ES/sec ES/sec
Algorithms API ESS ES/sec speedup ESS ES/sec speedup ESS ES/sec speedup

Univariate slice
sampler

— 64,616 2.06 2267 0.07 2234 0.07
OpenMP 64,920 2.70 (1.27) 2210 0.09 (1.31) 2178 0.09 (1.27)
CUDA 65,497 2.70 (1.31) 2293 0.09 (1.31) 2262 0.09 (1.31)

Univariate factor
slice sampler

— 58,723 2.10 (1.02) 52,291 1.87 (25.82) 51,937 1.85 (26.02)
OpenMP 57,129 2.89 (1.40) 51,267 2.60 (35.93) 52,996 2.68 (37.69)
CUDA 66,086 4.25 (2.06) 51,770 3.33 (46.07) 51,641 3.32 (46.63)

NOTE: Table 2 uses the standard univariate slice sampler’s single processor run time as the baseline for determining
algorithmic speedups shown above.

variance is infinite. Finally, we place a uniform [0.005, 1.2] prior on the effective range
parameter φ (the distance matrix has been rescaled to the unit square).

We see in Table 2 that the univariate factor slice sampler achieves an ESS roughly
23 times that of the standard univariate slice sampler. It is actually able to draw 100,000
samples slightly faster than the standard approach. In terms of computational efficiency,
the factor slice sampler is 26 times better at generating effectively independent samples
per second (ES/sec). Using OpenMP, we see that both univariate slice samplers gain a
30% performance improvement. With reference to the nonparallel standard slice sampler,
the factor slice sampler using OpenMP achieves an overall 36- to 38-fold improvement.
Given the ease with which OpenMP can be incorporated to an existing codebase, the
parallelized factor slice sampler represents an automated and efficient statistical sampling
technique, which requires a minimum amount of development time.

Using the more intricate parallelism of CUDA, we wrote graphics kernels to estimate
the Gaussian process log-likelihood and thereby attain nearly a 50-fold improvement in
sampling efficiency. This magnitude of speedup changes the way in which the modeler
approaches this class of problems. Instead of waiting a week or more to compare two or three
models for variable selection or requiring huge, costly high-performance computing centers,
the factor approach allows the statistician to examine hundreds of possible models within the
same time frame using a single desktop computer. Hardware for parallel implementations
also continues to get less expensive. (Note that at the time of submission, an nVidia GTX
480 graphics card retailed for less than $225.)

4.2 LOGISTIC GAUSSIAN PROCESS MODEL

To better characterize the performance of the automated factor slice sampling algorithm
within the context of a high-dimensional distribution, we used the Gaussian process model
of Section 4.1 as a tool to fit the spatial dependence among the odds of observing a
Pennsylvania native songbird, the Hermit Thrush, using a spatial generalized linear model
(see Haran 2011). This dataset, collected in a joint effort by the Carnegie Museum of

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 559

Natural History, the Powdermill Nature Reserve, and the Pennsylvania Game Commission,
will be published in the Second Pennsylvania Breeding Bird Atlas (Powdermill Avian
Research Center 2012). The Hermit Thrush is a species found across North America;
however, surprisingly little is known of its demographic characteristics (see Hughes, Haran,
and Caragea 2011). For the purpose of illustration, we have selected a random subset of
500 observations.

Example 3 (Logistic Gaussian Process Model). We consider a logistic Gaussian process
model with an exponential covariance function. We model the presence or absence of
the Hermit thrush, as a spatially referenced response Z(sj) measured at locations sj with
covariates X(sj) (j ∈ {1 . . . N}), where we have included four predictors of scientific
interest as well as an intercept. We model a second spatial process w(sj) and assume that
the responses Z(sj)’s are conditionally independent given w = (w(s1), . . . , w(sN)) and that
the Z(sj)’s are conditionally Bernoulli, where for j ∈ {1 . . . N} we have:

E[Z(sj)|w] = µ(sj) and log
(

µ(sj)
1 − µ(sj)

)
≡ X(sj)β + w(sj),

where w ∼ N (0,&(s,φ)) with &mn =

⎧
⎪⎨

⎪⎩

1.0 m = n

exp
(||sm − sn||2

φ

)
m ̸= n.

The spatial dependence is imposed by modeling w as a stationary Gaussian process
with an exponential covariance function. However, to preserve the identifiability, we must
force &(s,φ) to be a correlation matrix. As in Example 2, we place a flat prior on β and
a uniform [0.005, 1.2] prior on the effective range parameter φ (the distance matrix was
again rescaled).

This example is not only more computationally expensive than Example 2 but also
much more challenging as the target distribution has 506 dimensions: a vector β of five
regression coefficients (including an intercept), a scalar φ that determines the degree of
spatial dependence, and 500 spatial random effect parameters, w. Unlike in Example 2,
the distributions of β, φ, and w cannot be sampled from directly; hence, we will use slice
samplers for β, φ, and w. For the purpose of illustration, we have included the results
(and sampling efficiencies) for four distinctly different blocking and sampling approaches.
Note that one could construct a univariate factor slice sampler to update the regression
coefficients (β) jointly and a separate univariate factor slice sampler to update the location
mean parameters (w). We could then use a standard univariate slice sampler to sample the
remaining parameter, φ. For convenience, we label this scheme by IV and denote it by
(φ, {β}, {w}), where the braces, {}, denote the use of a joint/factor update. There are 10
possible blocking schemes with the 4 included in Table 3 starred below:

I∗ φ,β, w III∗ φ, {β} , w V {φ,β} , w VII {φ, w} ,β IX∗ φ, {β, w}

II∗ φ,β, {w} IV φ, {β} , {w} VI {φ,β} , {w} VIII {φ, w} , {β} X {φ,β, w} .

We note that when blocking the regression coefficients, β, and/or the spatial random
effects, w, with the covariance parameter φ, care must be taken as this adds a significant
computational cost. Each time the parameter φ is altered, the likelihood evaluation requires

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

560 M. M. TIBBITS ET AL.

Table 3. Comparison of effective sample size (ESS), effective samples per second (ES/sec), and relative speedup
of ES/sec for φ, β, and w from Example 3. All algorithms were run for 120,480 iterations, but the first 20,480 were
discarded to allow for sampler tuning. For brevity, we provide only the average efficiency β for the fixed effects
β, and the average efficiency w for the spatial random effects w

φ β w

Sampling Parallel ES/sec ES/sec ES/sec
approach API ESS ES/sec speedup ESS ES/sec speedup ESS ES/sec speedup

φ, β, w — 1561 0.04 3614 0.08 2370 0.05
OpenMP 1548 0.05 (1.46) 3360 0.11 (1.37) 2364 0.08 (1.47)

φ, β, {w} — 1564 0.03 (0.88) 5171 0.10 (1.26) 5587 0.11 (2.07)
OpenMP 1679 0.05 (1.68) 4246 0.13 (1.62) 6165 0.19 (3.42)

φ, {β}, w — 1504 0.03 (0.96) 1316 0.03 (0.36) 2343 0.05 (0.96)
OpenMP 1484 0.05 (1.36) 2207 0.07 (0.88) 2403 0.08 (1.45)

φ, {β, w} — 1673 0.03 (0.94) 35,141 0.70 (8.56) 39,424 0.79 (14.64)
OpenMP 1777 0.06 (1.56) 34,706 1.08 (13.11) 38,568 1.19 (22.21)

NOTE: That {θ1, θ2} denotes a joint update of parameters θ1 and θ2 using a factor slice sampler. The first sampling
approach “φ, β, w” employs standard univariate slice samplers for all parameters and was used as the baseline
for determining the algorithmic speedups shown above.

a costly Cholesky decomposition and back substitution (which is more efficient than
inverting the matrix directly for the density computation). To improve the computational
efficiency, often a discrete uniform distribution is substituted for the prior on φ where the
Cholesky decomposition at each location can be precomputed and stored (see Sec. 7.5.4
of Diggle and Ribeiro 2007); however, no such concessions were made here. Note that one
could also consider varimax or other such rotations to minimize the number of nonzero
loadings in " and thereby minimize the number of factors, which require Cholesky decom-
positions to update. In testing the blocking strategies IV through VIII and X, we found that
the ESS of φ marginally improved, while the ES/sec of all parameters were significantly
lower than the reference strategy, I, due to the significantly increased computational
burden. As such, we also do not include the results from the samplers using CUDA.
Computationally expensive matrix operations are only required for updates to φ and the
improved vector performance of CUDA is outweighed by the cost of transferring updated
β and w vectors after each iteration. For further discussion on blocking strategies, please
refer to Roberts and Sahu (1997), Liu, Wong, and Kong (1994), and the references therein.

In Table 3, we contrast the performance of the four sampling approaches. The first
sampling approach (I) “φ, β, w” uses standard univariate slice samplers for all parameters.
It is used as the baseline for determining the algorithmic speedups shown above. Blocking
strategy II uses a factor slice sampler to update the 500 random effects {w}. Blocking
strategy III uses a factor slice sampler update the five fixed effects {β}. Finally, blocking
strategy IX uses a single factor slice sampler to update the 5 fixed and the 500 random
effects jointly ({β, w}). We see that blocking the random effects improves sampling
efficiencies, but it also leads to longer sampling times. Also, the blocking of the random
effects in approach II, (φ,β, {w}), only triples the sampling efficiency whereas blocking
the random effects with the fixed effects in approach IX, (φ, {β, w}), leads to a factor of
22 improvements in sampling efficiencies for the random effects. The blocking strategy in
approach IX also leads to a 13-fold improvement in the fixed effects sampling efficiency.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 561

4.3 SUMMARY OF RESULTS

In the simple toy example, we find that even in high-dimensional distributions with
strong dependence, the ease with which the factor slice sampler can adapt to distributional
dependence allowed it to generate nearly independent samples unlike the strong autocor-
relation present in the traditional random walk and standard slice sampler approaches. The
factor slice sampler attained a near 27-fold improvement in ES/sec, a measure of sampling
and computational efficiency. In Example 4.1, we fit a linear Gaussian process model to a
576-location surface temperature dataset obtained from the NASA Langley Research Cen-
ter Atmospheric Science Data Center. Blocking the three covariance parameters and using
the automatically tuned factor slice sampler, we obtained a 46- and 47-fold improvement
in ES/sec for the two covariance parameters. In Example 4.2, we fit a logistic Gaussian
process model to 500 observations of the presence/absence of Hermit Thrush, obtained
from the Second Pennsylvania Breeding Bird Atlas (Powdermill Avian Research Center
2012). The factor slice sampler obtained 13- and 20-fold improvement in ES/sec for the 5
covariate coefficients, β, and the 500 random effects, w, respectively.

5. DISCUSSION

We develop an automated approach to selecting an efficient coordinate basis us-
ing a simple sample covariance estimate (obtained during an initial tuning phase) and
constructed a rotated or “factor” slice sampler to address the challenge of sampling from
high-dimensional distributions, which exhibit moderate to strong dependence. Further, we
describe a new approach to automatically tune slice samplers. Our approach for tuning is
general and appears to be effective for both the factor slice sampler and the regular slice
sampler. We then examined the performance of the standard and factor univariate slice
samplers within the context of several examples, including two challenging examples from
spatial data analysis.

We believe we have demonstrated that the factor slice sampler is efficient, providing 13-
to 47-fold improvement in computational efficiency (as measured in ES/sec) over carefully
tuned alternative MCMC algorithms. Furthermore, we show how the algorithm can be
fully automated, which makes it very useful for routine application by modelers who are
not experts in MCMC. The automated and parallelized factor slice sampler provides an
efficient technique that has broad application to statistical sampling problems. It requires
little or no user intervention to identify an efficient basis for sampling and also optimal
tuning parameters. Hence, we hope that these algorithms will facilitate a broader audience
to access the power of MCMC methods for complicated problems, while efficiently using
increasingly parallelized hardware.

We chose not to include the multivariate slice sampler results because it was com-
putationally infeasible for more than eight dimensions given our current hardware. The
results of Section 4.1 do translate directly to those of Section 4.3 in Tibbits, Haran, and
Liechty (2011), except that in this article we used graphics cards capable of handling all
576 locations (whereas we had previously limited our analysis to only 500 data points).
Further, the multivariate slice sampler also required a grid search to identify optimal tuning
parameters whereas the factor slice sampler is easily tuned as explained in Section 3.2.

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

562 M. M. TIBBITS ET AL.

In the future, we wish to consider alternative factor selection methods, as well as
orthogonal and oblique rotation techniques. We also wish to revisit the multivariate slice
sampler extensions explored in Tibbits, Haran, and Liechty (2011) as they apply to the
factor slice sampler.

SUPPLEMENTARY MATERIALS

The R source code and tuning scripts are available through the Journal of Computational
and Graphical Statistics (JCGS) website. Please see the included readme file for further
details. Additionally, the software will also be available in a forthcoming R package on
CRAN. An Appendix is also available at the JCGS website in which we compare the
performance of the standard and factor slice samplers applied to a nonlinear, “banana-
shaped” distribution (see Rosenbrock 1960; Wraith et al. 2009).

ACKNOWLEDGMENTS

This research was partially supported by an NIH grant: R01-GM083603-01. This research was supported in part
through instrumentation funded by the National Science Foundation through grant OCI-0821527. The authors
greatly appreciate the valuable comments from two anonymous reviewers on an earlier version of the article.

[Received September 2011. Revised July 2012.]

REFERENCES

Benveniste, A., Métivier, M., and Priouret, P. (1990), Adaptive Algorithms and Stochastic Approximations (Vol.
22 of Applications of Mathematics), New York: Springer-Verlag. [555]

Borkar, V. S. (2008), Stochastic Approximation: A Dynamical Systems Approach, Cambridge: Cambridge Uni-
versity Press. [555]

Chib, S., and Carlin, B. P. (1999), “On MCMC Sampling in Hierarchical Longitudinal Models,” Statistics and
Computing, 9, 17–26. [547]

Damien, P., Wakefield, J., and Walker, S. (1999), “Gibbs Sampling for Bayesian Non-Conjugate and Hierar-
chical Models by Using Auxiliary Variable,” Journal of the Royal Statistical Society, Series B, 61, 331–
344. [544]

Diggle, P. J., and Ribeiro, P. J. (2007), Model-Based Geostatistics, Springer Series in Statistics. New York:
Springer. [560]

Gelfand, A. E., Sahu, S. K., and Carlin, B. P. (1996), “Efficient Parametrizations for Generalized Linear Mixed
Models” (with discussion), in Bayesian Statistics 5, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and
A. F. M. Smith, Oxford: Oxford University Press, pp. 165–180. [545]

Geyer, C. J. (1992), “Practical Markov Chain Monte Carlo,” Statistical Science, 7, 473–483. [547]

Gilks, W. R., and Roberts, G. (1996), “Strategies for Improving MCMC,” in Markov Chain Monte Carlo
in Practice, eds. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, London: Chapman & Hall/CRC,
pp. 89–114. [545]

Haran, M. (2011), “Gaussian Random Field Models for Spatial Data,” in Handbook of Markov Chain Monte
Carlo, eds. S. Brooks, A. Gelman, G. Jones, and X. Meng, New York: Springer-Verlag. [558]

Hughes, J., Haran, M., and Caragea, P. (2011), “Autologistic Models for Binary Data on a Lattice,” Environmetrics,
22, 857–871. [559]

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

AUTOMATED FACTOR SLICE SAMPLING 563

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov Chain Monte Carlo in Practice: A
Roundtable Discussion,” The American Statistician, 52, 93–100. [547]

Liu, J. S., Wong, W. H., and Kong, A. (1994), “Covariance Structure of the Gibbs Sampler With Applications to
the Comparisons of Estimators and Augmentation Schemes,” Biometrika, 81, 27–40. [560]

Mira, A., and Tierney, L. (2002), “Efficiency and Convergence Properties of Slice Samplers,” Scandinavian
Journal of Statistics, 29, 1–12. [544]

Neal, R. M. (1997), “Markov Chain Monte Carlo Methods Based on ‘Slicing’ the Density Function,” Technical
Report, Department of Statistics, University of Toronto. [544]

——— (2003), “Slice Sampling,” The Annals of Statistics, 31, 705–741. [544,548,549,552,556]

Powdermill Avian Research Center (Retrieved May 27th, 2012), Carnegie Museum of Natural History website
©2012. Available at http://www.carnegiemnh.org/powdermill/atlas/index.html. [559,561]

R Development Core Team (2009), R: A Language and Environment for Statistical Computing, Vienna, Austria:
R Foundation for Statistical Computing. [544]

Roberts, G., and Rosenthal, J. (2009), “Examples of Adaptive MCMC,” Journal of Computational and Graphical
Statistics, 18, 349–367. [545,548,555]

Roberts, G. O., and Sahu, S. K. (1997), “Updating Schemes, Correlation Structure, Blocking and Parameterization
for the Gibbs Sampler,” Journal of the Royal Statistical Society, Series B, 59, 291–317. [545,560]

Rosenbrock, H. H. (1960), “An Automatic Method for Finding the Greatest or Least Value of a Function,” The
Computer Journal, 3, 175–184. [562]

Shaby, B., and Wells, M. (2010), “Exploring an Adaptive Metropolis Algorithm,” Currently Under Review, 1,
1–17. [555]

Tibbits, M. M., Haran, M., and Liechty, J. C. (2011), “Parallel Multivariate Slice Sampling,” Statistics and
Computing, 21, 415–430. [544,548,557,558,561]

Wraith, D., Kilbinger, M., Benabed, K., Cappé, O., Cardoso, J.-F., Fort, G., Prunet, S., and Robert, C. P. (2009),
“Estimation of Cosmological Parameters Using Adaptive Importance Sampling,” Physical Review D, 80,
023507. [562]

Yan, J., Cowles, M. K., Wang, S., and Armstrong, M. P. (2007), “Parallelizing MCMC for Bayesian Spatiotemporal
Geostatistical Models,” Statistics and Computing, 17, 323–335. [545]

D
ow

nl
oa

de
d

by
 [D

uk
e

U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 a
t 1

0:
29

 1
2

Ju
ne

 2
01

4

This article was downloaded by: [Duke University Libraries]
On: 12 June 2014, At: 10:29
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Computational and Graphical

Statistics
Publication details, including instructions for authors and
subscription information:
http://amstat.tandfonline.com/loi/ucgs20

Automated Factor Slice Sampling
Matthew M. Tibbits, Chris Groendyke, Murali Haran & John C.
Liechty
Accepted author version posted online: 04 Apr 2013.Published
online: 28 Apr 2014.

To cite this article: Matthew M. Tibbits, Chris Groendyke, Murali Haran & John C. Liechty (2014)
Automated Factor Slice Sampling, Journal of Computational and Graphical Statistics, 23:2, 543-563,
DOI: 10.1080/10618600.2013.791193

To link to this article: http://dx.doi.org/10.1080/10618600.2013.791193

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://amstat.tandfonline.com/page/terms-
and-conditions

