CELLULAR AUTOMATA

The Game of Life

n a darkened room, eager faces peer at a steadily evolving pattern of little
white squares on a display screen. Within this pattern, some populations of
squares may be growing while others appear headed for extinction; thus the
name Jife given by its creator, John Conway, a Cambridge mathematician,toa
game that has intrigued millions. When it was first described by Martin Gardner
in the October 1970 issue of Scientific American, the game quickly established
itself as a major spare-time preoccupation of senior and graduate students
having access to a graphics computer. Even some faculty found themselves
drawn into the magic circle surrounding those scintillating screens, perhaps
watching something like the succession of patterns in Figure 44.1.

The game of Life is an example of a cellular autom?ton.. Formally, we must
think of an infinite square grid in which each cell exists in one qf two states,
“living” or “dead.” Each cell is a simple automaton that at every tick of a grtiai\t
clock must decide which state it will be in until the next tick. It n;a'kes : ghst
decision on the basis of not only its present state but also thoseﬁcz3 r;ts;r z s
neighbors, four adjacent along sides and four adjacent at COTNEIs.

rules on which that decision is based:
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Figure 44.1 Six generations of Life

1. If the cell is alive at time ¢, it will remain alive at time ¢+ 1 if it is not
“overcrowded” or “undernourished.” In other words, it must have at least
two living neighbors and no more than three.

2. Ifthecell is dead attime ¢, it will remain dead unless it has three “parents.”
That is, the cell must have three living neighbors in order to be born again.

Although they sound almost arbitrary to the uninitiated, Conway went to
some trouble to discover rules which made the behavior of populations of live
cells as difficult as possible to predict. On the way, he experimented with
dozens of different rules, discarding each set in turn. Among the notes he sentto
Gardner for the 1970 article was the prediction that no population could grow
without limit— sooner or later, every population either would become extinct
(all cells eternally dead) or would fall into an endlessly repeating cycle of
patterns.

The game of Life can be played by hand on a ruled grid using counters. It is
difficult, however, to play the game with just one color of counter because one
must remember, in going from one generation to the next, just which counters
were present in the former. For this reason, it is much better to use two colors,
one for already living cells (say, white) and the other for newly born cells (say,
gray). Given the ¢ generation of white counters, first g0 around putting in gray
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nters wherever a new cell is born. Then remov. ;
,C:ucens which are to die. Finally, replace th € white ¢

of course, ifone has accesstoa computer,

pas 00 graphics termi{lal attached, successive
giterns of X’s on a printer. In some ways, havi
especially for examining past populations for the purpose of detailed analysis
1t was by using a computer that Conway and many others caught up in the
excitement were able to find novel and interesting patterns. An initial pattern of
jive cellswould be typgd into the computer and appear on the screen, and witha
press of a key, successive generations of the pattern would appear.

Figure 44.2 shows () the evolution (with the 13 intermediate generations
not shown) of a row of seven live cells into a “honey farm” consisting of four
«peehives’’ and (b) a five-cell configuration called a glider. The glider repeats
itself every 4 cycles but ends up in a new position!

with so many people playing Life, it was not long before someone discovered
a2 counterexample to Conway’s conjecture that no populations could grow
without limit. A group of six students at the Massachusetts Institute of Technol-
ogy discovered a “glider gun,” a configuration that emits a glider every 30

generations. A pattern which grows into the glider gun after 39 moves is shown
in Figure 44.3. With gliders flying out of the gun every 30 moves, the total
number of live cells obviously grows without limit. The same group of students
managed to arrange 13 gliders crashing together to form a glider gun!
The algorithm displayed below computes successive generations for Life in
matrix Z. A 1 in the 4, jth entry represents a live cell, and a 0 represents a dead
cell.

ng hard copy is an advantage,

LIFE
1. for i< 1 to 100
1. for j< 1 to 100
1. s <0
2. forp—i—1toi+1 /compute effect
for g—j—1toj+1  /of neighbors
s—s+L(p q

3. se—s—L(i J) s
4, if (s= r(s+L(i, ) =3
tgen ?53(;,) j)(= 1 /store life or death

else X(7, ) =0 /in auxiliary array X
2. for i+ 1 to 100
1. for j«< 1 to 100
L. L(4 ) <« X(4, /) /rgfrelsh ]i
2. display L(4, ) /display
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design, the syntax peculiar to the language
Ise, be substituted f,

assignment statements)

d if
entations (indicating the scope of for an
298
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This algorithm is relatively Straightforward. The first double-for lgggﬂioo p
putes new values for the (4, Hth entry of L by Scanning the 3 X 3 neig

and ind
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. he variable scontains th
of (4.0-T € sum of th .
 epatai away). The statement 114 emgse Values (“flth the value of L(4, 5)
mentioned earlier. The auxiliary array X holds tp,
value cannot yet be placed in L since the old va]
four more computations of L valyes, op at
(carried in X) ﬁqally replace the old ones?,At tStep F
new values are displayed on one’s screen at line 2.1.2

2 keysttoke.

Living configurations that reach the edge ;
will automatically die. One may prevegnt 2;:? ebi,og“);: Ooi::latrlllx By ;
around” using modular arithmetic. For example (100 I)Paﬂ lgb; ed.matnces
L(1,1). In this case, however, the computation of s in thé loop at 1 IaZ’zrl;eml;o
modified to reflect the new rules of cel] adjacency. it

Any program based on this algorithm must include the appropriate initializa-
tion statements.

The academic area called cellular automata has fascinated many computer
scientists and mathematicians since John von Neumann invented the subject in
1950. His aim was to construct a self-reproducing “machine.” On being per-
suaded that cellular spaces were an ideal setting for gedanken experiments in
this area, von Neumann arrived, finally, at a cellular automaton each cell of
which had 29 states. He proved the existence of (but did not explicitly state!) a
configuration of about 200,000 cells which would self-reproduce. This meant
that when the cellular automaton was put into this configuration, it would, after
a definite period, result in two such configurations, side by side. Since von
Neumann’s time, much simpler self-reproducing cellular automata have been

found.

Figure 443 A glider gun
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In formal terms, a cellular automaton consists of three things:
n ’

1. An automaton, a copy of which is associated with each cell in an infing

-di ional grid. : ' '
g d‘;ﬁee?;;&orh%od function that specifies which of the cells adjacep, i

: e may affect it. tap i
ngntfa?lsitio?l function that specifies, for each combination of sty

: . €S in
“neighboring” cells, what the next state of the given cell will be.

Besides constructing self-reproducing automata, 'researcl'le.rs have deve.
oped cellular automata which can carry out comput::ltxons.lThlls 15 usually dope
by embedding the equivalent of a Turmg.machme inace lular space: Moviy
patterns of states represent the read/write h.ea‘c‘i, scanning .what othe.r state
patterns represent as a tape. There are, at least in mental” existence, universy|
computational cellular automata, even ones that sel.f-re'produce (s.ee Chapter
46). Indeed, it was recently shown that the game of Life itself has this Property!

Problems

1. Write the Life algorithm as an actual program in a language of choice.,

2. Aone-dimensional cellular automaton coinsists of an infinite strip of cells,
A great advantage of such automata is that one can watch the history of a given

binary configuration unfold on a display screen if successive generations are
displayed as successive rows. Write a program to do exactly this. Use neighbor-
hoods consisting of two cells on either side of the central one. Employ the
following rule: If two or four of the cells in a given cell’s neighborhood are alive
(state 1) at time ¢, the given cell will be alive at time ¢+ 1. Otherwise, it will be
dead. Note that each cell is a member of its own neighborhood.

3. How would you convert a one- or two-variable differential equation intoa
cellular automaton?
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