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Introduction
The web notes by Andrew Cumming of  Napier University Edinburgh provide a very
good introduction to the Hilbert curve. His pseudo code, slightly modified, is shown in
listing 1.

Listing 1 (from Andrew Cumming)

procedure hilbert(x, y, xi, xj, yi, yj, n)
/* x and y are the coordinates of the bottom left corner */
/* xi & xj are the i & j components of the unit x vector of the frame */
/* similarly yi and yj */
if (n <= 0) then
   LineTo(x + (xi + yi)/2, y + (xj + yj)/2);
else
   {
   hilbert(x,           y,           yi/2, yj/2,  xi/2,  xj/2, n-1);
   hilbert(x+xi/2,      y+xj/2 ,     xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi/2, y+xj/2+yj/2, xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi,   y+xj/2+yj,  -yi/2,-yj/2, -xi/2, -xj/2, n-1);
   }
end procedure;

To fully understand how Andrews recursive function operates is not easy and in order to
do so it is necessary to break-down his Hilbert procedure so that the role that each
"part" plays in the construction of  the curve can be more readily understood. We will
begin by looking at the inputs of  the Hilbert function.

Inputs
In addition to the counter (n) that tracks the level from which the function begins to
recursively call itself, there are six other inputs to Andrew's procedure. The first two
define the x and y coordinates of  an input point that will be used in the calculation of  a
point on the Hilbert curve. The next 4 values define two vectors. Before we see how
they are used we must understand what is meant by the inputs labelled xi, xj, yi and yj.
Hopefully, figure 1 will make them clearer. 

The large black dot, labelled P, in figure 1 is defined by its x and y coordinates - shown
as small dots on the two axes. We can see, from the two arrows, that each dot marks the
head of  a vector. We might call these the x-vector and the y-vector.
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Figure 1

Although these vectors represent the x and y coordinates of  P, like any vector, they have
their own coordinates. For example, the coordinates of  the x-vector (in two dimensions)
might be [1,0] while the coordinates of  the y-vector might be [0,0.5]. To prevent the
confusion of  labelling the coordinates of  these vectors as "x" and "y" they are instead
labelled "i" and "j". For example,

    x-vector              y-vector
    xi = 1.0              yi = 0.0 
    xj = 0.0              yj = 0.5

We can make use of  these vectors to move (ie. translate) a copy of  point P. For example,
in Andrew's procedure we see this statement.

    LineTo(x + (xi + yi)/2, y + (xj + yj)/2);

Rewritten for point P we have,

    Px = Px + (xi + yi)/2
       = 1.0 + (1.0 + 0)/2
       = 1.5

    Py = Py + (xj + yj)/2
       = 0.5 + (0 + 0.5)/2
       = 0.75

The effect of  using the i's and j's on point P can be seen in figure 2.

Figure 2

Point P could also have been translated by directly changing its x and y values. However,
using the "i" and "j" coordinates (x-vector and y-vectors) moves the point in a structured
and proportional fashion. In the context of  their use in Andrew's procedure, the "i" and
"j" components provide, what are in effect, additional "handles" to control the
placement of  points along the Hilbert curve.



Modifying the Inputs
Looking at the hilited code shown in listing 2 we see the Hilbert procedure calls itself
four times. On each call it passes slightly modified versions of  its original input values to
itself.

Listing 2 (pseudo code)

procedure hilbert(x, y, xi, xj, yi, yj, n)
if (n <= 0) then
   LineTo(x + (xi + yi)/2, y + (xj + yj)/2);
else
   {
   hilbert(x,           y,           yi/2, yj/2,  xi/2,  xj/2, n-1);
   hilbert(x+xi/2,      y+xj/2 ,     xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi/2, y+xj/2+yj/2, xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi,   y+xj/2+yj,  -yi/2,-yj/2, -xi/2, -xj/2, n-1);

   }
end procedure;

    //      x  y  xi  xj  yi  yj  n
    hilbert(0, 0, 1,  0,  0,  1,  1);

Tracking the results of  the recursions will show what happens to original x,y coordinates
- shown in above in blue. The i and the j vectors will be ignored. The four recursive calls
will be labelled A, B, C and D ie.

    A    hilbert(...);
    B    hilbert(...);
    C    hilbert(...);
    D    hilbert(...);

Performing the arithmetic on the x and y's for the first level of  recursion for A, B, C and
D generates the following x,y values,

                  x    y
    A    hilbert(0.0  0.0, ...);
    B    hilbert(0.5  0.0, ...);
    C    hilbert(0.5  0.5, ...);
    D    hilbert(0.5  1.0, ...);

The value of  x and y can be plotted using the LineTo - listing 3.

Listing 3 (pseudo code)

procedure hilbert(x, y, xi, xj, yi, yj, n)
if (n <= 0) then
   LineTo(x  + (xi + yi)/2, y  + (xj + yj)/2");
else
   {
   hilbert(x,           y,           yi/2, yj/2,  xi/2,  xj/2, n-1);
   hilbert(x+xi/2,      y+xj/2 ,     xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi/2, y+xj/2+yj/2, xi/2, xj/2,  yi/2,  yj/2, n-1);
   hilbert(x+xi/2+yi,   y+xj/2+yj,  -yi/2,-yj/2, -xi/2, -xj/2, n-1);
   }
end procedure;

Figures 3 to 6 show the development of  a Hilbert curve from 1 to 4 iterations. The
colored dots correspond to the four recursions ie.

    A    hilbert(...); red dot
    B    hilbert(...); green dot
    C    hilbert(...); blue dot
    D    hilbert(...); purple dot



Figure 3 shows the basic building block of  the Hilbert curve is a open square formed by
three connected lines. A complex pattern (figure 4) is made by the Hilbert procedure
recursively converting each line to a smaller version of  the original open square. The
lines of  each of  the small squares are then converted to even smaller squares, and so on,
and so on. After one iteration we have four smaller separate squares. Because of  the way
the vertices of each square are drawn the final pattern is formed by a single continuous
line. In figure 4 the connections that join the small (separate) open squares are shown as
dotted lines.

Figure 3
Starting Open Square
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Afer one Interation

Figure 5
3 interations

Figure 6
4 interations

Basic Code
Listings 4 and 5 provide code for a RenderMan procedural primitive. One is written in Python,
the other in Tcl. For information about procedural primitives, or helper apps as they are often
called, refer to the tutorial, 
    RenderMan Procedural Primitives: Implementations in Python, Tcl and 'C' 
A sample rib file to run the implementations is given by listing 6. 

Listing 4 (hilbert.py)

import sys, math
  
def hilbert(x0, y0, xi, xj, yi, yj, n):
    if n <= 0:
        X = x0 + (xi + yi)/2
        Y = y0 + (xj + yj)/2

http://www.fundza.com/algorithmic/rman_helper/basics1/index.html


        
        # Output the coordinates of the cv
        print '%s %s 0' % (X, Y)
    else:
        hilbert(x0,               y0,               yi/2, yj/2, xi/2, xj/2, n - 1)
        hilbert(x0 + xi/2,        y0 + xj/2,        xi/2, xj/2, yi/2, yj/2, n - 1)
        hilbert(x0 + xi/2 + yi/2, y0 + xj/2 + yj/2, xi/2, xj/2, yi/2, yj/2, n - 1)
        hilbert(x0 + xi/2 + yi,   y0 + xj/2 + yj,  -yi/2,-yj/2,-xi/2,-xj/2, n - 1)
        
def main():
    args = sys.stdin.readline()
    # Remain the loop until the renderer releases the helper...
    while args:
        arg = args.split()
        # Get the inputs
        pixels = float(arg[0])
        ctype = arg[1]
        reps = int(arg[2])
        width = float(arg[3])
        
        # Calculate the number of curve cv's
        cvs = int(math.pow(4, reps))
            
        # Begin the RenderMan curve statement
        print 'Basis \"b-spline\" 1 \"b-spline\" 1'
        print 'Curves \"%s\" [%s] \"nonperiodic\" \"P\" [' % (ctype, cvs)
    
        # Create the curve
        hilbert(0.0, 0.0, 1.0, 0.0, 0.0, 1.0, reps)
    
        # End the curve statement
        print '] \"constantwidth\" [%s]' % width
      
        # Tell the renderer we have finished   
        sys.stdout.write('\377')
        sys.stdout.flush()
        
        # read the next set of inputs
        args = sys.stdin.readline()
if __name__ == "__main__":
    main()

Listing 5 (hilbert.tcl)

fconfigure stdout -translation binary
  
# This is where the control vertices of the Hilbert curve are generated    
proc hilbert { x0 y0 xi xj yi yj n } {
    if { $n <= 0 } {
        set X [expr $x0 + ($xi + $yi)/2]
        set Y [expr $y0 + ($xj + $yj)/2]
        
        # Output the coordinates of the cv
        puts "$X $Y 0 "
    } else {
        set XI [expr $xi/2]
        set XJ [expr $xj/2]
        set YI [expr $yi/2]
        set YJ [expr $yj/2]
        
        # Begin recursion
        hilbert $x0                 $y0                $YI  $YJ  $XI  $XJ [expr $n - 1]
        hilbert [expr $x0+$XI]     [expr $y0+$XJ]      $XI  $XJ  $YI  $YJ [expr $n - 1]
        hilbert [expr $x0+$XI+$YI] [expr $y0+$XJ+$YJ]  $XI  $XJ  $YI  $YJ [expr $n - 1]
        hilbert [expr $x0+$XI+$yi] [expr $y0+$XJ+$yj] -$YI -$YJ -$XI -$XJ [expr $n - 1]
        }
    }
  
# Remain the loop until the renderer releases the helper...
while { [gets stdin args] != -1 } {
    # Get the inputs



    set pixels [lindex $args 0]
    set ctype  [lindex $args 1]
    set reps   [lindex $args 2]
    set width  [lindex $args 3]
  
    # Calculate the number of curve cv's
    set cvs [expr int(pow(4, $reps))]
        
    # Begin the RenderMan curve statement
    puts "Basis \"b-spline\" 1 \"b-spline\" 1"
    puts "Curves \"$ctype\" \[$cvs\] \"nonperiodic\" \"P\" \["
    
    # Create the curve
    hilbert 0.0  0.0  1.0  0  0  1.0 $reps
    
    # End the curve statement
    puts "\] \"constantwidth\" \[ $width \]"
  
    # Tell the renderer we have finished   
    puts "\377" 
    flush stdout
    }

The inputs (arguments) to the helper apps are,
    curve type - either linear or cubic
    number of  iterations
    width of  the curve

Figure 7
cubic - 4 iterations

Listing 6 (hilbert.rib)

Display "iterations" "framebuffer" "rgba"
Format 300 300 1
Projection "perspective" "fov" 12
ShadingRate 1
  
Translate  -0.5 -0.5 5
Rotate 0 1 0 0
Rotate 0   0 1 0
Scale 1 1 -1
WorldBegin
    TransformBegin
        Surface "constant"
        Color 1 1 1
        # For linux and MacOSC the paths to tclsh and
        # python must be fully specified ie,
        # /usr/bin/tclsh
        # /usr/bin/python
        # Args: curve type, iterations and curve width
        Procedural "RunProgram" ["tclsh  FULL_PATH/hilbert_helper.tcl" "cubic 4 0.005"] 
                    [-1 1 -1 1 -1 1]



        #Procedural "RunProgram" ["python  FULL_PATH/hilbert_helper.py" "linear 4 0.005"] 
        #           [-1 1 -1 1 -1 1]
    TransformEnd
WorldEnd

Mistakes can be Interesting
When entering the code for the Python and Tcl scripts I made a couple of mistakes that produced
some interesting results. The first error occured in a python script.

hilbert(x0,               y0,               yi/2, yj/2, xi/2, xj/2, n - 1)
hilbert(x0 + xi/2,        y0 + xj/2,        xi/2, xj/2, yi/2, xj/2, n - 1)
hilbert(x0 + xi/2 + yi/2, y0 + xj/2 + yj/2, xi/2, xj/2, yi/2, xj/2, n - 1)
hilbert(x0 + xi/2 + yi,   y0 + xj/2 + yj,  -yi/2,-yj/2,-xi/2,-xj/2, n - 1)

Figure 8

The second error occured a tcl script.

hilbert $x0                    $y0                     $YI  $YJ  $XI  $XJ [expr $n - 1]
hilbert [expr $x0 + $XI]       [expr $y0 + $XJ]        $XI  $XJ  $YI  $YJ [expr $n - 1]
hilbert [expr $x0 + $XI + $YI] [expr $y0 + $XJ + $YJ]  $XI  $XJ  $YI  $YJ [expr $n - 1]
hilbert [expr $x0 + $XI + $YI] [expr $y0 + $XJ + $yj] -$YI -$YJ -$XI -$XJ [expr $n - 1]

Figure 9
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