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SUMMARY 

Markov chain Monte Carlo methods for Bayesian computation have until recently been 
restricted to problems where the joint distribution of all variables has a density with 
respect to some fixed standard underlying measure. They have therefore not been available 
for application to Bayesian model determination, where the dimensionality of the param
eter vector is typically not fixed. This paper proposes a new framework for the construction 
of reversible Markov chain samplers that jump between parameter subspaces of differing 
dimensionality, which is :flexible and entirely constructive. It should therefore have wide 
applicability in model determination problems. The methodology is illustrated with appli
cations to multiple change-point analysis in one and two dimensions, and to a Bayesian 
comparison of binomial experiments. 

Some key words: Change-point analysis; Image segmentation; Jump diffusion; Markov chain Monte Carlo; 
Multiple binomial experiments; Multiple shrinkage; Step function; Voronoi tessellation. 

1. INTRODUCTION 

There are a number of challenging statistical problems, often involving inference about 
curves, surfaces or images, where the dimension of the object of inference is not fixed. One 
example discussed in detail later in this paper concerns the multiple change-point problem 
for Poisson processes, where it is assumed that the rate is piecewise constant, but changes 
an unknown number of times. The times of change and the different rates are unknown. 
The object of inference is therefore a step function. 

There are many problems of broadly similar vein, with the same general ingredients: a 
discrete choice between a set of models, a parameter vector with an interpretation 
depending on the model in question, and data, influenced by the model and parameter 
values, to be used as a basis for inference. Some examples are: 

(a) factorial experiments, with a prior allowing factor effects to tie; 
(b) variable selection in regression; 
(c) non-nested regression models; 
(d) mixture deconvolution, with an unknown number of components; 
(e) Bayesian choice between models with different numbers of parameters; 
(f) multiple change-point problems; 
(g) image segmentation, the two-dimensional analogue of the change-point problem; 
(h) object recognition, approached via marked spatial point processes. 
Model criticism, model choice, model selection, model averaging, etc., all require the 

same basic computational tasks, and it is a technology for these tasks that is the focus 
here. The aim of this paper is to add further weight to the assertions (i) that a Bayesian 
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approach is attractive for such problems, and (ii) that the computations for such inference 
can be handled by Markov chain Monte Carlo methods. In particular, in § 3 we introduce 
a novel class of such methods capable of jumping between subspaces of differing dimen
sionality. This considerably extends the scope of Metropolis-Hastings methods, and 
applies to very many varying-dimension problems. 

2. BAYESIAN MODEL CHOICE AS A HIERARCHICAL MODEL 

Suppose that we have a countable collection of candidate models {.Ab k E .ff}. Model 
.Ilk has a vector e<k> of unknown parameters, assumed to lie in ~nk, where the dimension 
nk may vary from model to model. With obvious changes, our methods would apply to 
an arbitrary collection of parameter subspaces. We observe data y. There is a natural 
hierarchical structure expressed by modelling the joint distribution of (k, e<k>, y) as 

p(k, e<k>, y) = p(k)p(e<k>lk)p(ylk, e<k>), 

that is, the product of model probability, prior and likelihood. It will be convenient to 
abbreviate the pair (k, e<k>) by x. For given k, x lies in <(Jk = {k} x ~nk; generally, x varies 
OVer <(j = ukE%<(jk• 

As a concrete example, consider a change-point problem in which there is an unknown 
number of change-points in a piecewise constant regression function on the interval [O, L]. 
Fork E .ff= {O, 1, 2, ... }, model .Ak says that there are exactly k change-points. To para
metrise the resulting step function, we need to specify the position of each change-point, 
and the value of the function on each of the (k + 1) subintervals into which [0, L] is 
divided. Thus e<k> is a vector of length nk = 2k + 1. 

Bayesian inference about k and (J<k> will be based on the joint posterior p(k, (J<k> I y), 
which is the target of the Markov chain Monte Carlo computations described below. It 
will often be appropriate to factorise this as 

p(k, (J(k)ly) = p(kly)p((J(k)lk, y), 

and to interpret the two terms separately, thus avoiding any 'model averaging'. Inference 
about the model indicator may sometimes be phrased in terms, not of p(kl y), but of the 
Bayes factor for one model relative to another: 

p(k1 I y) . p(ki) 
p(ko I y) -:- p(ko)' 

which does not depend on the hyperprior p(k). All these quantities are readily estimated 
from the Markov chain Monte Carlo sample obtained by the methods below; if Bayes 
factors are all that are required, p(k) must nevertheless be specified to implement the 
computation, but it can be chosen on grounds of convenience. Note that regarding the 
posterior p(k, (J<k>ly) as the objective of the computation does not preclude model selection 
or prediction being ultimately based on a non-coherent principle such as that advocated 
by Madigan & Raftery ( 1994 ); thus the methods of the present paper would be applicable 
to their analysis. 

Recent work on Markov chain Monte Carlo computation with application to aspects 
of Bayesian model determination includes Phillips & Smith ( 1995), based on the jump
diffusion samplers of Grenander & Miller ( 1994 ), Carlin & Chib ( 1995) who effectively 
work with the product space nk E % <(jk, and unpublished work of M. Piccioni and 
G. D. Jona-Lasinio, who devise an embedding method in which the {<(Jd are mapped 
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onto subsets of a single parameter space. Each of these approaches has its merits and its 
disadvantages. In jump-diffusion, there is a conflict between minimising the distortion 
caused by using a positive time increment, and improving Monte Carlo efficiency. Further, 
although the jump-diffusion principle is really rather general, the range of jump transitions 
discussed by Grenander & Miller, and used by Phillips & Smith, is somewhat limited, 
amounting to conditional versions of Gibbs kernels, and Hastings kernels based on pro
posals generated from the prior. While these moves seem adequate for Grenander & 
Miller's applications, they are perhaps too restricted for general Bayesian computation. 
The product space approach of Carlin & Chib requires that irrelevant parameters, the 
(]<k'l for k' different from the current k, need to be continually updated, which apparently 
limits the approach to a small set of models :/t. In recent unpublished work, A. O'Hagan 
and the author have pointed out that there is no need to update the irrelevant parameters 
to ensure the proper limiting distribution of the chain, but performance of the modified 
method is not very encouraging. The embedding method seems cumbersome and inexplicit 
in use. 

3. MARKOV CHAIN MONTE CARLO USING REVERSIBLE JUMPS 

3· 1. Introduction 

Let n(dx) denote a target distribution of interest. In Bayesian inference, this is the 
posterior distribution for the parameters given the data, and in the present context of 
model determination, 'parameters' include the indicator k for the model itself, as well as 
the parameter vector (J<k> specific to that model. In Markov chain Monte Carlo compu
tation, we construct a Markov transition kernel P(x, dx') that is aperiodic and irreducible, 
and satisfies detailed balance: 

LL n(dx)P(x, dx') = 1 L n(dx')P(x', dx), (1) 

for all appropriate A, B, and then simulate this chain to obtain a dependent, approximate, 
sample from n(dx). Although detailed balance is more than is needed for ergodicity and 
the correct limiting distribution, in practical design of samplers it is a convenient restriction 
to impose. 

In straightforward cases, n(dx) is either a discrete probability distribution, or has a joint 
density with respect to some simple measure, usually Lebesgue; then methods for con
structing suitable transition kernels are familiar. The two most popular methods are the 
Gibbs sampler (Geman & Geman, 1984 ), and the Metropolis-Hastings method 
(Metropolis et al., 1953; Hastings, 1970). A full description and some comparisons are 
given by Tierney ( 1994 ), Besag et al. ( 1995), and elsewhere. Briefly, each method proceeds 
by sweeping around all the variables x = (x1 , x2 , ... , xn), visiting subsets of the indices in 
turn, either randomly or systematically. When a subset T of { 1, 2, ... , n} is visited, the 
variables xr:= {x;: i E T} are updated. In the Gibbs sampler, the new values are drawn 
from the full conditional distributions n(xr Ix_ r ), where x _ r == { X;: i ¢ T}. In the Hastings 
method, proposed new values xr for these variables are drawn from an essentially arbitrary 
distribution qr(xr; x). Then, with probability 

. { n(xrlx-r)qr(xr; x')} o:(x, x') =mm 1, --------
n(xr Ix- r )qr(xr; x) 

the proposed values are accepted; otherwise, the existing values are retained. 
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The Gibbs sampler hardly even makes sense when x has a length that is not fixed, and 
elements which need not have a fixed interpretation across all models; to resample some 
components conditional on the remainder would rarely be meaningful. We therefore con
centrate on adapting the wider class of Hastings algorithms to the present situation, 
following the approach outlined by Green ( 1994 ), in discussion of Grenander & Miller 
( 1994 ). This gives a framework for dealing with the case where there is no simple under
lying measure. 

3·2. The general case 

In a typical application with multiple parameter subspaces {<ck} of different dimen
sionality, it will be necessary to devise different types of move between the subspaces. 
These will be combined to form what Tierney ( 1994) calls a hybrid sampler, by random 
choice between available moves at each transition, in order to traverse freely across the 
combined parameter space CC. We restrict attention to Markov chains in which detailed 
balance is attained within each move type. 

When the current state is x, we propose a move of type m, that would take the state to 
dx', with probability qm(x, dx'). For the moment, this is an arbitrary sub-probability meas
ure on m and x'. Thus Lm qm(x, CC) :::;; 1, and with probability 1 - Lm qm(x, CC), no change 
to the present state is proposed. Not all moves m will be available from all starting states 
x, so for each x, qm(x, CC)= 0 for some, perhaps many, m. 

As usual with Hastings algorithms, the proposal is not automatically accepted. The 
probability of acceptance will be denoted by ixm(x, x'), and is left undefined at present; the 
objective of the following analysis is to derive an expression for ixm(x, x') which achieves 
the stated aim of attaining detailed balance within each move type. 

The transition kernel we have defined can be written 

P(x, B) = L i qm(x, dx')ixm(x, x') + s(x)I(x EB) 
m B 

for Borel sets Bin CC, where/(.) denotes the indicator function, and 

s(x) •= L i qm(x, dx') { 1 - ixm(x, x')} + 1 - L qm(x, CC) 
m ~ m 

(2) 

is the probability of not moving from x, either through a proposed move being rejected, 
or because no move is attempted. 

The detailed balance relation ( 1) requires the equilibrium probability of moving from 
A to B to equal that from B to A, for all Borel sets A, Bin CC. Substituting (2), we need 

L f n(dx) i qm(x, dx')ixm(x, x') + f n(dx)s(x) 
m A B AnB 

=Li n(dx') f qm(x',dx)ixm(x',x)+ i n(dx')s(x'). (3) 
m B A BnA 

For this to hold, it is sufficient that 

L n(dx) 1 qm(x, dx')ixm(~, x') = L n(dx') 1 qm(x', dx)ixm(x', x) 

for each m, A, B, and to achieve this we choose ixm(x, x') as follows. 
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Assumption. Suppose that n(dx)qm(x, dx') has a finite density fm(x, x') with respect to a 
symmetric measure (m on <(! x <(!. 

Then 

L n(dx) L qm(x, dx')rxm(x, x') = L L (m(dx, dx')fm(x, x')rxm(x, x') 

= LL (m(dx', dx)fm(x', x)rxm(x', x) 

= L n(dx') L qm(x', dx)rxm(x', x), 

as required, with the middle equality holding, by the assumed symmetry of (m, provided 
that 

rxm(x, x')fm(x, x') = rxm(x', x)fm(x', x). (4) 

As shown by Peskun (1973) with a proof only for the finite state space case, it is optimal, 
in the sense of reducing autocorrelation in the realised chain, to make the acceptance 
probability as large as possible subject to retaining detailed balance. Thus we take 

, . { fm(x', x)} 
rxm(x, x ) =mm 1, fm(x, x') (5) 

which satisfies ( 4 ). The possibility that the denominator of the ratio above is zero is not 
of concern, since for such x, dx', there is zero probability of proposing such a move, by 
definition off; the ratio can therefore safely be set to an arbitrary value. Less formally, 
but more transparently, we could write this expression using a ratio of measures 

, . { n(dx')qm(x', dx)} 
rxm(x, x) =mm 1, d ) ( d ') . n( x qm x, x 

(6) 

For straightforward cases, the dimension-matching requirement can be imposed fairly 
simply, by following a standard 'template'. We give further details in § 3·3, but in the 
meantime add a few remarks. 

Remark 1. The definition of the sampling method is entirely constructive. No inte
gration, by simulation or otherwise, is needed to set up the transition mechanism. 

Remark 2. The method allows great flexibility to the algorithm designer to exploit the 
structure of the problem at hand. Intuition can be used to choose moves that plausibly 
induce good mixing behaviour, while not imposing a heavy burden of algebraic and 
analytic work to establish validity. 

Remark 3. Although as usual with Hastings methods, the distribution n need not be 
normalised, relative normalising constants between different subspaces are needed. 
Specifically, while it is not necessary that the prior distributions p((J(k) I k) are properly 
normalised, there must be only one unknown multiplicative constant among all such 
priors, unless only posteriors conditional on k are needed. Detailed balance between 
different subspaces could not be achieved otherwise, a point apparently missed by 
Grenander & Miller ( 1994 ). 
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Remark 4. Our general framework includes various familiar special cases. When there 
is only one parameter subspace, with a single dominating measure, it is just the random 
scan Hastings method. Our framework provides a natural generalisation of Hastings 
methods to general parameter spaces. In the case of point processes, the method is closely 
related to the spatial birth and death process studied by Preston (1977). Recently, Geyer 
& M0ller (1994) have developed a Hastings sampler for point processes, which is a special 
case of our construction; they derive likelihood inference procedures for point patterns 
based on this, and prove results on convergence. The jump-diffusion processes of 
Grenander & Miller (1994), proposed for Bayesian computation in certain computer 
vision problems, also provide a special case of our method, but one in which within
parameter-subspace moves are made by a continuous-time diffusion process, which, when 
discretised temporally for computational purposes, only approximately maintains detailed 
balance. The range of jump transitions presented by Grenander & Miller is also somewhat 
restricted. 

3·3. Switching between two simple subspaces 

The rather obscure 'dimension-matching' Assumption in § 3·2 deserves interpretation 
in more intuitive terms. Suppose first that there are just two subspaces <(! 1 = { 1} x f7l and 
<(!2 = {2} x f7l 2 , with n having proper densities on each subspace conditional on k = 1 and 
2. The context might suggest, for example, that from a point (2, (}1' ()2) E <(/2 , a good move 
might be to {l, !((}1 + (}2 )}. For this move type, the equilibrium joint proposal probability 

L n(dx) L qm(x, dx'), 

where Ac <(!1 and B c <(!2 , must have a density with respect to a singular measure on 
f7l x f7l 2 placing all of its mass on {((}, (}1' ()2 ): (} = !((}1 + (}2 )}, instead of Lebesgue measure 
on f7l3• For detailed balance to be attainable, therefore, it is necessary that the reverse 
move from A to B should be defined via a proposal distribution qm(x, dx') that for each 
x = (1, (})is singular, with all its probability on {(2, ()1 , ()2 ): (} = !((}1 + (}2 )}. For example, 
we might draw a random variable u from some distribution, independently of the current 
state (}, and set ()1 = (} + u, ()2 = (} - u. All that the Assumption does is to ensure that 
singularities of the sort arising above are self-consistent. 

To describe in detail how to implement the dimension-matching requirement in 
many standard cases, we consider a set-up a little more general than the example just 
described. Suppose there are two subspaces, given by k = 1 and 2, and that p(()<1>Jk = 1) 
and p(()<2>1k = 2) are proper densities in f7ln 1 and f7ln 2 • Consider just one move type, which 
always switches subspaces, so that q(x, <(! i) = 0 for x E <(! 1' and q(x, <(! 2) = 0 for x E <(! 2; the 
subscript m is being suppressed. The probability of choosing this move will be denoted 
by j(x). A typical way of accomplishing a transition from <(!1 to <(/2 will be by generating 
a vector of continuous random variables u<1> of length m1 , independently of (} <O, and then 
setting e<2> to be some deterministic function of e<1> and u<1>. Similarly, to switch back, u<2> 

oflength m2 will be generated and e<1> set to some function of e<2> and u<2>. For dimension
matching, there must be a bijection between (e<1>, u<1>) and (()<2>, u<2>). In particular, the 
lengths of u<1> and u<2 l must satisfy n1 + m1 = n2 + m2 • The proposal distribution q(x, dx') 
can now be defined by the distributions of u<1l and u<2>, which we suppose given by proper 
densities q1 and q2 with respect to Lebesgue measure in f7lm 1 and f7lm2 , respectively. 

We can now be explicit about the Assumption in this context. For Ac <(/1 and B c <(/2 , 
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set 

((Ax B) =((Bx A)= /\,{(8<1), u<1l): 9<1J EA, 9<2l(9<1l, u<1l) EB}, 

where A, denotes (n1 + mi)-dimensional Lebesgue measure. For general A, B c <(;}, put 

((Ax B) = ({(An<(;Ji) x (Bn<(;J2)} + ({(An<(;J2) x (Bn<(;Ji)}. 

This is symmetric, as required. Then for x = (1, 9<1l) E <(;}1 and x' = (2, 9<2l) E <(;}2 , let 

J (x, x') = p( 1, 9<1J I y)j( 1, 9<1l)q1 (u(ll), 

I _ (2) • (2) (2) ' U I 8(8(2) (2)) I 
f(x, x)- p(2, 8 IY)J(2, 8 )q2(u ) 8(8<1J, u<ll) ' 
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and otherwise set f(x, x') = 0. Then for all x, x' E <(;}, f(x, x') is the density with respect to 
( of the equilibrium joint proposal distribution n(dx)q(x, dx'). 

According to ( 5), the appropriate acceptance probability for the proposed transition 
from x = (1, 9<1l) to x' = (2, 9<2l) is 

. { p(2, 8(2) I y) j(2, 9<2l)q2(U(2)) I 8(8(2), u(2)) I} 
mm 1, p(l, 9<1Jly)j(l, 9<1l)q1(u<1>) 8(8<1>, u<1>) , (7) 

which restores the anti-symmetry that was lost in the particular representation of ( 
used above. 

In practice, such moves will often be set up so that m1 or m2 is zero. In one direction, 
then, there is no need to generate the corresponding u<il, and the expression for the 
acceptance probability simplifies. For example, with m2 = 0, it becomes 

. { p(2, 9<2l I y)j(2, 9<2>) I 8(8<2>) I} 
mm l, p(l, 8(1)1y)j(l, 8<1>)q1(U(l)) 8(8<1>, U(l)) . (8) 

Finally, this example is somewhat simplified compared with many real applications, 
and appropriate modifications may need to be made. For example, u<1> may be generated 
dependently on 9<1>, in which case q1 (u<ll) is replaced by the conditional density. If other 
discrete variables are generated in making the proposals, the probability functions of their 
realised values are multiplied into the move probabilities j(x). With this latter change, 
(8) is used repeatedly in the applications later in this paper. 

4. APPLICATION TO ONE-DIMENSIONAL MULTIPLE CHANGE-POINT PROBLEMS 

4· 1. Coal mining disasters 
As our first application of the general construction of§ 3, we present a new Bayesian 

model for multiple change-point analysis, and develop a reversible jump Markov chain 
Monte Carlo sampler to compute the posterior distribution. 

A data set that has been frequently used in illustrating new methods for change-point 
analysis is the point process of dates of serious coal-mining disasters between 1851 and 
1962, given by Raftery & Akman ( 1986). In contrast to some other previous analyses of 
these data, we will work in continuous time, with the points recorded in days rather than 
years. Figure 1 displays the dates of the 192 disasters in these 112 years= 40 907 days as 
a jittered dot plot, together with the cumulative counting process, shown as a dotted line. 
For data points {yi, i = 1, 2, ... , n} E [O, L] from a Poisson process with rate given by the 
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Fig. l. Coal mining disaster data, 1851-1962: dates of disasters, cumulative counting 
process (dotted curve) and posterior mean rate of occurrence (solid curve). 

function x(t), the log-likelihood is 

n iL 
1~1 log{x{y1)} -

0 
x(t) dt. 

4· 2. A prior model for step functions 

(9) 

We develop a Bayesian multiple change-point analysis of point process data, by 
assuming that the rate function x(.) on [O, L] is a step function. In this section, we 
formulate a prior distribution for x. 

Suppose that there are k steps, at positions 0 < s1 < s2 < ... < sk < L, and that the step 
function takes the value h1, which we call its height, on the subinterval [s1, s1+ 1 ) for j = 
0, 1, 2, ... , k, writing s0 = 0, sk+ 1 = L for convenience. The prior model is specified by 
supposing that k is drawn from the Poisson distribution 

}._k 

p(k) = e-;. kl' 

but conditioned on k ~ kurax· Given k, the step positions s1 , s2 , •• ·., sk are distributed as 
the even-numbered order statistics from 2k + 1 points uniformly distributed on [O, L], 
and the heights h0 , h1, ... , hk are independently drawn from the r{a,, p) density 
p«h«- 1e-flh/r(a.) for h > 0. 

This prior model for step functions is intended to be close to 'uninformative'. It is not 
appropriate to select an improper gamma distribution r{O, 0) for the heights, because that 
causes insurmountable difficulties with normalisation across differing numbers of steps; 
all of the probability in the posterior would be assigned to the simplest model. It would 
perhaps have been more natural to take the step positions independently uniformly distrib
uted on [O, L] before sorting. However, this allows too many 'short' steps, with s1+ 1 -s1 
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small. Since there may be no data in the interval (si, si+ 1 ), such short intervals are barely 
penalised by the likelihood and so survive in the posterior, giving a more complicated 
picture of the true step function than is really justified by the data. The modification used 
here has the effect of probabilistically spacing out the step positions. 

4·3. Using reversible jumps for step functions 
In developing a reversible jump Monte Carlo sampler for the change-point problem, 

we are guided by intuition in designing appropriate moves, coupled with the requirements 
that the dimensions can be balanced properly, that the moves can be simulated con
veniently, and that the acceptance ratio can be computed economically. As always with 
Hastings methods, there is flexibility in this process, and we are not constrained by fine 
details of the model in question. We make no claim of optimality for the particular 
choices made. 

When the object x is a step function on [O, L], some possible transitions are: (a) a 
change to the height of a randomly chosen step, (b) a change to the position of a randomly 
chosen step, (c) 'birth' of a new step at a randomly chosen location in [O, L], and (d) 'death' 
of a randomly chosen step. Note that (c) and (d) involve changing the dimension of x, so 
that standard Markov chain Monte Carlo theory does not apply. In the general framework 
of § 3 these transitions can be attained with a countable set of moves, which we denote 
by {H, P, 0, 1, 2, ... } . Here H means a height change, P a position change, and m = 
0, 1, 2, ... denotes the birth-death pair that increases the number of steps from m to m + 1 
steps, or reduces it from m + 1 to m. 

In some applications, the number of steps would be fixed in advance; often, change
point analysis assumes exactly one step. Nevertheless, there are clear advantages for 
efficient Monte Carlo computation in allowing k to vary, but to condition on k when 
drawing information from the realisation. This will allow much better mixing. 

We now describe these transitions in more detail. At each transition, an independent 
random choice is made between attempting each of the at most four available move types 
(H, P, k, k- 1), signifying height change, position change, birth or death respectively. These 
have probabilities 11k for H, nk for P, bk for k, and dk for k - 1, depending only on the 
current number of steps k, and satisfying 1Jk + nk + bk+ dk = 1. Naturally, d0 = n0 = 0, and 
bkmax = 0 to impose the preassigned upper limit kmax on the number of steps. Apart from 
these constraints, these probabilities were chosen so that 

bk= c min { 1, p(k + 1 )/p(k)}, dk+ 1 = c min { 1, p(k)/p(k + 1)}, 

with the constant c as large as possible subject to bk + dk :::;; 0·9 for all k = 0, 1, ... , kmax. 

This choice ensures that bkp(k) = dk+ 1p(k + 1 ), which is the condition on bk and dk that 
would guarantee certain acceptance in the corresponding, but much simpler, Hastings 
sampler for the number of steps alone. Finally for k =I= 0, we took 11k = nk. 

If a move of type H or P is chosen, the remaining details are straightforward. A change 
to a height is attempted by first choosing one of h0 , hi, ... , hk at random, obtaining hi 
say, then proposing a change to hj such that log(hj/hi) is uniformly distributed on the 
interval [ --!, +-!];this choice is made from convenience, the proposal density ratio taking 
a simple form. The acceptance probability for this move is found to be 

min [ 1, (likelihood ratio) x (hj/h }' exp { - f3(hj - hi)}] 

in the usual way. Here and later, 'likelihood ratio' means p(ylx')/p(ylx), where x and x' 
stand for the current and proposed new values of all parameters. For a position change 
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move, one of s1 , s2 , •.. , skis drawn at random, obtaining say s1. The proposed replacement 
value is sj, drawn uniformly on [si_ 1, si+ 1], and the acceptance probability turns out to 
be 

{ (S·+i-S'·)(sj-S·-1)} 
min 1, (likelihood ratio) x ( J i )( J ) . 

Si+l -Si Si-Si-1 

The details for a birth of a step are more complicated, and follow the prescription in 
§ 3· 3. We first choose a position s* for the proposed new step, uniformly distributed on 
[O, L]. This must lie, with probability 1, within an existing interval (si, si+i>. say. If 
accepted, sj + 1 will be set to s*, and s i + 1, s i + 2 , ... , sk will be relabelled as 
s)+ 2 , s}+3 , ... , s~+i. with corresponding changes to the labelling of step heights. We wish 
to propose new heights hj, hj+ 1 for the step function on the subintervals (si, s*) and 
(s*, si+ i) which recognise that the current height hi on the union of these two intervals is 
typically well-supported in the posterior distribution, and should therefore not be com
pletely discarded. Thus the new heights hj, h)+ 1 should be perturbed in either direction 
from hi in such a way that hi is a compromise between them. To preserve positivity and 
maintain simplicity in the acceptance ratio calculations, we use a weighted geometric mean 
for this compromise, so that 

(s* - si) log(hj) + (si+ 1 - s*) log(hj+ i) = (si+ 1 - si) log( hi), 

and define the perturbation to be such that 

with u drawn uniformly from [O, 1]. 

h}+ 1 _1-u 
h'. - u 

J 

Following the analysis of§ 3·3, the acceptance probability for this proposal has to be 
calculated to achieve detailed balance with the corresponding death move, which we must 
therefore first specify. Dimension matching is achieved by reversing the above calculation, 
so that if si+l is removed, the new height over the interval (sj, sj+ 1) = (s1, s1+2 ) is hj, the 
weighted geometric mean satisfying 

(si+l - si) log(hi) + (si+ 2 - si+i> log(hi+i> = (s}+ 1 - sj) log(hj). 

The si+l that is proposed for removal is simply drawn at random from si. s2 , ••• , sk. 
The pair of birth and death moves thus defined satisfies the dimension-matching require

ment. The birth increases the dimensionality from 2k + 1 to 2k + 3, the difference being 
accounted for by two continuous variables, the new position s* and the u used to separate 
hj and h}+ 1· 

In deriving an expression for the acceptance probability of the birth proposal, it is 
helpful to re-write (8) in the form 

min {1, (likelihood ratio) x (prior ratio) x (proposal ratio) x (Jacobian)}, 

noting that p(x I y) = p(y I x)p(x )/p(y). In the present context, the likelihood ratio is straight
forward, using (9); the prior ratio, which was previously p(2, 0<2>)/p(l, 0<1>), becomes 

p(k + 1) 2(k + 1)(2k + 3) (s* - si)(si+l - s*) _L (hjh}+1)°'- 1 {-P(h'· h' -h)}· 
(k) L2 x r( ) h exp J + J+ 1 ' p Si+l -Si oi i 
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the proposal ratio, which was j(2, e<2>)/ j( 1, (J(1l)q1 (u<1l), becomes 

dk+ 1 L 

and the Jacobian is 

bk(k + 1)' 

(hj + h)+ i)2 

hj 

721 

The acceptance probability for the corresponding death step has the same form with the 
appropriate change of labelling of the variables, and the ratio terms inverted. 

There have been at least two previous proposals for dealing with step functions with a 
variable number of steps by Markov chain Monte Carlo methods. Newton, Guttorp & 
Abkowitz (1992) build a model for a biological process using a hidden continuous-time 
Markov chain, and Arjas & Gasbarra ( 1994) develop a nonparametric approach to sur
vival analysis assuming a step function form for the hazard rate. In both of these appli
cations, the step function is not tied down at the right-hand end of the observation interval, 
so that it can be encoded in a way that side-steps the varying dimensionality problem. 

4-4. Analysis of the coal mining disaster data 

Presentation of conclusions from Bayesian inference about any reasonably complicated 
object such as a function has to be partial. The displays given in Figs 1-4 should not be 
taken as examples of the last word, either about this particular data set, or about how to 
present inference for step functions in general. Figures 1 to 4 show different aspects of one 
particular analysis, in which the hyperparameters are fixed as A. = 3, kmax = 30, rx = 1 and 
f3 = 200. The Monte Carlo simulation was run for 40 000 updates, after a burn-in period 
of 4000 updates. A pilot run established that one could have confidence that convergence 
had taken place by this point. The computation took 45 seconds on a Sun Spare 2 
workstation. In Fig. 1, the solid curve shows the estimated posterior mean curve E{x(t) ly}, 
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Number of change points 

Fig. 2. Coal mining disaster data: posterior distribution of k, the 
number of change-points. 
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Fig. 3. Coal mining disaster data: posterior density estimates of positions of change
points, conditional on number of change-points k = 1 (solid curve), k = 2 (dotted 

curves) and k = 3 (broken curves). 
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Fig. 4. Coal mining disaster data: posterior density estimates of heights of segments 
of rate step function, conditional on number of change-points k = 1 (solid curves), 

k = 2 (dotted curves) and k = 3 (broken curves). 

which is not a step function. Figure 2 shows the posterior distribution of k, the number 
of steps. In Fig. 3, we show the posterior densities of the step positions, conditional on 
values k = 1, 2 and 3; the graphs become confusing to interpret with more than this many 
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superimposed. The density estimates are obtained using a Gaussian kernel with standard 
deviation 625 days. Similarly, Fig. 4 shows the corresponding conditional posterior density 
estimates of step height, using kernel standard deviation 0·0003 days- 1• 

Some comparisons and contrasts with previous analyses of these data can be made. 
Raftery & Akman ( 1986) assume a single change-point, with location -r assumed a priori 
to be uniform on the interval [O, L]. The step heights are drawn independently from the 
improper Gamma distribution r(!, 0). They use the point process likelihood, and calculate 
the posterior density of -r and of the relative change in step height, and the Bayes factor 
for comparing the hypothesis of a change versus no change, all by numerical integration. 
The Bayes factor turns out to be over 1013, overwhelming evidence for a change. The 
posterior mode of the time of change is 10 March 1890 =day 14313 and a 95% credible 
interval is [15 May 1887, 3 August 1895] = [13283, 16285] in days, which compare with 
a mode of 25 June 1890 =day 14420 and an interval of [24 May 1887, 7 May 1896] = 
[13292, 16563] for our analysis, conditional on k = 1. Raftery & Akman also give a 
substantive interpretation of their inference in the context of the historical circumstances 
underlying the data. Carlin, Gelfand & Smith (1992) develop a hierarchical Bayesian 
approach for the single change-point problem for regression. They apply this to Poisson 
process data such as the coal mining disaster data by discretising into counts in annual 
intervals. The position of change is taken as a discrete variable; the step heights are drawn 
independently from the gamma distribution r{at:, p) in our notation, with 0t: = 0·5 and p- 1 

drawn from the third stage prior r(O, 1). They produce posterior densities of step heights 
and of the position of change, all based on Gibbs sampling. The posterior modal year for 
change is 1891. Barry & Hartigan (1992, 1993) analyse change-point problems using 
product-partition models; again Markov chain Monte Carlo methods are used, but the 
change-points are coded discretely, so that they can be handled using a fixed set of 
indicator variables. Stephens (1994) and Phillips & Smith (1995) develop Bayesian analy
ses for the multiple change-point regression problem, with the positions of change taken 
as discrete variables, and computations performed by Gibbs sampling and jump-diffusion 
sampling respectively; however, they do not adapt these methodologies for the point 
process problem. None of these approaches treats the multiple change-point problem in 
genuinely continuous time, as does our proposed methodology. We see no difficulty with 
introducing a hierarchical structure into our modelling, if desired. 

5. IMAGE SEGMENTATION VIA VORONOI TESSELLATION 

There are various two-dimensional analogues of change-point analysis. The problem 
discussed briefly in this section is intended to give an idea of one possibility. 

Image segmentation is the process of subdividing a digital image into homogeneous 
regions, generally as a prelude to further analysis; see Sonka, Hlavac & Boyle ( 1993 ). 
What should be regarded as 'homogeneous' depends on context; often, for example, it 
involves texture more than intensity. However, here we consider only the simplest version 
of the problem, in which we wish to subdivide a noisy image, i.e. observations arranged 
on a regular rectangular grid, into regions of homogeneous mean intensity. With additive 
noise, occurring independently and without blur at each pixel, it is natural to specify a 
regression model with a piecewise constant mean function, a form of two-dimensional 
step function. 

For computational tractability, we consider here only step functions of this form in 
which the regions of constancy are polygonal, and we are thus concerned with a polygonal 
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tessellation of that part of the plane that is within the field of view. For a flexible and 
convenient tessellation, we use the Voronoi, or Dirichlet, tessellation, in which each individ
ual polygon, or tile, is defined to be that region of the plane nearer to that tile's generating 
point than to any other. The tessellation is thus specified by the coordinates (u;, v;) for 
i = 1, 2, ... , k of the k generating points, and the entire step function by these points and 
the heights h; of the function within the ith tile. The step function x therefore satisfies 
x(u, v) = h;, where i = argmin {(u - u;)2 + (v - v;)2 }. 

For a general discussion of the Voronoi tessellation, and an algorithm for its compu
tation, see Green & Sibson (1978). The basic algorithm described there and its subsequent 
development in the TILE4 package by Sibson and co-workers at the University of Bath 
are ideally suited to the birth-death Markov chain Monte Carlo simulation methodology 
used in § 4 for the one-dimensional change-point problem, appropriately modified. 

In our general notation, the candidate models are indexed by k e :/t = {1, 2, ... }, and 
the parameter vector for model k is (JCk> = (u;, v;, h;)~=t• with dimension nk = 3k. The likeli
hood assumed here will be that based on independent Gaussian noise: 

p(y I k, (JCk>) oc exp [ - 2~2 L {y(u, v) - x(u, v)}2]. 

where y(u, v) denotes the observed intensity in the pixel centred at (u, v), and the sum is 
over all pixels. 

The prior model used in the illustration below is again an uninformative one. The 
number of tiles k is modelled to have a Poisson distribution with parameter A., truncated 
to k = 1, 2, ... , 'kmax· Given k, the locations (u;, v;) of the generating points are indepen
dently and uniformly distributed over the unit square representing the field of view, and 
the heights h; are drawn independently from the r(oc, p) distribution. 

The move types used in this problem correspond closely to H, and m = 0, 1, 2, . . . of 
§ 4· 3; it is not computationally convenient to perform the analogue of P, to move a 
generating point. However, the TILE4 package includes routines for adding and deleting 
generating points, corresponding to birth and death of a step, and changing the height h; 
in one tile under detailed balance is entirely straightforward. To explain the birth and 
death transitions in more detail, some further notation is needed. Let the probabilities of 
proposing a birth or death when the current number of steps, namely tiles, is k be bk, dk 
respectively. Consider a proposed birth which would increase the number of steps from 
k to k + 1, and suppose that the new generating point is labelled k*. Its location 
(uk*• vk.) is drawn uniformly from the unit square, and the tessellation modified by the 
addition of this point; this modification is done on a trial basis, as this birth may not be 
accepted. In the updated tessellation the new point has 'neighbours' (Green & Sibson, 
1978), which we label as i e J. We compute the old and new areas of these tiles, and 
denote them by S; + t; and t; respectively. The total reduction L; e JS; gives the area of the 
tile of the new point k*. The height assigned to the new point is given by h* = hv, where 
h is the weighted geometric mean of the original heights for the neighbouring tiles: 

_ ( )t/E1s1 

h= n h~t . 
I ' 

ieJ 

and vis drawn independently with density function f(v) = 5v4/(1 + v5)2, so that log v has 
a distribution symmetric about 0. Finally, the new heights for those tiles modified by the 
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addition are given by 

hi= {hi;+t•(h*)-s• }1/t;. 

The motivation for making these particular assignments is that the integral of log h over 
the whole unit square is thereby left unchanged, while the height assigned to the new tile 
is a compromise between the heights previously assigned to points in that tile, modified 
by a small multiplicative perturbation. For the death transition corresponding to this 
birth, a randomly chosen generating point is deleted, and the points in its tile re-assigned 
to neighbours. Using t; ands;+ t; to denote the old and new areas for neighbouring tile 
i, its height is changed to 

{ hli(h* )Si} 1/(S; +ti>, 

which has the effect of reversing the birth move exactly. 
With this pair of proposal mechanisms, it turns out after some straightforward algebra 

that the acceptance ratio for the birth is min( 1, R), and for the death min( 1, R- 1 ), where 

using (8). 
Figure 5 displays results from one simple example testing this methodology, based on 

0 IO 20 30 40 50 0 IO 20 30 40 50 

Fig. 5. Synthetic segmentation problem: on the left, noisy data; on the right, estimated posterior 
mean. Upper plots show perspective views of the same surfaces displayed as images below. 
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synthetic data. A 'true' image consisting of a disc of intensity 2·0 against a background of 
a lower intensity 0·5 was degraded with additive Gaussian noise, independently at each 
pixel on a 50 x 50 grid, with standard deviation u = 0·7. Note that a disc cannot be 
perfectly fitted by a finite union of Voronoi polygons. The hyperparameters in the prior 
were fixed at A.= 15, kmax = 30, ix= 1·0 and P = 1·0. Figure 5 shows, on the left, the data 
y(u, v) and, on the right, the posterior mean surface E{x(u, v)ly}, estimated from a run of 
the sampling method described above, using 20 000 sweeps after a burn-in period of 
4000 sweeps. 

Notwithstanding the apparent complexity of the geometrical calculations to maintain 
the tessellation and its modifications, and of the computations described in the paragraphs 
above, the entire sampler runs quite quickly. On a Sun Spare 2 workstation, the run 
described above takes approximately 260 seconds. 

6. PARTITION MODELS 

6-1. A hierarchical model for binomial probabilities 
Several of the contexts listed in the introduction, namely factorial experiments, variable 

selection in regression and mixture deconvolution, have the common feature that the 
discrete model-choice problem is equivalent to determining a partition, either of the orig
inal data units or of some other labels applying to the data, for example factor levels. 
Here we describe a general partition sampler, and its application to an ANOVA-like problem 
for binomial data discussed by Consonni & Veronese (1995). 

A partition of a set I= {1, 2, ... , n} is a collection g = {S1 , S2 , .•• , Sd} of subsets of I, 
which we call groups, where the Si are disjoint with union I. The number d of groups into 
which I is divided by g will be called the degree of g, and written d(g). To emphasise 
dependence on g, we also write Si(g), etc. 

Suppose we have n responses y1 , y2 , ••• , Yn, assumed drawn independently from 
binomial distributions: Yi,...., Bin(wi, (Ji), where the index parameters {wd are known, and 
the probabilities {Oi} unknown. We construct a prior distribution for {Oi} that acknowl
edges that these parameters may have similar values within groups defined by a partition 
g of I= {1, 2, ... , n}. Within each group Si(g), the O; are drawn independently from beta 
distributions: 

(Ji,...., Beta{qixi, q(l - ixi)} (i e Si(g); j = 1, 2, ... , d(g)). -

The group mean parameters {ixi} are in turn drawn independently from the uniform 
distribution U(O, 1), while the group precision parameter q is either fixed at a known 
value, or drawn from a hyperdensity p(q). This is essentially the model proposed by 
Consonni & Veronese, except that they took a more general beta distribution than U(O, 1) 
for the °'i• and allowed separate qi in each group, but took these to be fixed constants 
only. It would be routine to modify what follows to deal with this situation. Consonni & 
Veronese used conventional numerical techniques to fit their model, and so were con
strained to use conjugate distributions, for which these techniques were practicable. With 
reversible jump Markov chain Monte Carlo computation, such constraints need not have 
been imposed. 

Following Consonni & Veronese, the prior distribution for g is taken as 

d(g)-1 

p(g) oc # {g' : d(g') = d(g)} ' 
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giving equal probability to all partitions of the same degree, and placing probability oc d- 1 

on the set of g with degree d. Calculation with this prior is straightforward. It is necessary 
to count the number of partitions of degree d of a set of n items: this count c(n, d) is the 
solution of the recurrence relation 

c(n, d) = dc(n - 1, d) + c(n - 1, d - 1 ). 

Such counts become very large with n, and some care is needed to avoid overflow. An 
alternative model for the partitions that could have been used is Hartigan's product
partition model (Barry & Hartigan, 1992); for given d(g), this favours a more unequal 
distribution of the items into groups. 

The joint distribution of all variables is now determined as 

p(g, a, q, e, y) = p(g)p(a, q lg)p(e lg, a, q)p(y lg, a, q, e) 

= p(g)p(a lg)p(q)p(e lg, a, q)p(y I e) 

d(g) d(g) [ eqaj-1(1- e;)q(1-aj)-1] 
= p(g) x f11 x p(q) x f1 f1 - 1-----

j=l i=1 iESJ(gJ B{qai, q(l - aj)} 

X fI (W;) ef'(l - e;)w,-y,, 
i=l Y; 

where B(., .) is the beta function. In the general notation of § 2, the model indicator 
k is g, while the parameter vector e<k) is (a1, ... , ad(g)' q, e1, .. . , en), of dimension 
ng = n + d(g) + 1. 

6·2. Reversible jump Markov chain Monte Carlo for partition problems 
Much of the following discussion would apply, with few changes, to other partition 

problems. First we deal with updating the elements of e<k>. The full conditionals for e; 
(i = 1, 2, ... , n) are independent beta distributions 

ei 1 ... ,...., Beta {qaj + Y;, q( 1 - aj) + W; - y;)} (i E Sj(g)), 

where, here and below, we use ' .. .' to denote all other variables among 

{g, lii, ... , ad(g)' q, e1, ... , en}. 

Therefore each e; can be updated with a Gibbs kernel. For q, we find 

p(q 1 ... ) oc p(q) x rr { n e["r 1(1 _ e;)q(l -a,J-1}, 
j=l iES/g) 

which is not a standard distribution but is easily evaluated, and so we use it in a Hastings 
step, with a proposal that, on the log scale, is uniformly distributed about the current 
value. The group mean parameters are also conditionally independent: 

f1 . e'l"1-1( 1 - e.)q(l -a;J-1 
1 E S 1(g) l 1 

p(ail· . . )oc B{qa1, q(l - ai)}#S;(g) 

Application of Stirling's formula shows that this full conditional has a normal approxi
mation, for large q: 



728 PETER J. GREEN 

approximately, where µ is such that µ/( 1 - µ) is the geometric mean of ()j( 1 - ();) for 
i E Sj(g). This approximation could have been used explicitly in an approximate Gibbs 
sampler, but we choose to use it as a proposal distribution for a Hastings step. 

Turning now to the step updating the partition g to g', say, we note that with the prior 
p(g) specified above all partitions have positive probability, and so a process that jumps 
between partitions making only the modest changes of splitting a group, a 'birth', and 
combining two groups, a 'death', will be irreducible. It would have been quite natural to 
have included a move that changed the partition by reallocation of items while fixing the 
number of groups, but that was not implemented here. We have found the following 
mechanisms for the partition moves effective in practice, applied to partitions of up to a 
few dozen objects. 

For a birth, which is attempted with probability bg when the current partition is g, we 
first choose a group to split, uniformly among those with at least two items. This group 
is then split at random 'binomially', i.e. each item is assigned to one of the two daughter 
subgroups independently, with probability one-half for each, but conditional on neither 
subgroup being empty. For a death, attempted with probability dv we simply choose two 
groups at random to be combined into one. 

Jumping to a new partition necessitates a change also to the vector IX, since its length 
has to increase or decrease by 1. Our proposal for the additional component is Gaussian 
on a logit scale, and takes account of the numbers of binary responses influenced by each 
of the relevant IXj. Specifically, suppose that a proposed birth splits Si into subgroups Si1 

and Sj2. Let IXj be the current value, and 1Xj1, 1Xj2 the new values for the two subgroups. 
Then we set 

where W, = L;Es W; (r = 1, 2), z is an independent standard Gaussian random variable, 
Jr 

and (J is a spread parameter to be chosen later. For the corresponding death move, 
1Xj1 and 1Xj2 are merged to form the IXj that solves these simultaneous equations. 

This completes the specification of the jump proposal; its acceptance probability is 
necessarily somewhat complicated in form, but is calculated as usual from (8). For the 
birth and death, the probabilities are respectively min(l, R) and min(l, R- 1), where 

R = B{q1Xj, q(l -1Xj)}#S1 

B{q1Xj1, q(l -1Xj1n#s11 B{q1Xj2, q(l -1Xj2n#s12 

( 
()i )q(a;1 -a;) ( ()i )q(a12 -a;) p(g') 

x TI - TI - x-
iES;1 1-()i iES;2 1-()i p(g) 

d' 2 
x b: #{j:#Sj{g)?; 2} d(g){d(g) + l} (2#S;-1 -1) 

IX·1(l - IX·1)1X·2(l - IX·2) 
J J J J cw-1+w-1)...:....(2)-t (-12) x ( 1 ) (J 1 2 . n exp 2 z . 

IXj - IXj 

6·3. Application to pine seedling mortality data 

We apply the methodology described above to a small data set, one of those analysed 
by Consonni & Veronese (1955). This concerns 4 binomial responses y = (59, 89, 88, 95), 
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each based on w; = 100 trials. The data arise from a 2 x 2 factorial experiment, comparing 
two treatments (H, planting too high; D, planting too deep) on two varieties of pine seedling 
(L, longleaf; s, slash). The responses are indexed in the order (LH, LD, SH, SD). Consonni & 
Veronese compare various statistical methods for analysing these data, including a 
Bayesian method based on their model described above, which has an 'adaptive multiple 
shrinkage' property; see also George ( 1986). The data determine a partition of the 
4 responses into groups that are similar, and estimates of probabilities @; within such a 
group Sj borrow strength by shrinking towards a common value rxj. Alternative estimators 
considered include the maximum likelihood estimators for both a saturated model and 
for an additive logistic regression, a parametric empirical Bayes estimator which shrinks 
all @; together, and a nonparametric empirical Bayes estimator, which again has the 
multiple shrinkage property. 

We refer the reader to Consonni & Veronese for further background, including dis
cussion of some of the philosophical issues that arise in the modelling. 

Our analysis has been confined to repeating that of Consonni & Veronese, but obtained 
using reversible jump Markov chain Monte Carlo instead of their analytic approximations. 
We extend their results very slightly by allowing q to be random, as well as fixed at each 
of the values they use (100, 200 and 300). This adaptation made use of a prior p(q) under 
which log q is uniform on the interval [log 100, log 300]; the proposal for updating q 
described in the previous section was interpreted as wrapped periodically onto this interval. 
There were no other unspecified hyperparameters in the model defined above. 

The samplers were also completely specified above, except for the scale factor a, which 
we took as 50, after a little experimentation, and the probabilities assigned to each move 
type. We took the birth and death rates bg and dg each to be 0·3 for all g, except for the 
extreme partitions where d(g) = 1 or n ( = 4), where bg and dg were taken as (0·6, 0) and 
(0, 0·6). At each transition, () was updated with probability 0·2, and similarly for the 
pair (rx, q). 

Results are presented in Table 1, based on run lengths of 40 000 attempted updates, 
after burn-in periods of 4000; such runs took 36 seconds on a Sun Spare 2. Posterior 
expectations of { ();} are close to those obtained by Consonni & Veronese. For the case 
where q was taken as random, with the hyperprior specified above, its posterior mean 
and standard deviation were estimated as 181 and 58. The sampling-based computation 

Table 1. Mortality of pine seedlings: posterior means and standard deviations, in 
parentheses, of { @;} 

Consonni & Veronese Reversible jump MCMC 

Experiment Yi q= 100 q=200 q= 300 q= 100 q=200 q=300 random q 

LH 59 0·589 0·588 0·588 0·587 0·585 0·586 0·588 
(0·059) (0·056) (0·054) (0·049) (0·050) (0·047) (0·049) 

LO 89 0·893 0·894 0·895 0·892 0·893 0·894 0·893 
(0·031) (0·028) (0·027) (0·027) (0·026) (0·025) (0·026) 

SH 88 0·886 0·889 0·891 0·886 0·890 0·890 0·888 
(0·032) (0·029) (0·028) (0·029) (0·027) (0·026) (0·026) 

SD 95 0·929 0·924 0·922 0·930 0·926 0·921 0·926 
(0·027) (0·026) (0·026) (0·023) (0·025) (0·025) (0·024) 

MCMC, Monte Carlo Markov chain method. 
H, planting too high; o, planting too deep; L, longleaf seedling; s, slash seedling. 
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Fig. 6. Posterior density estimates of {Bi} for the pine seedling mortality data, together 
with raw data plotted as tick marks. H, planting too high; o, planting too deep; L, 

longleaf seedling; s, slash seedling. 

permits other information to be extracted and displayed. In Fig. 6, we show posterior 
density estimates for the { 0;}, under the random q version of the model, together with the 
raw data, plotted with tick marks at the points y)wi. The adaptive multiple shrinkage is 
evident here: note that the estimates for factor combinations (LD, SH, SD) are shrunk 
together, and correspondingly have smaller posterior variance. The data suggest that 
treatment H increases mortality, but only on seedlings of type L: a more subtle conclusion 
than from the logistic regression analysis, which simply concludes that both treatment 
and variety factors have significant effects. 

7. DISCUSSION 

The theory and applications presented in this paper have demonstrated that the advan
tages of Markov chain Monte Carlo computation can be extended to new classes of 
problems, where the object of inference has a dimension that is not fixed, including difficult 
Bayesian model-determination problems. 

We have presented three applications of a new Markov chain Monte Carlo method
ology; other implementations have also been developed. For example, jointly with 
Dr S. Richardson, the author is investigating Bayesian mixture estimation with an 
unknown number of components, Ph.D. students at Bristol are applying the methods to 
various image analysis problems, and in his Ph.D. thesis at Cambridge University 
Dr R. Morris has developed a new method of removal of scratches from movie film. 

There remain a number of questions about the methodology, to be resolved in future 
work. One concerns the development of understanding about moves that are likely to be 
effective generically, to aid intuition about the design of moves. Secondly, in situations 
where the collection of candidate models is restricted by practical or statistical consider-
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ations, there is the question of whether inventing additional models and corresponding 
parameter subspaces may facilitate mixing, and if so, how to do it effectively. In problems 
involving partitions of larger sets of items than those arising in § 6, we need new jump 
proposal mechanisms. The proposals used in the pine seedling mortality study were com
pletely 'blind' in that they made no reference to the current values of any of the other 
variables. It might be anticipated that taking account of the {o:j} would allow the construc
tion of much more efficient proposals, and indeed this is borne out in our recent experience 
with mixture estimation. Finally, the complications of multiple parameter subspaces of 
differing dimensionality make the problems of assessing convergence yet more difficult, 
and there is an urgent need for research on effective diagnostics of broad applicability. 
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