
On Files, assignments, 
more on for-loops, 
printing, reading/writing



Recursion versus non-recursive Fibonacci



It is simple to write a function that returns a list of the numbers of the Fibonacci 
series, instead of printing it:
>>>
>>> def fib2(n):  # return Fibonacci series up to n
...     """Return a list containing the Fibonacci series up to 
n."""
...     result = []
...     a, b = 0, 1
...     while a < n:
...         result.append(a)    # see below
...         a, b = b, a+b
...     return result
...
>>> f100 = fib2(100)    # call it
>>> f100                # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]



4.4. break and continue Statements, and else Clauses on Loops¶ 
The break statement, like in C, breaks out of the smallest 
enclosing for or while loop.
>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...             print n, 'equals', x, '*', n/x
...             break
...     else:
...         # loop fell through without finding a factor
...         print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(Yes, this is the correct code. Look closely: 
the else clause belongs to the for loop, not the if statement.)
When used with a loop, the else clause has more in common with the else 

https://docs.python.org/2/reference/simple_stmts.html#break
https://docs.python.org/2/reference/simple_stmts.html#continue
https://docs.python.org/2/reference/compound_stmts.html#else
https://docs.python.org/2/reference/simple_stmts.html#break
https://docs.python.org/2/reference/compound_stmts.html#for
https://docs.python.org/2/reference/compound_stmts.html#while
https://docs.python.org/2/reference/compound_stmts.html#for
https://docs.python.org/2/reference/compound_stmts.html#if


The continue statement, also borrowed from C, continues 
with the next iteration of the loop:
>>>
>>> for num in range(2, 10):
...     if num % 2 == 0:
...         print "Found an even number", num
...         continue
...     print "Found a number", num
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

https://docs.python.org/2/reference/simple_stmts.html#continue


7.1. Fancier Output Formatting¶ 
So far we’ve encountered two ways of writing values: expression statements and the print statement. (A third way is using the write() 
method of file objects; the standard output file can be referenced as sys.stdout. See the Library Reference for more information on this.)
Often you’ll want more control over the formatting of your output than simply printing space-separated values. There are two ways to format 
your output; the first way is to do all the string handling yourself; using string slicing and concatenation operations you can create any layout 
you can imagine. The string types have some methods that perform useful operations for padding strings to a given column width; these will 
be discussed shortly. The second way is to use the str.format() method.
The string module contains a Template class which offers yet another way to substitute values into strings.
One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any value to a string: pass it to 
the repr() or str() functions.
The str() function is meant to return representations of values which are fairly human-readable, while repr() is meant to generate 
representations which can be read by the interpreter (or will force a SyntaxError if there is no equivalent syntax). For objects which don’t 
have a particular representation for human consumption, str() will return the same value as repr(). Many values, such as numbers or 
structures like lists and dictionaries, have the same representation using either function. Strings and floating point numbers, in particular, 
have two distinct representations.
Some examples:
>>>
>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(1.0/7.0)
'0.142857142857'
>>> repr(1.0/7.0)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"

https://docs.python.org/2/reference/simple_stmts.html#print
https://docs.python.org/2/library/stdtypes.html#str.format
https://docs.python.org/2/library/string.html#module-string
https://docs.python.org/2/library/string.html#string.Template
https://docs.python.org/2/library/functions.html#repr
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#repr
https://docs.python.org/2/library/exceptions.html#exceptions.SyntaxError
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#repr


>>> for x in range(1,11):
...     print '{0:2d} {1:3d} {2:4d}'.format(x, x*x, x*x*x)
...
 1   1    1
 2   4    8
 3   9   27
 4  16   64
 5  25  125
 6  36  216
 7  49  343
 8  64  512
 9  81  729
10 100 1000

Basic usage of the str.format() method looks like this:
>>>
>>> print 'We are the {} who say "{}!"'.format('knights', 
'Ni')
We are the knights who say "Ni!"
The brackets and characters within them (called format fields) are replaced 
with the objects passed into the str.format() method. A number in the 
brackets refers to the position of the object passed into the str.format() 
method.
>>>
>>> print '{0} and {1}'.format('spam', 'eggs')
spam and eggs
>>> print '{1} and {0}'.format('spam', 'eggs')
eggs and spam
If keyword arguments are used in the str.format() method, their values 
are referred to by using the name of the argument.
>>>
>>> print 'This {food} is {adjective}.'.format(
...       food='spam', adjective='absolutely horrible')
This spam is absolutely horrible.
Positional and keyword arguments can be arbitrarily combined:
>>>
>>> print 'The story of {0}, {1}, and 
{other}.'.format('Bill', 'Manfred',
...                                                    
other='Georg')
The story of Bill, Manfred, and Georg.

https://docs.python.org/2/library/stdtypes.html#str.format
https://docs.python.org/2/library/stdtypes.html#str.format
https://docs.python.org/2/library/stdtypes.html#str.format
https://docs.python.org/2/library/stdtypes.html#str.format


open()  returns a file object, and is most commonly used with two arguments: 
open(filename, mode).
>>>

>>> f = open('workfile', 'w')
>>> print f
<open file 'workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is another string 
containing a few characters describing the way in which the file will be used. mode can be 'r' 
when the file will only be read, 'w' for only writing (an existing file with the same name will be 
erased), and 'a' opens the file for appending; any data written to the file is automatically 
added to the end. 'r+' opens the file for both reading and writing. The mode argument is 
optional; 'r' will be assumed if it’s omitted.

On Windows, 'b' appended to the mode opens the file in binary mode, so there are also 
modes like 'rb', 'wb', and 'r+b'. Python on Windows makes a distinction between text 
and binary files; the end-of-line characters in text files are automatically altered slightly when 
data is read or written. This behind-the-scenes modification to file data is fine for ASCII text 
files, but it’ll corrupt binary data like that in JPEG or EXE files. Be very careful to use binary 
mode when reading and writing such files. On Unix, it doesn’t hurt to append a 'b' to the 
mode, so you can use it platform-independently for all binary files.

https://docs.python.org/2/library/functions.html#open


To read a file’s contents, call f.read(size), which reads some quantity of data and returns it as a 
string. size is an optional numeric argument. When size is omitted or negative, the entire contents of 
the file will be read and returned; it’s your problem if the file is twice as large as your machine’s 
memory. Otherwise, at most size bytes are read and returned. If the end of the file has been reached, 
f.read() will return an empty string ("").
>>>
>>> f.read()
'This is the entire file.\n'
>>> f.read()
''

>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''
For reading lines from a file, you can loop over the file object. This is efficient, fast, and leads to simple code:
>>> for line in f:
        print line,

This is the first line of the file.
Second line of the file

f.write(string) writes the contents of string to the file, returning None.
>>> f.write('This is a test\n')
To write something other than a string, it needs to be converted to a string first:
>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)



It is good practice to use the with keyword when dealing with file objects. This has the advantage 
that the file is properly closed after its suite finishes, even if an exception is raised on the way. It is 
also much shorter than writing equivalent try-finally blocks:
>>>
>>> with open('workfile', 'r') as f:
...     read_data = f.read()
>>> f.closed
True

>>> with open('workfile', 'r') as f:
...     for line in f:
...         read_data.append(line)
>>> f.closed
True

https://docs.python.org/2/reference/compound_stmts.html#with
https://docs.python.org/2/reference/compound_stmts.html#try
https://docs.python.org/2/reference/compound_stmts.html#finally


Text Processing

11



12

Text Manipulation

p Parsing text

■ extract tokens and understand their significance

p Text transformation

■ change all words to lower case

■ replace multiple consecutive spaces by a single space

p Regular expressions

■ identify text with specific structure



13

Strings

p s = “hello world”

p s = “””go home 
    class dismissed”

p s = ‘gone with the wind’

p Strings are immutable.

p Strings are similar to sequences

■    s[3]        #    ‘n’

■    s[3:6]     #    ‘e wi’



14

Loops with String



15

Splitting text



16

Joining and printing



17

Joining Lists



18

Regular Expressions

p regular expression module
■ import re

'compile','copy_reg','error','escape','findall','finditer','
match','purge','search','split','sub',

p Documentation
■ http://docs.python.org/library/re.html

p Tutorial

■ http://docs.python.org/howto/regex.html

http://docs.python.org/library/re.html
http://docs.python.org/howto/regex.html


19

Simple Searches



20

Repetition

p pattern = “a*b”  # 0 or more
p pattern = “a+b”  # 1 or more
p pattern = “a?b”   # 0 or 1
p pattern = “a{2}”  # 2 copies of a



21

Special Forms

p .       : any character
p $      : end of string
p ^      : beginning of string
p a-z    :  “-” range of characters
p [a-c3-5]  :  any of the characters within [ ]
p [^a-c]  : all characters except [abc]



22

Further abbreviations

p \d  : digit character class: [0-9]
p \D : non-digit character
p \w : alphanumeric char
p \W: non-alphanumeric char
p \A  : beginning of string
p etc.



23

Greediness
p By default, matching generates the longest possible 

match: greedy  (*,+,?) 
p It is possible to reverse the behavior to non-greedy  

(*?, +?, ??)

Greedy vs non-greedy

p tx = “abab c4 ab”
p re.search(“a.*b”, tx)   # ==> “ab c4 ab”
p re.search(“a.?*b”, tx)  # ==> “ab”
p re.search(“[ab]{2}.*[ab]”) ==> “abab c4 ab”



24

A few methods from re module

p re.search(pattern, str)

■ returns a matchObject for the leftmost substring

p re.sub(pattern, replace, str)

■ return string with pattern replaced by replace

p re.findall(pattern, str)

■ return a list of nonoverlapping patterns in string

p re.compile(pattern, flags)

■ compile the pattern for efficiency



25

Locating matches 



26

re_show()



27

re.search



28

Some Constant flags

p re.I   : re.IGNORECASE : 
p re.L  : locale
p re.M : multiline 
■ pattern match do not cross                   ‘\n’ boundaries) 



29

Explorations

p Regular expressions offer much more than 
discussed


