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356 R. L. COLLINS AND J. R. NIELSEN 

trifluorosilane, considered as a perfect gas at 1 atmos 
pressure, were calculated for four different tempera
tures from 243°K (bp) to 600°K. The translational, 
rotational, vibrational, and torsional (hindered rota
tional) contributions are listed separately in Table V. 
The torsional contribution is rather uncertain, since the 
evidence for the torsional frequency is not very strong. 
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Monte Carlo Calculation of the Average Extension of Molecular Chains 
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The behavior of chains of very many molecules is investigated by solving a restricted random walk 
problem on a cubic lattice in three dimensions and a square lattice in two dimensions. In the Monte Carlo 
calculation a large number of chains are generated at random, subject to the restrictions of no crossing or 
doubling back, to give the average extension of the chain (R2)Av as a function of N, the number of links in the 
chain. A system of weights is used in order that all possible allowed chains are counted equally. Results for 
the true random walk problem without weights are obtained also. 

I. INTRODUCTION 

A N attempt is made to simulate the behavior of 
chains of very many molecules by solving a 

restricted random walk problem! on a cubic lattice (or 
on a square lattice on two dimensions). The average 
squared extension of the chain as a function of the 
number of links is calculated. The random walk prob
lem is set up as described below. 

To the best of the authors' knowledge the first 
numerical calculations of chain length were made by 
Dr. Ei Teramoto of Kyoto University, who performed 
the remarkable feat of evaluating chain lengths in the 
two-dimensional case up to N = 20 by a hand calcula
tion cataloging all possible chains. After completion of 
the present work it was brought to the authors' atten
tion by Dr. R. J Rubin that machine calculations 
similar to ours have been performed by Wall, Hiller, 
and Wheeler.2 They calculated somewhat different 
lattices (a cubic lattice with the bond angle restricted 
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FIG. 1. Examples of an allowed chain and a forbidden chain 
for N = 8 in two dimensions. 

1 W. Kuhn, Kolloid-Z. 68, 2 (1934). 
2 Wall, Hiller, and Wheeler, J. Chern. Phys. 22, 1036 (1954). 

to 90° and a tetrahedral lattice) and used a different 
statistical procedure, more straightforward but prob
ably more time consuming. 

II. DESCRIPTION OF STATISTICAL PROCEDURE 

For a given number of links N in the chain, any con
figuration consisting of N links laid out joined and in 
succession on a cubic lattice is considered. Regarded as 
a random walk problem, at any stage of m links ending 
at the position (x,y,z), all six of the positions (x±l, 

TERMINATING 
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--£] I 
I 
I 

FIG. 2. A terminating chain in 
two dimensions. For N>8, if such 
a chain is generated, its weight is 
zero and a new chain is begun 
from the origin. 

y±l, z±l) are a priori equally likely at stage m+l. 
The excluded volume effect is simulated by the require
ment that the chain not be allowed to cross itself or 
double back on itself at any stage (see Fig. 1 for an 
example of an allowed and a forbidden configuration in 
the two-dimensional case). Consequently, at any stage 
there are at most five possible subsequent positions. In 
statistical equilibrium all configurations of a given num
ber of links satisfying the above requirements are 
equally probable, and are to be weighted equally in 
calculating (R2)AV (the average squared extension of the 
chain) as a function of N. (R2)AV is of importance in 
calculating such properties as the viscosity of the molec
ular chains. 
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The mathematical random walk problem is solved by 
a Monte Carlo procedure carried out on the Los Alamos 
high speed electronic computer Maniac. In the calcula
tion a large number of suitable configurations are 
successively generated at random according to the 
following scheme, and averages are taken over these 
configurations. 

(1) For simplicity the first link is placed from (0,0,0) 
to (1,0,0). 

(2) Any satisfactory set of m links reaching from the 
origin to position (X,y,Z)m is associated with a weighting 
function W m calculated at each step according to 
procedure (3) below. The weighting function is neces
sary since some configurations are generated more often 
than others, and a weighting function must be intro
duced so that all configurations are counted equally. 
After N links are obtained by procedure (3), with a 
final position (X,y,Z)N and weight W N, the value of 
(RN2)AV= X~+YN2+Z~ is weighted with W N in a statis
tical average of many such chains. 

(3) At any stage of m links reaching to (X,y,Z)m, as was 
mentioned in the foregoing, the six positions (x± 1, 
y±l, z±l) must be considered. One of these six posi-

FIG. 3. An example in two di
mensions of the modification of the 
weight in going from stage M to 
stage M + 1. Only two positions at 
M + 1 are possible instead of the 
maximum number of three. 
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tions is (X,y,Z)m-1 and is ruled out immediately. Any of 
the other five possible positions at m+ 1 may be among 
the values of (X,y,Z)i for i=m-3, m-5, m-7, ... 
(geometrical considerations exclude coincidences be
tween m+1 and m, m-2, m-4, m-6, ... ). If com
parison shows such to be the case, a modification of the 
weight W m must be made to obtain W m+1. There are 
really three possibilities: 

(a) All six possible new positions are occupied (see 
Fig. 2 for an example in two dimensions, where only 
four new positions are available). The process is then 
terminated with a weigh t W = 0, and a new chain must 
be generated, starting again from (0,0,0). 

(b) All five positions (the position at m-1 being ex
cluded) are unoccupied. Then 

(1) 

One of these five positions is picked at random to give 
(x,y,Z)m+1. (In the actual calculation a random number 
which assumes one of the six values 0, 1, "', 5 is 
generated, corresponding one-to-one to the six positions 
(x±l, y±l, z±l). If the random number happens to 
correspond to (X,y,Z)m-1, a new independent random 
number is generated and the process repeated until one 
of the unoccupied positions is chosen.) 

FIG. 4. All suitable con
figurations for N = 4 in two 
dimensions [with the first 
link always from (0,0,0) 
to (1,0,0)]' In the modified 
random walk problem, if a 
configuration shown in Fig. 
4(a) is generated it is given 
weight 1; however, if one of 
the configurations of Fig. 
4(b) is generated it is given 
weight l 
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(c) Only n new positions are unoccupied, with 
0<n<5. Then 

(2) 

(In two dimensions 0<n<3 and Wm+1=(n/3)Wm .) A 
random number is used to pick one of the n positions 
just as in (b) above (see Fig. 3). 

10' ,--------,-------, 

1'0: 
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N 

FIG. 5. Values of (R2) versus N on a log-log polt for the two
dimensional case. Curve I represents (R2> for the modified random 
walk problem with weights, and curve III gives values for the 
true random walk problem without weights. 
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three-halves as often as any configuration of Fig. 4(a). 
[A point (A) is reached just as often as a point (B), but 
from a point (A) any of three configurations can be 
generated instead of only two, as from one of the points 
(B)]. Therefore, configurations of Fig. 4(b) have the 
weight j, as follows automatically from prescription 
(C), Eq. (2) above. 

III. RESULTS 

The problem was calculated for two and for three 
dimensions, with various values of N. Results for (R2)AV 
as a function of N are shown in Fig. 5, curve I, for two 
dimensions, and in Fig. 6, curve II, for three dimensions. 

100~~------'---------'---------r---. 

FIG. 6. Values of (J?2) versus N on a log-log plot for the three-
dimensional case. Curve II corresponds to averages taken with the 10i 
weighting function W N, and curve IV to direct averages without 
weights. 

The weight W m is calculated so that all possible 
allowed configurations of a given N are counted equally. 
Tentatively, the number of such configurations (if the 
chains were allowed to cross themselves but not to 
double back) would be (5)N-l. This- number must be 
multiplied by the average value of W N, (W N)AV, to 
obtain the true number of possible configurations of N° 
links. 

To see why Eq. (2) is correct for the weighting func
tion, consider the simple case N = 4 in two dimensions. 
All suitable configurations are shown in Figs. 4(a) and 
4(b). The twenty-five possible configurations are 
weighted equally to give an average value of (R2)AV of 
7.04. However, any of the four configurations in Fig. 
4(b) will be generated in the random walk scheme 

TABLE 1. Values of (J?2)Av and (W)Av as functions of N, for 
two-dimensional random walk problem with weights. 

Total No. 
W N of chains (R')Av 

8 11547 18.80 0.679 
16 9565 51.98 0.316 
24 6662 92.92 0.140 
32 15051 143.60 0.0618 
48 4986 239.88 0.01065 
64 5332 402.09 0.00222 

TABLE II. Values of (J?2)Av and (W)Av as functions of N, for 
three-dimensional random walk problem with weights. 

Total No. 
W N of chains (R')Av 

8 11307 12.81 0.828 
16 7736 29.80 0.544 
32 7369 68.35 0.214 
64 4769 162.40 0.0296 

10" 

10'4 '----______ '--_______ '--______ --' __ ---' 
o 20 4-0 60 

N 

FIG. 7. Values of the average weight, (WhY> versus N on a semi
log plot. Curve I represents the two-dimensional case, correspond
ing to the values of (J?2) given in Fig. 5, curve I; curve II gives 
three-dimensional results corresponding to curve II of Fig. 6. 
Both curves, of course, correspond to the modified random walk 
problem with weights. 

Curves for (W N)AV as a function of N are shown as 
curves I and II of Fig. 7. As discussed above, the average 
weights, when multiplied by (5)N-l in three dimensions 
or (3)N-l in two dimensions, give the total number of 
configurations of length N which exist. 

Approximate fits are given by 

(RI2)AV= 0.917 (N)1.46 two (3) 

(W I)Av= 2.14(0.887)N dimensions (4) 

(Rn 2)AV= (N)1.22 three (5) 

(W n)AV= L46(0.941)N dimensions. (6) 
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The numerical values (good probably to a few percent) 
obtained for (R2)AV and (W)AV are given in Table I, (for 
two dimensions) and Table II (for three dimensions). 
The total number of chains generated for each value 
of N is listed also. 

For mathematical interest a comparison problem was 
also run, the true random walk problem without cros
sing or doubling back, but with all generated con
figurations being given a weight 1. For small values of 
N, the presence or absence of a weight calculated accord
ing to Eq. (2) is negligible. However, for increasing N, 
(R2)AV drops below the values given by Eqs. (3) and (5), 
as shown in curves III and IV of Figs. 5 and 6. Nu
merical values are given in Tables III and IV. Statistics 

TABLE III. Values of (W)Av as a function of N, for two
dimensional random walk problem without weights. 

N 

8 
16 
32 

Total No. 
of chains 

3226 
1379 
1381 

here are fairly poor. Fits here are 

16.47 
38.39 
95.21 

(Rm2) = 1.18 (N)1.26 (two dimensions) (7) 

(R1v'l) = 1.26 (N)!.09 (three dimensions). (8) 

The maximum values of N for which the problem can 
be attempted are limited not only by the number of 
terminating chains encountered (see Fig. 2), but in the 
weighted case by the increasing occurrence of very 
low weights and resultant large statistical fluctuations. 
Also, of course, the machine running time increases 

TABLE IV. Values of (R?-)Av as a function of N, for three
dimensional random walk problem without weights. 

Total No. 
N of chains (R')Av 

8 5646 11.97 
16 2576 26.18 
32 1229 55.24 
64 1186 116.17 

rapidly with N. Roughly, some twenty hours of 
machine-calculating time were used. 

IV. CONCLUSION 

It is found that the restricted random walk problem 
on a cubic lattice for chains of length up to sixty-four 
links predicts an average squared extension in the 
three-dimensional case of 

(R2) = Nl.22 

and in the two-dimensional case 

(R2) = 0.917 (N)!.45. 

The total number of configurations of a given length is 
also calculated. 

While these chain lengths are quite small, the above 
results give a remarkably good fit over the entire range. 
Moreover, when we consider the results of Wall, Hiller, 
and Wheeler,2 it is now found that the same exponent, 
1.22, applies to three different types of lattice. This is 
certainly suggestive of some general law. It is still an 
open question whether a different ratio of excluded 
radius to link size would affect these results. In view of 
the rather complete study being made by Wall, Hiller, 
and Wheeler the authors of the present paper do not 
intend to pursue this subject further. 
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