
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

2008 January–February 9www.americanscientist.org

Computing Science

© 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Accidental Algorithms

Brian Hayes

Why are some computational
problems so hard and others

easy? This may sound like a childish,
whining question, to be dismissed with
a shrug or a wisecrack, but if you dress
it up in the fancy jargon of computation-
al complexity theory, it becomes quite
a serious and grownup question: Is P
equal to NP? An answer—accompanied
by a proof—will get you a million bucks
from the Clay Mathematics Institute.

I’ll return in a moment to P and NP,
but first an example, which offers a
glimpse of the mystery lurking beneath
the surface of hard and easy problems.
Consider a mathematical graph, a col-
lection of vertices (represented by dots)
and edges (lines that connect the dots).
Here’s a nicely symmetrical example:

Is it possible to construct a path that
traverses each edge exactly once and
returns to the starting point? For any
graph with a finite number of edges,
we could answer such a question by
brute force: Simply list all possible
paths and check to see whether any of
them meet the stated conditions. But
there’s a better way. In 1736 Leonhard
Euler proved that the desired path
(now called an Eulerian circuit) exists
if and only if every vertex is the end
point of an even number of edges. We
can check whether a graph has this
property without any laborious enu-
meration of pathways.

Now take the same graph and ask
a slightly different question: Is there a
circuit that passes through every vertex

exactly once? This problem was posed
in 1858 by William Rowan Hamilton,
and the path is called a Hamiltonian
circuit. Again we can get the answer
by brute force. But in this case there is
no trick like Euler’s; no one knows any
method that gives the correct answer
for all graphs and does so substantially
quicker than exhaustive search. Super-
ficially, the two problems look almost
identical, but Hamilton’s version is far
harder. Why? Is it because no shortcut
solution exists, or have we not yet been
clever enough to find one?

Most computer scientists and math-
ematicians believe that Hamilton’s
problem really is harder, and no short-
cut algorithm will ever be found—but
that’s just a conjecture, supported by
experience and intuition but not by
proof. Contrarians argue that we’ve
hardly begun to explore the space of
all possible algorithms, and new prob-
lem-solving techniques could turn up
at any time. Before 1736, the Eulerian-
circuit problem also looked hard.

What prompts me to write on this
theme is a new and wholly unexpected
family of algorithms that provide ef-
ficient methods for several problems
that previously had only brute-force
solutions. The algorithms were invent-
ed by Leslie G. Valiant of Harvard Uni-
versity, with extensive further contri-
butions by Jin-Yi Cai of the University
of Wisconsin. Valiant named the meth-
ods “holographic algorithms,” but he

also refers to them as “accidental algo-
rithms,” emphasizing their capricious,
rabbit-from-the-hat quality; they seem
to pluck answers from a tangle of un-
likely coincidences and cancellations.
I am reminded of the famous Sidney
Harris cartoon in which a long series
of equations on a blackboard hinges on
the notation “Then a miracle occurs.”

The Coffee-Break Criterion
For most of us, the boundary between
fast and slow computations is clearly
marked: A computation is slow if it’s
not finished when you come back
from a coffee break. Computer science
formalizes this definition in terms of
polynomial-time and exponential-time
algorithms.

Suppose you are running a comput-
er program whose input is a list of n
numbers. The program might be sort-
ing the numbers, or finding their great-
est common divisor, or generating per-
mutations of them. No matter what the
task, the running time of the program
will likely depend in some way on n,
the length of the list (or, more precisely,
on the total number of bits needed to
represent the numbers). Perhaps the
time needed to process n items grows
as n2. Thus as n increases from 10 to 20
to 30, the running time rises from 100
to 400 to 900. Now consider a program
whose running time is equal to 2n. In
this case, as the size of the input grows
from 10 to 20 to 30, the running time
leaps from a thousand to a million to
a billion. You’re going to be drinking a
lot of coffee.

The function n2 is an example of a
polynomial; 2n denotes an exponential.
The distinction between these catego-
ries of functions marks the great divide
of computational complexity theory.
Roughly speaking, polynomial algo-
rithms are fast and efficient; exponen-
tial algorithms are too slow to bother
with. To speak a little less roughly:
When n becomes large enough, any

Brian Hayes is Senior Writer for American Sci-
entist. Additional material related to the “Comput-
ing Science” column appears in Hayes’s Weblog at
http://bit-player.org. Address: 211 Dacian Avenue,
Durham, NC 27701. Internet: bhayes@amsci.org

A strange new family
of algorithms probes

the boundary
between easy

and hard problems

10 American Scientist, Volume 96 © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

polynomial-time program is faster
than any exponential-time program.

So much for the classification of al-
gorithms. What about classifying the
problems that the algorithms are sup-
posed to solve? For any given prob-
lem, there might be many different al-
gorithms, some faster than others. The
custom is to rate a problem according
to the worst-case performance of the
best algorithm. The class known as P
includes all problems that have at least

one polynomial-time algorithm. The
algorithm has to give the right answer
and has to run in polynomial time on
every instance of the problem.

Classifying problems for which we
don’t know a polynomial-time algo-
rithm is where it gets tricky. In the first
place, there are some problems that
require exponential running time for
reasons that aren’t very interesting.
Think about a program to generate all
subsets of a set of n items; the compu-
tation is easy, but because there are 2n
subsets, just writing down the answer
will take an exponential amount of
time. To avoid such issues, complex-
ity theory focuses on problems with
short answers. Decision problems ask
a yes-or-no question (“Does the graph
have a Hamiltonian circuit?”). There
are also counting problems (“How
many Hamiltonian circuits does the
graph have?”). Problems of these
kinds might conceivably have a poly-
nomial-time solution, and we know
that some of them do. The big question
is whether all of them do. If not, what
distinguishes the easy problems from
the hard ones?

Conscientious Cheating
The letters NP might well be translated
“notorious problems,” but the abbrevi-
ation actually stands for “nondetermin-
istic polynomial.” The term refers to a
hypothetical computing machine that
can solve problems through systematic
guesswork. For the problems in NP,
you may or may not be able to com-

pute an answer in polynomial time, but
if you happen to guess the answer, or if
someone whispers it in your ear, then
you can quickly verify its correctness.
NP is the complexity class for conscien-
tious cheaters—students who don’t do
their own homework but who at least
check their cribbed answers before they
turn them in.

Detecting a Hamiltonian circuit is
one example of a problem in NP. Even
though I don’t know how to solve the
problem efficiently for all graphs, if
you show me a purported Hamiltoni-
an circuit, I can readily check whether
it passes through every vertex once:

(Note that this verification scheme
works only when the answer to the
decision problem is “yes.” If you claim
that a graph doesn’t have a Hamilto-
nian circuit, the only way to prove it is
to enumerate all possible paths.)

 Within the class NP dwells the
elite group of problems labeled NP-
 complete. They have an extraordinary
property: If any one of these problems
has a polynomial-time solution, then
that method can be adapted to quick-
ly solve all problems in NP (both the
complete ones and the rest). In other
words, such an algorithm would es-
tablish that P = NP. The two categories
would merge.

The very concept of NP-complete-
ness has a whiff of the miraculous
about it. How can you possibly be sure
that a solution to one problem will
work for every other problem in NP as
well? After all, you can’t even know in
advance what all those problems are.
The answer is so curious and improb-
able that it’s worth a brief digression.

The first proof of NP-completeness,
published in 1971 by Stephen A. Cook
of the University of Toronto, concerns
a problem called satisfiability. You are
given a formula in Boolean logic, con-
structed from a set of variables, each
of which can take on the values true or
false, and the logical connectives and,
or and not. The decision problem
asks: Is there a way of assigning true
and false values to the variables that
makes the entire formula true? With n
variables there are 2n possible assign-
ments, so the brute-force approach is
exponential and unappealing. But a

The perfect-matching problem pairs up the vertices of a mathematical graph. The number of
possible matchings grows exponentially with the size of the graph; nevertheless, the match-
ings can be counted in polynomial time on a planar graph (one without crossed edges). The
problem was first studied on graphs with a periodic structure, such as the rectilinear grid at
left, but the algorithm also works on less-regular planar graphs, such as the one in the middle.
The graph at right is nonplanar, and its perfect matchings cannot be counted quickly.

Polynomial and exponential functions define
the poles of computational efficiency. The
running time of an algorithm is measured as
a function of the size of the input, n. If the
function is a polynomial one, such as n or
n2, the algorithm is considered efficient; an
exponential growth rate, such as 2n, makes
the algorithm impractically slow.

2008 January–February 11www.americanscientist.org © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

lucky guess is easily verified, so the
problem qualifies as a member of NP.

Cook’s proof of NP-completeness is
beautiful in its conception and a sham-
bling Rube Goldberg contraption in its
details. The key insight is that Bool-
ean formulas can describe the circuits
and operations of a computer. Cook
showed how to write an intricate for-
mula that encodes the entire operation
of a computer executing a program
to guess a solution and check its cor-
rectness. If and only if the Boolean
formula has a satisfying assignment,
the simulated computer program suc-
ceeds. Thus if you could determine in
polynomial time whether or not any
Boolean formula is satisfiable, you
could also solve the encoded decision
problem. The proof doesn’t depend
on the details of that problem, only on
the fact that it has a polynomial-time
checking procedure.

Thousands of problems are now
known to be NP-complete. They form
a vast fabric of interdependent compu-
tations. Either all of them are hard, or
everything in NP is easy.

The Match Game
To understand the new holographic
algorithms, we need one more ingredi-
ent from graph theory: the idea of a
perfect matching.

Consider the double-feature festi-
val. You want to show movies in pairs,
with the proviso that any two films
scheduled together should have a per-
former in common; also, no film can
be screened more than once. These
constraints lead to a graph where the
vertices are film titles, and two titles
are connected by an edge if the films
share an actor. The task is to identify
a set of edges linking each vertex to
exactly one other vertex. The brute-
force method of trying all possible
matchings is exponential, but if you
are given a candidate solution, you can
efficiently verify its correctness:

Thus the perfect-matching problem
lies in NP.

In the 1960s Jack Edmonds, now of
the University of Waterloo, devised an
efficient algorithm that finds a perfect
matching if there is one. The Edmonds
algorithm works in polynomial time,

which means the decision problem for
perfect matching is in P. (Indeed, Ed-
monds’s 1965 paper includes the first
published discussion of the distinction
between polynomial and exponential
algorithms.)

Another success story among match-
ing methods applies only to planar
graphs—those that can be drawn with-
out crossed edges. On a planar graph
you can efficiently solve not only the
decision problem for perfect matching
but also the counting problem—that is,
you can learn how many different sub-
sets of edges yield a perfect matching.
In general, counting problems seem
more difficult than decision problems,
since the solution conveys more infor-
mation. The main complexity class for
counting problems is called #P (pro-
nounced “sharp P”); it includes NP
as a subset, so #P problems must be at
least as hard as NP.

The problem of counting planar per-
fect matchings has its roots in phys-
ics and chemistry, where the original
question was: If diatomic molecules
are adsorbed on a surface, forming a
single layer, how many ways can they
be arranged? Another version asks
how many ways dominos (2-by-1 rect-
angles) can be placed on a chessboard
without gaps or overlaps. The answers
exhibit clear signs of exponential
growth; when you arrange dominos
on square boards of size 2, 4, 6 and 8,
the number of distinct tilings is 2, 36,
6,728 and 12,988,816. Given this rapid
proliferation, it seems quite remark-
able that a polynomial-time algorithm
can count the configurations. The in-
genious method was developed in the
early 1960s by Pieter W. Kasteleyn and,
independently, Michael E. Fisher and
H. N. V. Temperley. It has come to be
known as the FKT algorithm.

The mathematics behind the FKT al-
gorithm takes some explaining. In out-
line, the idea is to encode the structure
of an n-vertex graph in an n-by-n ma-
trix; then the number of perfect match-
ings is given by an easily computed
property of the matrix. The illustration
on this page shows how the graph is
represented in matrix form.

The computation performed on the
matrix is essentially the evaluation of a
determinant. By definition, a determi-
nant is a sum of n! terms, where each
term is a product of n elements chosen
from the matrix. The symbol n! denotes
the factorial of n, or in other words
n×(n–1)× . . .×3×2×1. The trouble is,

n! is not a polynomial function of n; it
qualifies as an exponential. Thus, un-
der the rules of complexity theory, the
whole scheme is really no better than
the brute-force enumeration of all per-
fect matchings. But this is where the
rabbit comes out of the hat. There are
alternative algorithms for computing
determinants that do achieve polyno-
mial performance; the best-known ex-
ample is the technique called Gaussian
elimination. With these methods, all
but a polynomial number of terms in
that giant summation magically cancel
out. We never have to compute them,
or even look at them.

(The answer sought in the perfect-
matching problem is actually not the
determinant but a related quantity
called the Pfaffian. However, the Pfaf-
fian is equal to the square root of the
determinant, and so the computational
procedure is essentially the same.)

The existence of a shortcut for evalu-
ating determinants and Pfaffians is like
a loophole in the tax code—a windfall
for those who can take advantage of it,
but you can only get away with such
special privileges if you meet very
stringent conditions.

 Closely related to the determinant
is another quantity associated with

The fast algorithm for counting planar per-
fect matchings works by translating the
problem into the language of matrices and
linear algebra. The pattern of connections
within the graph is encoded in an adjacency
matrix—an array of numbers with rows and
columns labeled by the vertices of the graph.
If two vertices are joined by an edge, the cor-
responding element of the matrix is either +1
or –1; otherwise the element is 0. Elements of
the matrix are combined in a sum of products
called the Pfaffian, which yields the number
of perfect matchings. For the simple graph
shown here there are two perfect matchings.

12 American Scientist, Volume 96 © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

matrices called the permanent. It’s
another sum of n! products, but even
simpler. For the determinant, a compli-
cated rule assigns positive and nega-
tive signs to the various terms of the
summation. For the permanent, there’s
no need to bother keeping track of the
signs; they’re all positive. But the al-
ternation of signs is necessary for the
cancellations that allow fast computa-
tion of determinants. As a result, the
polynomial loophole doesn’t work for
permanents. In 1979 Valiant showed
that the calculation of permanents is

#P-complete. (It was in this work that
the class #P was first defined.)

At a higher level, too, the conspiracy
of circumstances that allows perfect
matchings to be counted in polynomial
time seems rather delicate and sensi-
tive to details. The algorithm works
only for planar graphs; attempts to ex-
tend it to larger families of graphs have
failed. Even for planar graphs, it works
only for perfect matchings; counting
the total number of matchings is a #P-
complete task.

Algorithmic Holography
The engine that drives the FKT algo-
rithm is the linear-algebra shortcut for
evaluating determinants (or Pfaffians)
in polynomial time. This prime mover
is harnessed to solve a counting prob-
lem in another area of mathematics,
namely graph theory. Such translations,
or “reductions,” from one problem to
another are standard fare in complex-
ity theory. Holographic algorithms also
rely on reductions, and indeed they
ultimately translate problems into the
language of determinants. But the na-
ture of the reductions is novel.

A typical non-holographic reduc-
tion is a one-to-one mapping between
problems in two domains. If you can
reduce problem A to problem B, and
then find a solution to an instance of
B, you know that the corresponding
instance of A also has a solution. De-
vising transformations that set up this
one-to-one linkage between problems
is a demanding art form. Holographic
reductions exploit a broader class of
transformations that don’t necessarily
link individual problem instances, but
the reductions do preserve the number
of solutions or the sum of the solu-

tions. For certain counting problems,
that’s enough.

A problem with the cryptic name
#PL-3-NAE-ICE supplies an example
of the holographic process. The prob-
lem concerns a planar graph of maxi-
mum degree three; that is to say, no
vertex has more than three edges. Each
edge is to be assigned a direction, sub-
ject to the constraint that no vertex of
degree two or three can have all of its
edges directed either inward or out-
ward. Graphs of this general kind have
been studied as models of the structure
of ice; the vertices represent molecules
and the directed edges are chemical
bonds. The decision version of the
problem asks whether the edges can be
assigned directions so that the not-all-
equal constraint is obeyed everywhere.
Here we are interested in the counting
version, which asks how many ways
the constraints can be satisfied.

The strategy is to build a new pla-
nar graph called a matchgrid, which
encodes both the structure of the ice
graph and the not-all-equal constraints
that have to be satisfied at each vertex.
Then we calculate a weighted sum of
the perfect matchings in the match-
grid, using the efficient FKT algorithm.
Although there may be no one-to-one
mapping between individual match-
ings in the matchgrid and valid as-
signments of bond directions in the ice
graph, the weighted sum of the perfect
matchings is equal to the number of
valid assignments.

The matchgrid is constructed from
components called matchgates, which
are planar graph fragments that act
much like the logic gates of Boolean
circuits. To understand how this com-
puter built of graphs works, it helps to
consider first an idealized and simpli-
fied version, in which we can manu-
facture matchgates to meet any speci-
fications we please.

Given such an unlimited stock of
gates, we can assemble a model of PL-
3-NAE-ICE as follows. A degree-three
vertex in the ice graph is represented
by a “recognizer” matchgate with three
inputs. The recognizer has a “signa-
ture” that implements the not-all-equal
function: the gate is designed so that
its contribution to the sum of the per-
fect matchings is 0 if the three inputs
are 000 or 111, but the contribution is 1
for any of the other six possible input
patterns (001, 010, 011, 100, 101, 110).

Each edge of the ice graph is repre-
sented in the matchgrid by a “genera-

Counting the configurations of a structure
called three-ice is an example of a problem
solved in polynomial time by a holograph-
ic algorithm. Three-ice is a directed graph
(each edge has an arrow attached), and no
more than three edges can meet at any vertex.
Where two or three edges come together, the
arrows must not all be either converging or
diverging. One valid configuration is shown
here; the algorithm computes the number of
ways the arrows can be placed while satisfy-
ing the not-all-equal constraint.

Matchgates are graph-theory devices analogous to the logic gates of digital circuitry. The gate
shown here implements the not-all-equal function for two inputs. It is a chain of five vertices
connected by four edges; the orange exterior vertices accept the inputs. An input pattern is
presented to the gate by removing an orange vertex for each 1 in the input, then checking the
remaining graph to see if it accommodates a perfect matching. A 00 input removes neither or-
ange vertex; the resulting graph cannot have a perfect matching because it has an odd number
of vertices. The inputs 01 and 10 each remove one vertex and thus do allow a perfect matching;
the 11 input again leaves an odd number of vertices. Although the two-input not-all-equal gate
is fairly simple, many other functions—including the analogous gate for three inputs—cannot
be realized in this direct way.

2008 January–February 13www.americanscientist.org © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

tor” matchgate that has two outputs,
corresponding to the two ends of the
edge. To capture the idea that an edge
has a direction—pointing toward one
end and away from the other—the
generator contributes 1 to the weight-
ed sum when the outputs are either
01 or 10, but the contribution is 0 for
outputs 00 and 11.

In this scheme, the concept of per-
fect matching becomes a computa-
tional mechanism. If a graph fragment,
packaged up as a matchgate, allows
a perfect matching, then the gate out-
puts a logical 1, or true. If no perfect
matching is possible, the output is 0,
or false. This is a novel and interesting
way to build a computer, but there’s a
catch. Many of the needed matchgates
cannot be implemented in the direct
manner described above. In particu-
lar, the three-input not-all-equal gate
cannot be implemented. The reason
is easy to demonstrate. Perfect match-
ing is all about parity; a graph can-
not possibly have a perfect matching
unless the number of vertices is even.
The three-input not-all-equal gate is
required to respond in the same way
to the inputs 000 and 111. But these
patterns have opposite parity; one is
even and the other is odd.

The remedy for this impediment is
yet more linear algebra. Although no
simple matchgate can directly imple-
ment the three-input not-all-equal
function, the desired behavior can be
generated as a linear superposition
of other functions. Finding an appro-
priate set of equations to create such
superpositions is the most essential
and also the most difficult aspect of ap-
plying the holographic method. It has
mostly been a hit-or-miss proposition,
requiring both inspiration and expert
use of computer-algebra systems. Cai
and Pinyan Lu of Tsinghua University
have recently made progress on sys-
tematizing the search process.

So far about a dozen counting prob-
lems have been solved by the holo-
graphic method, none of them having
any immediate practical use or conse-
quences for the further development
of complexity theory. Indeed, they are
an odd lot—apart from the ice prob-
lem they are mostly specialized and
restricted versions of satisfiability and
matching. One particularly curious re-
sult gives a fast algorithm for counting
a certain set of solutions modulo 7, but
counting the same set modulo 2 is at
least as hard as NP-complete.

Why are the methods called holo-
graphic algorithms? Valiant explains
that their computational power comes
from the mutual cancellation of many
contributions to a sum, as in the optical
interference pattern that creates a ho-
logram. This sounds vaguely like the
superposition principle in quantum
computing, and that is not entirely a
coincidence. Valiant’s first publication
on the topic, in 2002, was titled “Quan-
tum circuits that can be simulated clas-
sically in polynomial time.”

P or NP, That Is the Question
Do holographic algorithms reveal any-
thing we didn’t already know about
the P = NP question? Lest there be any
misunderstanding, one point bears
emphasizing: Although some of the
problems solved by holographic meth-
ods were not previously known to be
in P, none of them were NP-complete
or #P-complete. Thus, so far, the bar-
rier between P and NP remains intact.

Suggesting that P might be equal
to NP is deeply unfashionable. A few
years ago William Gasarch of the Uni-
versity of Maryland took a poll on the
question. Of 100 respondents, only nine
stood on the side of P = NP, and Gas-
arch reported that some of them took
the position “just to be contrary.” The
idea that all NP problems have easy
solutions seems too good to be true, an
exercise in wishful thinking; it would
be miraculous if we lived in a universe
where computing is so effortless. But
the miracle argument cuts both ways:
For NP to remain aloof from P, we have
to believe that not even one out of all
those thousands of NP-complete prob-
lems has an efficient solution.

Valiant suggests a comparison with
the Goldbach conjecture, which holds
that every even number greater than
2 is the sum of two primes. Nearly ev-
eryone believes it to be true, but in the
absence of a proof, we don’t know why
it should be true. We can’t rule out the
possibility that exceptions exist but are
so rare we haven’t stumbled on one
yet. Likewise with the P and NP ques-
tion: A polynomial algorithm for just
one NP-complete problem would for-
ever alter the landscape.

The work on holographic algorithms
doesn’t have to be seen as some sort
of wildcat drilling expedition, hoping
to strike a P = NP gusher. It would be
worthwhile just to have a finer survey
of the boundaries between complexity
classes, showing more clearly what can

and can’t be accomplished with polyno-
mial resources. Valiant writes that “any
proof of P ≠ NP will need to explain,
and not only to imply, the unsolvability
of our polynomial systems.”

Finally, there’s the challenge of un-
derstanding the algorithms themselves
at a deeper level. To call them “acci-
dental”—or “exotic,” or “freak,” which
are other terms that turn up in the lit-
erature—suggests that they are sports
of nature, like weird creatures found
under a rock and put on exhibit. But
one could also argue, on the contrary,
that these algorithms are not at all ac-
cidental; they are highly engineered
constructions. The elaborate systems
of polynomials needed to create sets of
matchgates are not something found
in the primordial ooze of mathematics.
Someone had to invent them.

Bibliography
Cai, Jin-Yi. Preprint. Holographic algorithms.

http://pages.cs.wisc.edu/~jyc/papers/
HA-survey.pdf.

Cai, Jin-Yi, Vinay Choudhary and Pinyan Lu.
2007. On the theory of matchgate com-
putations. In Proceedings of the 22nd IEEE
Conference on Computational Complexity, pp.
305–318.

Cai, Jin-Yi, and Pinyan Lu. 2007. Holographic
algorithms: From art to science. In Proceed-
ings of the 39th ACM Symposium on the Theo-
ry of Computing, STOC ’07, pp. 401–410.

Cai, Jin-Yi, and Pinyan Lu. 2007. Holographic
algorithms: The power of dimensionality
resolved. In Proceedings of the 34th Interna-
tional Colloquium on Automata, Languages and
Programming, ICALP 2007, pp. 631–642.

Cook, Stephen A. 1971. The complexity of
 theorem-proving procedures. In Proceedings
of the Third ACM Symposium on the Theory of
Computing, pp. 151–158.

Edmonds, Jack. 1965. Paths, trees, and flowers.
Canadian Journal of Mathematics 17:449–467.

Gasarch, William I. 2002. The P=?NP poll.
SIGACT News 33(2):34–47.

Jerrum, Mark. 2003. Counting, Sampling and
Integrating: Algorithms and Complexity. Basel,
Switzerland: Birkhauser.

Kasteleyn, P. W. 1961. The statistics of dimers
on a lattice. Physica 27:1209–1225.

Mertens, Stephan. 2002. Computational com-
plexity for physicists. Computing in Science
and Engineering 4(3):31–47.

Valiant, L. G. 1979. The complexity of comput-
ing the permanent. Theoretical Computer Sci-
ence 8:189–201.

Valiant, Leslie G. 2002. Quantum circuits that
can be simulated classically in polynomial
time. SIAM Journal on Computing 31:1229–
1254.

Valiant, Leslie G. 2005. Holographic algorithms.
Electronic Colloquium on Computational Com-
plexity, Report No. 99.l

Valiant, Leslie G. 2006. Accidental algorithms.
In Proceedings of the 47th IEEE Symposium on
Foundations of Computer Science, FOCS ’06,
pp. 509–517.

