
C++ Templates and
STL Library

copied and modified in sequence from
http://cs.brown.edu/~jak/proglang/cpp/stltut/tut.html1

http://cs.brown.edu/~jak/proglang/cpp/stltut/tut.html

Templates — or why do we need them

• Every time I want to add two variables of a new type, I must write a new
add function

• This gets complicated very fast

2

more examples

• One can have stacks of things
• These things can be ints, floats, doubles, strings, or other stacks.
• How to handle all different types at the same time?
• Use templates!

3

4

nagal:programs>et1
add(3,4)= 7
add(3.,4.)= 7.000000
add(3.f,4.f)= 7.000000

5

nagal:programs>g++ example_T1.cpp -oet1
example_T1.cpp:14:29: error: no matching function for call to 'add'
 printf("add(3,4.)= %f\n", add(3,4.));
 ^~~
example_T1.cpp:3:21: note: candidate template ignored: deduced conflicting types for
parameter 'T'
 ('int' vs. 'double')
template <class T>T add(T a, T b)
 ^
example_T1.cpp:16:29: error: no matching function for call to 'add'
 printf("add(3,4.)= %f\n", add(3,4.f));
 ^~~
example_T1.cpp:3:21: note: candidate template ignored: deduced conflicting types for
parameter 'T'
 ('int' vs. 'float')
template <class T>T add(T a, T b)
 ^
2 errors generated. 6

In the previous code, the following functions were generated:
• add(int, int)  

add(float, float)  
add(double, double)

• but these were not! 
add(int, float) is not found  
add(int, double) is not found  
add(double, float) is not found

• template <class S, class T>  
T add(S a, T, b) { }

• What type should function
return?

• Not a good function,
although it will now handle
add(5, 5.) which it could
not previously

Remedy

nagal:programs>et1
add(3,4)= 7
add(3.,4.)= 7.000000
add(3.f,4.f)= 7.000000
add(3,4.)= 7.000000
add(3,4.)= 7.000000

7

STL
8

9

Version 2: containers, iterators, algorithms

STL provides a number of container types, representing objects that
contain other objects. One of these containers is a class called vector that
behaves like an array, but can grow itself as necessary. One of the
operations on vector is push_back, which pushes an element onto the end
of the vector (growing it by one).
A vector contains a block of contiguous initialized elements -- if element
index k has been initialized, then so have all the ones with indices less
than k.
A vector can be presized, supplying the size at construction, and you can
ask a vector how many elements it has with size. This is the logical
number of elements -- the number of elements up to the highest-indexed
one you have used. There is a also a notion of capacity -- the number of
elements the vector can hold before reallocating.

Let's read the elements and push them onto the end of a vector. This
removes the arbitrary limit on the number of elements that can be read.
Also, instead of using qsort, we will use the STL sort routine, one of the
many algorithms provided by STL. The sort routine is generic, in that it will
work on many different types of containers. The way this is done is by
having algorithms deal not with containers directly, but with iterators.10

Take 2

11

Iterators

Remember in Python:

12

Iterators provide a way of specifying a position in a container.

An iterator can be incremented or dereferenced, and two iterators can
be compared.

There is a special iterator value called "past-the-end".
You can ask a vector for an iterator that points to the first element with
the message begin. You can get a past-the-end iterator with the
message end. The code

will create two iterators like this:

13

Operations like sort take two iterators to specify the source range. To get the
source elements, they increment and dereference the first iterator until it is equal
to the second iterator. Note that this is a semi-open range: it includes the start
but not the end.

Two vector iterators compare equal if they refer to the same element of the
same vector.

Incidentally, this is much faster than qsort; at least a factor of 20 on the
examples I tried. This is presumably due to the fact that comparisons are done
inline.

14

Take 3

15

In addition to iterating through containers, iterators can iterate over streams, either to
read elements or to write them.
An input stream like cin has the right functionality for an input iterator: it provides
access to a sequence of elements. The trouble is, it has the wrong interface for an
iterator: operations that use iterators expect to be able to increment them and
dereference them.
STL provides adaptors, types that transform the interface of other types. This is very
much how electrical adaptors work. One very useful adaptor is istream_iterator. This is
a template type (of course!); you parameterize it by the type of object you want to read
from the stream. In this case we want integers, so we would use an
istream_iterator<int>. Istream iterators are initialized by giving them a stream, and
thereafter, dereferencing the iterator reads an element from the stream, and
incrementing the iterator has no effect. An istream iterator that is created with the
default constructor has the past-the-end value, as does an iterator whose stream has
reached the end of file.

std::istream_iterator<int> start (std::cin);

16

In order to read the elements into the vector from standard input, we will use the STL copy
algorithm; this takes three iterators. The first two specify the source range, and the third specifies the
destination.
The names can get pretty messy, so make good use of typedefs. Iterators are actually parameterized
on two types; the second is a distance type, which I believe is really of use only on operating
systems with multiple memory models. Here is a typedef for an iterator that will read from a stream
of integers:

typedef istream_iterator<int> istream_iterator_int;

So to copy from standard input into a vector, we can do this:

The first iterator will be incremented and read from until it is equal to the second iterator. The second
iterator is just created with the default constructor; this gives it the past-the-end value. The first
iterator will also have this value when the end of the stream is reached. Therefore the range specified
by these two iterators is from the current position in the input stream to the end of the stream.
There is a bit of a problem with the third iterator, though: if v does not have enough space to hold all
the elements, the iterator will run off the end, and we will dereference a past-the-end iterator (which
will cause a segfault).

copy (istream_iterator_int (cin), istream_iterator_int (),v.begin());

17

What we really want is an iterator that will do insertion rather than overwriting. There is
an adaptor to do this, called back_insert_iterator. This type is parameterized by the
container type you want to insert into.

So input is done like this:
 typedef istream_iterator<int> istream_iterator_int;

 vector<int> v;
 istream_iterator_int start (cin);
 istream_iterator_int end;
 back_insert_iterator<vector<int> > dest (v);

 copy (start, end, dest);

18

ostream_iterator is another adaptor; it provides output iterator functionality: assigning
to the dereferenced iterator will write the data out. The ostream_iterator constructor takes
two arguments: the stream to use and the separator. It prints the separator between elements.

19

Containers are objects that conceptually contain other objects. They use certain basic
properties of the objects (ability to copy, etc.) but otherwise do not depend on the type
of object they contain.
STL containers may contain pointers to objects, though in this case you will need to do
a little extra work.
vectors, lists, deques, sets, multisets, maps, multimaps, queues, stacks, and priority
queues, did I miss any? are all provided.
Perhaps more importantly, built-in containers (C arrays) and user-defined containers
can also be used as STL containers; this is generally useful when applying operations
to the containers, e.g., sorting a container. Using user-defined types as STL containers
can be accomplished by satisfying the requirements listed in the STL container
requirements definition.
If this is not feasible, you can define an adaptor class that changes the interface to
satisfy the requirements.
All the types are "templated", of course, so you can have a vector of ints or Windows or
a vector of vector of sets of multimaps of strings to Students. Sweat, compiler-writers,
sweat!
To give you a brief idea of the containers that are available, here is the hierarchy:

20

STL containers

21

22

Sequences
Contiguous blocks of objects; you can insert elements at any point in the sequence, but the
performance will depend on the type of sequence and where you are inserting.

Vectors
Fast insertion at end, and allow random access.

Lists
Fast insertion anywhere, but provide only sequential access.

Deques
Fast insertion at either end, and allow random access. Restricted types, such as stack and queue,
are built from these using adaptors.

Stacks and queues
Provide restricted versions of these types, in which some operations are not allowed.

23

Examples using containers
Here is a program that generates a random permutation of the first n integers, where n is
specified on the command line.

This program creates an empty vector and fills it with the integers from 0 to n. It then shuffles
the vector and prints it out.

24

Generators

Algorithms like generate walk through a range, calling a function object at each step, and
assigning the result of the function to the current element.

For example, here is a function that always returns 0:

int zero() { return 0; }

To fill a vector with zeroes, one could use the algorithm generate with the function object
zero:

vector<int> v (100);
generate (v.begin(), v.end(), zero);

25

Predicates
The second type of function object is used to test things; the parenthesis operator will be defined
to return something that can be tested for truth.
find_if uses a function object to test each element of a range, returning an iterator pointing to
the first element that satisfies the test. In this case, the function object takes an argument, the
element of the range, and returns a boolean:

bool greaterThanZero (int i) return i > 0;

This could be used to move to the first strictly positive element of a range:

typedef vector<int>::iterator iterator;
typedef vector<int> vector;
typedef ostream_iterator<int> output;
vector v;
iterator iter = find_if (v.begin(), v.end(), greaterThanZero);
if (iter == v.end())
 cout << "no elements greater than zero" << endl;
else
 {
 cout << "elements starting from first greater than zero: ";
 copy (iter, v.end(), output (cout, " "));
 }

26

Again, it is often useful to be able to provide state in the predicate object. Here is a predicate that
tests true if the element is within a specified range:
class InRange
{
 const T& low;
 const T& high;
 public:
 InRange (const T& l, const T& h) : low (l), high (h) { }
 bool operator()(const T& t) { return ! (t < l) && t < h; }
};
Here we find, and print, all the elements of a vector that fall within a particular range:
typedef vector<int>::iterator iterator;
typedef vector<int> vector;
typedef ostream_iterator<int> output;

vector v (100);
generate (v.begin(), v.end(), rand);

iterator iter (v);
while (iter != v.end())
{
 iter = find (v.begin(), v.end(), InRange (0, 10000));
 cout << *iter << endl;
}

27

For example functions in VECTOR class

28

