
Try and Error 

Python debugging  
and  

beautification



What happens when something goes wrong

In [1]: try: 
   ...:     print 1/0 
   ...: except ZeroDivisionError: 
   ...:     print "You can't divide by zero, you're silly." 
   ...:  
You can't divide by zero, you're silly. 

Catching exceptions
In order to handle errors, you can set up exception handling blocks in your code. The keywords try and 
except are used to catch exceptions. When an error occurs within the try block, Python looks for a 
matching except block to handle it. If there is one, execution jumps there.
If you execute this code:







Exception hierarchy



#!/usr/bin/env python                                                            
#                                                                                
#                                                                                
# THIS CODE DOES NOT WORK                                                        

import sys 

def read(a): 
    myfile = open(a,'r'): 
    for i in myfile: 
        yield i 
    myfile.close() 

def count_chars(a): 
    sum = 0 
    for i in read(a): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

def count_chars2(a): 
    i='' 
    while (i != StopExecution): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

if __name__ == '__main__': 
    total = count_chars(sys.argv[1]) + count_chars2(sys.argv[2]) 
    print total 



nagal:L14>python simple.py frankenstein.txt alice.txt  
  File "simple.py", line 9 
    myfile = open(a,'r'): 
                        ^ 
SyntaxError: invalid syntax 



#!/usr/bin/env python                                                            
#                                                                                
#                                                                                
# THIS CODE DOES NOT WORK                                                        

import sys 

def read(a): 
    myfile = open(a,'r') 
    for i in myfile: 
        yield i 
    myfile.close() 

def count_chars(a): 
    sum = 0 
    for i in read(a): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

def count_chars2(a): 
    i='' 
    while (i != StopExecution): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

if __name__ == '__main__': 
    total = count_chars(sys.argv[1]) + count_chars2(sys.argv[2]) 
    print total 



nagal:L14>python simple1.py frankenstein.txt alice.txt  
359240 
Traceback (most recent call last): 
  File "simple1.py", line 30, in <module> 
    total = count_chars(sys.argv[1]) + count_chars2(sys.argv[2]) 
  File "simple1.py", line 23, in count_chars2 
    while (i != StopExecution):   
NameError: global name 'StopExecution' is not defined 



#!/usr/bin/env python                                                            
#                                                                                
#                                                                                
# THIS CODE DOES NOT WORK                                                        

import sys 

def read(a): 
    myfile = open(a,'r') 
    for i in myfile: 
        yield i 
    myfile.close() 

def count_chars(a): 
    sum = 0 
    for i in read(a): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

def count_chars2(a): 
    i='' 
    while (i != StopExecution): 
        for j in i.split(): 
            sum += len(j) 
    print sum 

if __name__ == '__main__': 
    total = count_chars(sys.argv[1]) + count_chars2(sys.argv[2]) 
    print total 

def count_chars2(a): 
    return sum([len(j) for i in read(a) for j in 
i.split()]) 



nagal:L14>python simple2.py frankenstein.txt alice.txt  
Traceback (most recent call last): 
  File "simple2.py", line 26, in <module> 
    total = count_chars(sys.argv[1]) + count_chars2(sys.argv[2]) 
  File "simple2.py", line 22, in count_chars2 
    return sum([j for j in i.split() for i in read(a)]) 
UnboundLocalError: local variable 'i' referenced before assignment 

WRONG:  
def count_chars2(a): 
    return sum([len(j) for j in i.split() for i in read(a)]) 



python -m pdb simple1.py frankenstein.txt alice.txt



Immutable Types Can't Be Changed in Place 
Remember that you can't change an immutable object (e.g., tuple, string) in 
place: 
T = (1, 2, 3)
T[2] = 4          # Error
Construct a new object with slicing, concatenation, and so on, and assign it 
back to the original variable if needed. Because Python automatically 
reclaims unused memory, this is not as wasteful as it may seem: 
T = T[:2] + (4,)  # Okay: T becomes (1, 2, 4)



Use Simple for Loops Instead of while or range 
When you need to step over all items in a sequence object from left to right, a 
simple for loop (e.g., for x in seq:) is simpler to code, and usually quicker 
to run, than a while- or range-based counter loop. Avoid the temptation to use 
range in a for unless you really have to; let Python handle the indexing for you. 
All three of the following loops work, but the first is usually better; in Python, 
simple is good. 

S = "lumberjack"

for c in S: 
    print c                   # simplest

for i in range(len(S)): 
    print S[i]    # too much

i = 0                                 # too much
while i < len(S): 
    print S[i] 
    i += 1



Don't Expect Results From Functions That Change Objects 
In-place change operations such as the list.append( ) and list.sort( ) methods 
modify an object, but do not return the object that was modified (they return None); call 
them without assigning the result. It's not uncommon for beginners to say something like: 
mylist = mylist.append(X)
to try to get the result of an append; instead, this assigns mylist to None, rather than the 
modified list. A more devious example of this pops up when trying to step through 
dictionary items in sorted-key fashion: 
D = {...}
for k in D.keys().sort(): 
    print D[k]
This almost works -- the keys method builds a keys list, and the sort method orders it -- 
but since the sort method returns None, the loop fails because it is ultimately a loop over 
None (a nonsequence). To code this correctly, split the method calls out into statements: 
Ks = D.keys()
Ks.sort()
for k in Ks: 
    print D[k]



Conversions Only Happen Among Number Types 
In Python, an expression like 123 + 3.145 works -- it automatically converts the integer to a 
floating point, and uses floating point math. On the other hand, the following fails: 
S = "42"
I = 1
X = S + I        # A type error
This is also on purpose, because it is ambiguous: should the string be converted to a number 
(for addition), or the number to a string (for concatenation)?. In Python, we say that explicit is 
better than implicit, so you must convert manually: 
X = int(S) + I   # Do addition: 43
X = S + str(I)   # Do concatenation: "421" 



Cyclic Datastructures Can Cause Loops 
Although fairly rare in practice, if a collection object contains a reference to itself, it's called a 
cyclic object. Python prints a [...] whenever it detects a cycle in the object, rather than 
getting stuck in an infinite loop: 
>>> L = ['grail']  # Append reference back to L
>>> L.append(L)    # Generates cycle in object
>>> L
['grail', [...]]
Besides understanding that the three dots represent a cycle in the object, this case is worth 
knowing about because cyclic structures may cause code of your own to fall into unexpected 
loops if you don't anticipate them. If needed, keep a list or dictionary of items already visited, 
and check it to know if you have reached a cycle. 



Local Names Are Detected Statically 
Python classifies names assigned in a function as locals by default; they live in the function's 
scope and exist only while the function is running. Technically, Python detects locals statically, 
when it compiles the defs code, rather than by noticing assignments as they happen at 
runtime. This can also lead to confusion if it's not understood. For example, watch what 
happens if you add an assignment to a variable after a reference: 
>>> X = 99
>>> def func():
...     print X      # Does not yet exist
...     X = 88       # Makes X local in entire def
... 
>>> func( )          # Error!
You get an undefined name error, but the reason is subtle. While compiling this code, Python 
sees the assignment to X and decides that X will be a local name everywhere in the function. 
But later, when the function is actually run, the assignment hasn't yet happened when the print 
executes, so Python raises an undefined name error. 
Really, the previous example is ambiguous: did you mean to print the global X and then create 
a local X, or is this a genuine programming error? If you really mean to print global X, you need 
to declare it in a global statement, or reference it through the enclosing module name.



http://www.pylint.org



arzak:L8_debugging>pylint --reports=yes simple1.py 
No config file found, using default configuration 
************* Module simple1 
C:  9, 0: Exactly one space required after comma 
    myfile = open(a,'r') 
                   ^ (bad-whitespace) 
C: 22, 0: Exactly one space required around assignment 
    i='' 
     ^ (bad-whitespace) 
C: 23, 0: Trailing whitespace (trailing-whitespace) 
C: 23, 0: Unnecessary parens after 'while' keyword (superfluous-parens) 
C:  1, 0: Missing module docstring (missing-docstring) 
C:  8, 0: Argument name "a" doesn't conform to snake_case naming style (invalid-name) 
C:  8, 0: Missing function docstring (missing-docstring) 
W: 15, 4: Redefining built-in 'sum' (redefined-builtin) 
C: 14, 0: Argument name "a" doesn't conform to snake_case naming style (invalid-name) 
C: 14, 0: Missing function docstring (missing-docstring) 
W: 25,12: Redefining built-in 'sum' (redefined-builtin) 
C: 21, 0: Argument name "a" doesn't conform to snake_case naming style (invalid-name) 
C: 21, 0: Missing function docstring (missing-docstring) 
E: 23,16: Undefined variable 'StopExecution' (undefined-variable) 
E: 25,12: Undefined variable 'sum' (undefined-variable) 
W: 21,17: Unused argument 'a' (unused-argument) 
C: 30, 4: Constant name "total" doesn't conform to UPPER_CASE naming style (invalid-name) 

Report 
====== 
21 statements analysed. 

Statistics by type 
------------------ 

+---------+-------+-----------+-----------+------------+---------+ 
|type     |number |old number |difference |%documented |%badname | 
+=========+=======+===========+===========+============+=========+ 



Report 
====== 
21 statements analysed. 

Statistics by type 
------------------ 

+---------+-------+-----------+-----------+------------+---------+ 
|type     |number |old number |difference |%documented |%badname | 
+=========+=======+===========+===========+============+=========+ 
|module   |1      |1          |=          |0.00        |0.00     | 
+---------+-------+-----------+-----------+------------+---------+ 
|class    |0      |0          |=          |0           |0        | 
+---------+-------+-----------+-----------+------------+---------+ 
|method   |0      |0          |=          |0           |0        | 
+---------+-------+-----------+-----------+------------+---------+ 
|function |3      |3          |=          |0.00        |0.00     | 
+---------+-------+-----------+-----------+------------+---------+ 

Raw metrics 
----------- 

+----------+-------+------+---------+-----------+ 
|type      |number |%     |previous |difference | 
+==========+=======+======+=========+===========+ 
|code      |22     |68.75 |NC       |NC         | 
+----------+-------+------+---------+-----------+ 
|docstring |0      |0.00  |NC       |NC         | 
+----------+-------+------+---------+-----------+ 
|comment   |4      |12.50 |NC       |NC         | 
+----------+-------+------+---------+-----------+ 
|empty     |6      |18.75 |NC       |NC         | 
+----------+-------+------+---------+-----------+ 



Duplication 
----------- 

+-------------------------+------+---------+-----------+ 
|                         |now   |previous |difference | 
+=========================+======+=========+===========+ 
|nb duplicated lines      |0     |0        |=          | 
+-------------------------+------+---------+-----------+ 
|percent duplicated lines |0.000 |0.000    |=          | 
+-------------------------+------+---------+-----------+ 

Messages by category 
-------------------- 

+-----------+-------+---------+-----------+ 
|type       |number |previous |difference | 
+===========+=======+=========+===========+ 
|convention |12     |12       |=          | 
+-----------+-------+---------+-----------+ 
|refactor   |0      |0        |=          | 
+-----------+-------+---------+-----------+ 
|warning    |3      |3        |=          | 
+-----------+-------+---------+-----------+ 
|error      |2      |2        |=          | 
+-----------+-------+---------+-----------+ 

Messages 
-------- 

+--------------------+------------+ 
|message id          |occurrences | 
+====================+============+ 



Messages 
-------- 

+--------------------+------------+ 
|message id          |occurrences | 
+====================+============+ 
|missing-docstring   |4           | 
+--------------------+------------+ 
|invalid-name        |4           | 
+--------------------+------------+ 
|undefined-variable  |2           | 
+--------------------+------------+ 
|redefined-builtin   |2           | 
+--------------------+------------+ 
|bad-whitespace      |2           | 
+--------------------+------------+ 
|unused-argument     |1           | 
+--------------------+------------+ 
|trailing-whitespace |1           | 
+--------------------+------------+ 
|superfluous-parens  |1           | 
+--------------------+------------+ 

-------------------------------------------------------------------- 
Your code has been rated at -1.90/10 (previous run: -1.90/10, +0.00) 




