
Object-Oriented	Programming

>>>stu1	=	Student(‘Terry’,	‘Jones’,	12345)	
>>>print(stu1)	
Terry	Jones,	ID:12345

What	is	a	class?

• If	you	have	learned	other	programming	
languages	before,	you	likely	will	have	heard	the	
term	object	oriented	programming	(OOP)	

• What	is	OOP,	and	why	should	I	care?

Short	answer

• The	short	answer	is	that	object	oriented	
programming	is	a	way	to	think	about	“objects”	in	a	
program	(such	as	variables,	functions,	etc)	

• A	program	becomes	less	a	list	of	instruction	and	
more	a	set	of	objects	and	how	they	interact	

• These	objects	have	two	characteristics:	
– Each	object	has	some	numbers	of	attributes	(e.g.,	make,	
color)	that	are	stored	with	the	object.	

– The	object	responds	to	some	methods,	which	are	also	
attributes,	that	are	particular	for	that	kind	of	object	(e.g.,	
move_forward,	print)	

Responding	to	“messages”
• As	a	set	of	interacting	objects,	each	object	
responds	to	“messages”	sent	to	it	

• The	interaction	of	objects	via	messages	makes	
a	high	level	description	of	what	the	program	is	
doing.

Start!

Everything	in	Python	is	an	object

• in	case	you	had	not	noticed,	everything	in	
Python	is	an	object	

• Thus	Python	embraces	OOP	at	a	fundamental	
level

type	vs	class

There	is	a	strong	similarity	between	a	type	and	a	
Python	class	
• seen	many	types	already:	list, dict,
str,	…	

• suitable	for	representing	different	data	
• respond	to	different	messages	regarding	the	
manipulation	of	that	data	

OOP	helps	for	software	engineering

• software	engineering	(SE)	is	the	discipline	of	
managing	code	to	ensure	its	long-term	use	

• remember	SE	via	refactoring:	
– takes	existing	code	and	modifies	it	
–makes	the	overall	code	simpler,	easier	to	
understand	

– doesn't	change	the	functionality,	only	the	form!

More	refactoring

• Hiding	the	details	of	what	the	message	entails	
means	that	changes	can	be	made	to	the	object	
and	the	flow	of	messages	(and	their	results)	
can	stay	the	same	

• Thus	the	implementation	of	the	message	can	
change	but	its	intended	effect	stay	the	same.	

• This	is	encapsulation

OOP	principles

• encapsulation:	hiding	design	details	to	make	the	program	
clearer	and	more	easily	modified	later	

• modularity:	the	ability	to	make	objects	stand	alone	so	they	can	
be	reused	(our	modules).	Like	the	math	module	

• inheritance:	create	a	new	object	by	inheriting	(like	father	to	
son)	many	object	characteristics	while	creating	or	over-riding	
for	this	object	

• polymorphism:	(hard)	Allow	one	message	to	be	sent	to	any	
object	and	have	it	respond	appropriately	based	on	the	type	of	
object	it	is.

Class	versus	instance

• One	of	the	harder	things	to	get	is	what	a	class	
is	and	what	an	instance	of	a	class	is.	

• The	analogy	of	the	cookie	cutter	and	a	cookie.

Template	vs	exemplar

• The	cutter	is	a	template	for	stamping	out	
cookies,	the	cookie	is	what	is	made	each	time	
the	cutter	is	used	

• One	template	can	be	used	to	make	an	infinite	
number	of	cookies,	each	one	just	like	the	
other.	

• No	one	confuses	a	cookie	for	a	cookie	cutter,	
do	they?

Same	in	OOP

• You	define	a	class	as	a	way	to	generate	new	
instances	of	that	class.	

• Both	the	instances	and	the	classes	are	
themselves	objects	

• The	structure	of	an	instance	starts	out		the	
same,	as	dictated	by	the	class.	

• The	instances	respond	to	the	messages	
defined	as	part	of	the	class.

Why	a	class

• We	make	classes	because	we	need	more	
complicated,	user-defined	data	types	to	
construct	instances	we	can	use.	

• Each	class	has	potentially	two	aspects:	
– the	data	(types,	number,	names)	that	each	
instance	might	contain	

– the	messages	that	each	instance	can	respond	to.

A	First	Class

Standard	Class	Names

The	standard	way	to	name	a	class	in	Python	is	
called	CapWords:	
• Each	word	of	a	class	begins	with	a	Capital	
letter	

• no	underlines	
• sometimes	called	CamelCase	
• makes	recognizing	a	class	easier

dir()	function

The	dir() function	lists	all	the	attributes	of	a	
class	
• you	can	think	of	these	as	keys	in	a	dictionary	
stored	in	the	class.

pass	keyword

Remember,	the	pass	keyword	is	used	to	signify	
that	you	have	intentionally	left	some	part	of	a	
definition	(of	a	function,	of	a	class)	undefined	
• by	making	the	suite	of	a	class	undefined,	we	
get	only	those	things	that	Python	defines	for	
us	automatically

Constructor

• When	a	class	is	defined,	a	function	is	made	
with	the	same	name	as	the	class	

• This	function	is	called	the	constructor.	By	
calling	it,	you	can	create	an	instance	of	the	
class	

• We	can	affect	this	creation	(more	later),	but	by	
default	Python	can	make	an	instance.

Built-In	Class	and	Instance

• We	can	apply	our	new	terminology,	class	and	instructor,	
to	the	programming	we	have	been	doing.	

• Any	of	the	built-in	data	structure	are	defined	as	a	class:	
a	list	is	a	class,	so	is	a	string,	set,	tuple,	or	dictionary.	

• These	class	can	be	used	to	make	individual	instances	
using	either	the	constructor	(respectively	list,	str,	set,	
tuple,	dict)	or	their	shortcuts,	where	available.	

• The	constructor	creates	a	new	object,	which	is	an	
instance	of	the	class.	

• These	instance	have	internal	attributes	and	associated	
methods	that	may	applied	those	instance.

dot	reference

• we	can	refer	to	the	attributes	of	an	object	by	
doing	a	dot	reference,	of	the	form:	

 object.attribute

• the	attribute	can	be	a	variable	or	a	function	
• it	is	part	of	the	object,	either	directly	or	by	that	
object	being	part	of	a	class

examples

print(my_instance.my_val)
print	a	variable	associated	with	the	object	
my_instance

my_instance.my_method()
call	a	method	associated	with	the	object	
my_instance

variable	versus	method,	you	can	tell	by	the	
parenthesis	at	the	end	of	the	reference

How	to	make	an	object-local	value

• once	an	object	is	made,	the	data	is	made	the	
same	way	as	in	any	other	Python	situation,	by	
assignment	

• Any	object	can	thus	be	augmented	by	adding	a	
variable	

my_instance.attribute = 'hello'

New	attribute	shown	in	dir

dir(my_instance)
– ['__class__', '__delattr__', '__dict__',
'__doc__', '__format__', '__getattribute__',
'__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', attribute]

Class	instance	relationship

Instance	knows	its	class

• Because	each	instance	has	as	its	type	the	class	
that	it	was	made	from,	an	instance	remembers	
its	class	

• This	is	often	called	the	instance-of	relationship	
• stored	in	the	__class__	attribute	of	the	
instance

Scope

• Introduced	the	idea	of	scope	in	Chapter	7	
• It	works	differently	in	the	class	system,	taking	
advantage	of	the	instance-of	relationship

Part	of	the	Object	Scope	Rule

The	first	two	rules	in	object	scope	are:	
1. First,	look	in	the	instance	(object)	itself	
2. If	the	attribute	is	not	found,	look	up	to	the	

class	of	the	object	and	search	for	the	attribute	
there.

Methods

method	versus	function

• discussed	before,	a	method	and	a	function	are	
closely	related.	They	are	both	“small	
programs”	that	have	parameters,	perform	
some	operation	and	(potentially)	return	a	
value	

• main	difference	is	that	methods	are	functions	
tied	to	a	particular	object

difference	in	calling

functions	are	called,	methods	are	called	in	the	context	
of	an	object:	
•function:		
 do_something(param1)

•method:		
 an_object.do_something(param1)

This	means	that	the	object	that	the	method	is	called	on	
is	always	implicitly	a	parameter!

difference	in	definition

• methods	are	defined	inside	the	suite	of	a	class	
• methods	always	bind	the	first	parameter	in	the	
definition	to	the	object	that	called	it	

• This	parameter	can	be	named	anything,	but	
traditionally	it	is	named	self	

class MyClass(object):
 def my_method(self,param1):
 suite

more	on	self

• self is	an	important	variable.	In	any	method	
it	is	bound	to	the	object	that	called	the	
method	

• through	self we	can	access	the	instance	
that	called	the	method	(and	all	of	its	attributes	
as	a	result)

Back	to	the	example

Binding	self

self	is	bound	for	us
• when	a	dot	method	call	is	made,	the	object	
that	called	the	method	is	automatically	
assigned	to	self

• we	can	use	self	to	remember,	and	therefore	
refer,	to	the	calling	object	

• to	reference	any	part	of	the	calling	object,	we	
must	always	precede	it	with	self.	

• The	method	can	be	written	generically,	dealing	
with	calling	objects	through	self

Two	Rules

• All	methods	takes	self	as	first	argument,	but	
self	is	left	our	in	method	calls.	

• All	data	attributes	and	method	calls	with	the	
class	must	be	prefixed	by	self.

Writing	a	class

Python	Standard	Methods

Python	provides	a	number	of	standard	methods	
which,	if	the	class	designer	provides,	can	be	used	
in	a	normal	"Python"	way	
• many	of	these	have	the	double	underlines	in	
front	and	in	back	of	their	name	

• by	using	these	methods,	we	"fit	in"	to	the	
normal	Python	flow

Standard	Method:	Constructor

• Constructor	is	called	when	an	instance	is	
made,	and	provides	the	class	designer	the	
opportunity	to	set	up	the	instance	with	
variables,	by	assignment

calling	a	constructor

As	mentioned,	a	constructor	is	called	by	using	
the	name	of	the	class	as	a	function	call	(by	
adding	()	after	the	class	name)	

student_inst = Student()

• creates	a	new	instance	using	the	constructor	
from	class	Student

defining	the	constructor

• one	of	the	special	method	names	in	a	class	is	
the	constructor	name,	__init__

• by	assigning	values	in	the	constructor,	every	
instance	will	start	out	with	the	same	variables	

• you	can	also	pass	arguments	to	a	constructor	
through	its	init	method

Student	constructor

 def __init__(self,first='', last='', id=0):
 self.first_name_str = first
 self.last_name_str = last
 self.id_int = id

• self	is	bound	to	the	default	instance	as	it	is	being	made	

• If	we	want	to	add	an	attribute	to	that	instance,	we	modify	the	
attribute	associated	with	self.

example
s1 = Student()
print(s1.last_name_str)

s2 = Student(last='Python', first='Monty')
print(s2.last_name_str)

Outputs are:

Python

default	constructor

• if	you	don't	provide	a	constructor,	then	only	
the	default	constructor	is	provided	

• the	default	constructor	does	system	stuff	to	
create	the	instance,	nothing	more	

• you	cannot	pass	arguments	to	the	default	
constructor.

Every	class	should	have	__init__

• By	providing	the	constructor,	we	ensure	that	
every	instance,	at	least	at	the	point	of	
construction,	is	created	with	the	same	
contents	

• This	gives	us	some	control	over	each	instance.

__str__,	printing

• When	print(my_inst)called,	it	is	assumed,	by	Python,	to	be	a	
call	to	“convert	the	instance	to	a	string”,	which	is	the	__str__	
method	

• In	the	method,	my_inst is	bound	to	self,	and	printing	then	
occurs	using	that	instance.	

• __str__	must	return	a	string!

Now	there	are	three

There	are	now	three	groups	in	our	coding	
scheme:	
– user	
– programmer,	class	user	
– programmer,	class	designer

Class	designer

• The	class	designer	is	creating	code	to	be	used	
by	other	programmers	

• In	so	doing,	the	class	designer	is	making	a	kind	
of	library	that	other	programmers	can	take	
advantage	of

Example:	Point	Class
• Point_template.py	
• Let’s	tackle	an	example	using	Cartesian	coordinates:	
dealing	with	two	points.	We	want	to	represent	the	two-
dimensional	points	on	the	Cartesian	coordinate	plane.	
Each	point	is	completely	described	by	its	coordinate	pair:	
(x,y).	

• Once	we	have	the	instance	attribute	in	place,	we	can	
consider	what	operations	we	wish	to	perform	on	these	
objects	and	write	methods	to	take	those	actions.	For	
illustration,	we	will	choose	finding	the	distance	between	
two	points	and	the	sum	of	two	points.	

• More	specifically,	we	will	implement	these	methods:	
– Distance	
– sum			

Rule	9

Make	sure	your	new	class	does	the	right	thing	

• By	“right	thing”,	we	mean	that	a	class	should	
behave	in	a	way	familiar	to	a	Python	
programmer	
– for	example,	we	should	be	able	to	call	the	print	
function	on	it

OOP	helps	software	engineering

• software	engineering	is	the	discipline	of	
managing	code	to	ensure	its	long-term	use	

• Remember	SE	via	refactoring:	
– takes	existing	code	and	modifies	it	
–makes	the	overall	code	simpler,	easier	to	
understand	

– doesn't	change	the	functionality,	only	the	form!

More	refactoring

• Hiding	the	details	of	what	the	message	entails	
means	that	changes	can	be	made	to	the	object	
and	the	flow	of	messages	(and	their	results)	
can	stay	the	same	

• Thus	the	implementation	of	the	message	can	
change	but	its	intended	effect	stay	the	same.	

• This	is	encapsulation

OOP	principles	(again)

• encapsulation:	hiding	design	details	to	make	the	program	
clearer	and	more	easily	modified	later	

• modularity:	the	ability	to	make	objects	“stand	alone”	so	they	
can	be	reused	(our	modules).	Like	the	math	module	

• inheritance:	create	a	new	object	by	inheriting	(like	father	to	
son)	many	object	characteristics	while	creating	or	over-riding	
for	this	object	

• polymorphism:	(hard)	Allow	one	message	to	be	sent	to	any	
object	and	have	it	respond	appropriately	based	on	the	type	of	
object	it	is.

We	are	still	at	encapsulation

• We	said	that	encapsulation:	
• If	the	class	is	well	designed,	then	a	user	of	the	class	need	only	

use	the	provided	methods	to	use	the	class	instance.	
• The	class	designer	is	free	to	place	information	in	the	class	that	

is	important	to	the	designer,	but	not	the	user,	of	the	class.				
• The	class	designer	hides	details	of	the	implementation	so	that	

the	program	was	easier	to	read	and	write	
• modularity,	make	an	object	so	that	it	can	be	reused	in	other	

contexts	
• providing	an	interface	(the	methods)	that	are	the	approved	

way	to	deal	with	the	class

Inheritance

• Inheritance	allows	the	class	designer	to	utilize	the	
design	of	an	existing	class	to	create	a	new	class.		

• That	is,	we	can	create	a	new	class	that	specializes	
an	existing	class	by	utilizing	the	existing	class’s	
attributes,	specializing	only	those	attributes	that	
distinguish	the	new	class.	

• In	this	way,	classes	can	share	common	elements	
and	change	only	those	attributes	that	distinguish	
the	new	class.

Python	and	Other	OOP	Languages 
Private	values

class	namespaces	are	dicts

• the	namespaces	in	every	object	and	module	is	
indeed	a	namespace	

• that	dictionary	is	bound	to	the	special	variable	
__dict__

• it	lists	all	the	local	attributes	(variables,	
functions)	in	the	object

private	variables	in	an	instance

• many	OOP	approaches	allow	you	to	make	a	
variable	or	function	in	an	instance	private	

• private	means	not	accessible	by	the	class	user,	
only	the	class	developer.	

• Public	means	accessible	by	everyone	
(developer	and	user)	

• there	are	advantages	to	controlling	who	can	
access	the	instance	values

privacy	in	Python
• Python	takes	the	approach	“We	are	all	adults	here”.	
No	hard	restrictions.	

• Python	does	not	provide	support	for	the	designer	to	
indicate	attributes	that	the	programmer	should	not	
modify	directy.	

• Provides	naming	to	avoid	accidents.	Use	__
(double	underlines)	in	front	of	any	variable	

• this	mangles	the	name	to	include	the	class,	namely	
__var	becomes	_class__var

• still	fully	accessible,	and	the	__dict__	makes	it	
obvious

privacy	example

• In	the	__init__	method,	we	assign	two	attributes:	name	and	
__attribute.	

• By	preceding	the	second	with	two	underscores,	we	are	
indicating	that	__attribute	is	private	and	should	not	be	
accessed.	

• Python	changes	that	attribute	name	so	that,	if	the	provided	
attribute	name	(__attribute)	is	referred	outside	of	the	class,	
an	error	is	thrown.	

• However,	using	the	original	attribute	name	within	the	class,	
such	as	in	a	method	of	the	class	(e.g.,	__str__),	is	allowed.	

• If	we	do	dir(inst1),	w	see	that	the	name	has	been	changed	
(mangled)	to	_NewClass__attribute.	

• This	change	of	name	does	not	prevent	the	programmer	from	
accessing	the	attribute	value.	It	only	provides	a	layer	of	
obfuscation.	

• But,	hen	an	attribute	is	marked	with	the	double-underscore	
prefix,	it	means	leave	it	alone!

More	on	Classes

The	three	OOP	factors

Remember,	we	said	there	were	3	factors	that	
distinguished	an	Object	Oriented	Programming	
langauge:	
• encapsulation	
• inheritance	
• polymorphism

We	are	still	at	encapsulation

We	said	that	encapsulation:	
• Hides	details	of	the	implementation	so	that	the	
program	was	easier	to	read	and	write	

• Provides	modularity	that	makes	an	object	so	
that	it	can	be	reused	in	other	contexts	

• Provides	an	interface	(the	methods)	that	are	
the	approved	way	to	deal	with	the	class

One	more	aspect

A	new	aspect	we	should	have	is	consistency	
• A	new	class	should	be	consistent	with	the	rules	
of	the	language.		

• It	should	respond	to	standard	methods,	i.e.,	it	
should	behave	properly	with	typical	functions	
(assuming	the	type	allows	that	kind	of	call).

An	example

Consider	a	Rational	number	class.	It	should	
respond	to:	
• construction	
• printing	
• arithmetic	ops	(+,	-,	*,	/)	
• comparison	ops	(<,	>,	<=,	>=)

example	program

just	like	any	other	number

• by	building	the	class	properly,	we	can	make	a	
new	instance	of	Rational	look	like	any	other	
number	syntactically.		

• the	instance	responds	to	all	the	normal	
function	calls	

• because	it	is	properly	encapsulated,	it	is	much	
easier	to	use

But	how	can	that	work?

Two	parts:	
• Python	can	distinguish	which	operator	to	use	
based	on	types	

• Python	provides	more	standard	methods	that	
represent	the	action	of	standard	functions	in	
the	language	
– by	defining	them	in	our	class,	Python	will	call	them	
in	the	"right	way"

More	on	type

As	we	have	mentioned,	a	class	is	essentially	a	
new	type	
• when	we	make	an	instance	of	a	class,	we	have	
made	an	object	of	a	particular	type	

• 	1.36	is	a	float	
• my_instance = MyClass(),	
my_instance is	a	type	MyClass

Introspection

• Python	does	not	have	a	type	associated	with	
any	variable,	since	each	variable	is	allowed	to	
reference	any	object	

• however,	we	can	query	any	variable	as	to	what	
type	it	presently	references	

• this	is	often	called	introspection.	That	is,	while	
the	program	is	running	we	can	determine	the	
type	a	variable	references

Python	introspection	ops

• type(variable) returns	its	type	as	an	
object	

• isinstance(variable,type) returns	
a	boolean	indicating	if	the	variable	is	of	that	
type

Operator	Overloading

So	what	does	var1+var2	mean?

The	answer:	
• it	depends	
• What	it	depends	on	is	the	type.	The	+	
operation	has	two	operands.	What	are	their	
types?	

• Python	uses	introspection	to	find	the	type	and	
then	select	the	correct	operator

We've	seen	this	before

What	does	var1+var2 do?	
• with	two	strings,	we	get	concatenation	
• with	two	integers,	we	get	addition	
• with	an	integer	and	a	string	we	get:	
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 1+'a'
TypeError: unsupported operand type(s) for
+: 'int' and 'str'

Operator	overloading

• the	plus	operator	is	overloaded	
• that	is,	the	operator	can	do/mean	different	
things	(have	multiple/overloaded	meanings)	
depending	on	the	types	involved	

• if	python	does	not	recognize	the	operation	and	
that	combination	of	types,	you	get	an	error

Python	overload	ops
• Python	provides	a	set	of	operators	that	can	be	
overloaded.	You	can't	overload	all	the	
operators,	but	you	can	for	many	

• Like	all	the	special	class	operations,	they	use	
the	two	underlines	before	and	after.	

• They	come	in	three	general	classes:	
– numeric	type	operations	(+,-,<,>,print	etc.)	
– container	operations	([],	iterate,len,	etc.)	
– general	operations	(printing,	construction)

how	does	v1+v2	map	to	__add__
v1 + v2

is	turned,	by	Python,	into	

v1.__add__(v2)

• These	are	exactly	equivalent	expressions.	It	means	
that	the	first	variable	calls	the	__add__	method	
with	the	second	variable	passed	as	an	argument	

• v1	is	bound	to	self,	v2	bound	to	param2

Calling	__str__
• When	does	the	__str__	method	get	called?	
Whenever	a	string	representation	of	the	
instance	is	required:	
– directly,	by	saying	str(my_instance)	
– indirectly,	calling	print(my_instance)

Simple	Rational	Number	class

• a	Rational	is	represented	by	two	integers,	the	
numerator	and	the	denominator	

• we	can	apply	many	of	the	numeric	operators	
to	Rational

__str__	vs	__repr__
• __repr__	is	what	the	interpreter	will	call	
when	you	type	an	instance	
– potentially,	the	representation	of	the	instance,	
something	you	can	recreate	an	instance	from.	

• __str__	is	a	conversion	of	the	instance	to	a	
string.		
– Often	we	define	__str__,	have	__repr__	call	
__str__	

– note	the	call:	self.__str__()

the	__init__	method

• each	instance	gets	an	attribute	numer and	
denom to	represent	the	numerator	and	
denominator	of	that	instance's	values

provide	addition

Remember	how	we	add	fractions:	
• if	the	denominator	is	the	same,	add	the	
numerators	

• if	not,	find	a	new	common	denominator	that	
each	denominator	divides	without	remainder.	

• modify	the	numerators	and	add

the	lcm	and	gcd

• the	least	common	multiple	(lcm)	finds	the	
smallest	number	that	each	denominator	
divides	without	remainder	

• the	greatest	common	divisor	(gcd)	finds	the	
largest	number	two	numbers	can	divide	into	
without	remainder

LCM	in	terms	of	GCD

LCM (a,b) = a*b
GCD(a,b)

OK,	how	to	find	the	gcd	then?

GCD	and	Euclid

• One	of	the	earliest	algorithms	recorded	was	
the	GCD	by	Euclid	in	his	book	Elements	around	
300	B.C.	
– He	originally	defined	it	in	terms	of	geometry	but	
the	result	is	the	same

The	Algorithm

GCD(a,b)	
1. If	one	of	the	numbers	is	0,	return	the	other	

and	halt	
2. Otherwise,	find	the	integer	remainder	of	the	

larger	number	divided	by	the	smaller	number	
3. Reapply	GCD(a,b)	with	a	ß smaller	and	bß

the	remainder	from	step	2)

Method:	Add

Equality

• The	equality	method	is	__eq__
• It	is	invoked	with	the	==	operator	

½	==	½	is	equivalent	to	½.__eq__(½) 	
• It	should	be	able	to	deal	with	non-reduced	
fractions:	
½	==	½		is	True	
so	is		2/4	==	3/6

Fitting	in

• What	is	amazing	about	the	traces	of	these	
methods	is	how	many	of	them	are	called	in	
service	of	the	overall	goal.	

• All	we	did	was	to	provide	the	basic	pieces,	and	
Python	orchestrates	how	they	all	fit	together!

What	doesn't	work

So	r1+r2,	but	what	about

• We	said	the	add	we	defined	would	work	for	
two	rationals,	but	what	about?	

r1 + 1	 #	Rational	plus	an	integer	
1 + r1	 #	commutativity	

• Neither	works	right	now.	How	to	fix?

r1	+	1
• What's	the	problem?	
– add	expects	another	rational	number	as	the	
second	argument.		

– Python	used	to	have	a	coercion	operator,	but	that	
is	deprecated	
• coerce:	force	conversion	to	another	type	
• deprecate:	'disapproval',	an	approach	that	is	no	longer	
supported	

– Our	constructor	would	support	conversion	of	an	
int	to	a	Rational,	how/where	to	do	this?

Introspection	in	__add__
• the	add	operator	is	going	to	have	to	check	the	
types	of	the	parameter	and	then	decide	what	
should	be	done	

• if	the	type	is	an	integer,	convert	it.	If	it	is	a	
Rational,	do	what	we	did	before.	Anything	else	
that	is	to	be	allowed	needs	to	be	checked

what	about	1	+	r1

• What's	the	problem	
–mapping	is	wrong	
– 1	+	r1	maps	to	1.__add__(r1)	
– no	such	method	for	integers	(and	besides,	it	would	
be	a	real	pain	to	have	to	add	a	new	method	to	
every	type	we	want	to	include)	

– user	should	expect	that	this	should	work.	Addition	
is	commutative!

radd	method

• Python	allows	the	definition	of	an	__radd__	
method:	right-operand	arithmetic	

• The	__radd__ method	is	called	when	the	
__add__ method	fails	because	of	a	type	
mismatch	

• __radd__ reverses	the	two	arguments	in	the	
call	

• __add__(self,a)	defined	self+a,	while	
__radd__(self,a)	defined	a+self.

__radd__	vs	__add__

• 1	+	r1	

		try	1.__add__(r1),	failure	
		look	for	an	__radd__ if	it	exists,	remap	

• 1	+	r1	

		r1.__radd__(1)

radd
• essentially,	all	we	need	__radd__	to	do	is	
remap	the	parameters.	

• after	that,	it	is	just	add	all	over	again,	so	we	call	
__add__	directly	

• means	we	only	have	to	maintain	__add__	if	any	
changes	are	required	

 def __radd__(self,f):
 return self.__add__(f)

Inheritance

Class-Instance	relations

• Remember	the	relationship	between	a	class	and	its	
instances	
– a	class	can	have	many	instances,	each	made	initially	from	
the	constructor	of	the	class	

– the	methods	that	an	instance	can	call	are	initially	shared	
by	all	instances	of	a	class	

– When	referencing	a	value	in	an	attribute,	Python	first	
looks	in	the	instance	for	the	attribute,	and,	if	not	found	
there,	it	then	looks	in	the	class	the	instance	was	derived	
from.	In	this	way,	attributes	stored	in	the	class	are	
available	to	every	instance	derived	from	the	class.	

Class-Class	relations

• Classes	can	also	have	a	separate	relationship	
with	other	classes	

• the	relationships	forms	a	hierarchy	
– hierarchy:	A	body	of	persons	or	things	ranked	in	
grades,	orders	or	classes,	one	above	another

Classes	related	by	a	hierarchy

• when	we	create	a	class,	which	is	itself	another	
object,	we	can	state	how	it	is	related	to	other	
classes	

• the	relationship	we	can	indicate	is	the	class	
that	is	'above'	it	in	the	hierarchy	

• Every	class	maintains	at	least	one	parent	class.

class	statement

class MyClass (SuperClass):
 pass

• The	top	class	in	Python	is	called	object.	
• it	is	predefined	by	Python,	always	exists		
• use	object	when	you	have	no	superclass

name	of	the	class	above	
this	class	in	the	hierarchy

• The	is-a	relationship	is	one	way,	much	as	the	instance-of	
relationship.	

• The	instance	remember	who	its	class	is,	but	the	class	does	not	
track	its	instance.	

• A	class	remember	who	its	parent	class	is,	but	the	parent	class	
does	not	track	its	child	classes.	

• Each	Python	class	indicates	specifically	in	its	class	definition	who	
its	parent	is.	

• This	relationship	is	recorded	in	the	__bases__	attribute	of	each	
class.

is-a,	super	and	sub	class

• the	class	hierarchy	imposes	an	is-a	relationship	
between	classes	
– MyChildClass	is-a	(or	is	a	kind	of)	MyClass	
– MyClass	is-a	(or	is	a	kind	of)	object	
– object	has	as	a	subclass	MyClass	
– MyChildClass	has	as	a	superclass	MyClass	

• An	example:	if	you	create	a	Car	class,	then	a	Ford	
class	is	a	Car,	but	a	more	particular	kind	of	Car.	
Subsequently,	a	Mustang	class	is	a	Ford	class,	but	a	
more	particular	kind	of	Ford.

um,	so	what?

• the	hope	of	such	an	arrangement	is	the	saving/re-use	
of	code.	If	a	new	class	is	created	as	part	of	an	existing	
class	hierarchy,	then	the	new	class	can	reuse	existing	
code	from	the	hierarchy,	specializing	only	those	aspects	
or	attributes	that	are	unique	to	the	new	class.		

• superclass	code	contains	general	code	that	is	applicable	
to	many	subclasses.	By	sharing	code	from	the	class	
hierarchy,	the	coding	of	classes	can	be	somewhat	
standardized.	

• subclass	uses	superclass	code	(via	sharing)	but	
specializes	code	for	itself	when	necessary

Scope	for	objects,	the	full	story

1. Look	in	the	object	for	the	attribute	
2. If	not	in	the	object,	look	to	the	object's	class	

for	the	attribute	(up	the	instance-of	reation)	
3. If	not	in	the	object's	class,	look	up	the	

hierarchy	of	that	class	for	the	attribute	(up	
the	is-a	relation)	

4. If	you	hit	object,	then	the	attribute	does	not	
exist

Inheritance	is	powerful	but	also	can	be	
complicated

• many	powerful	aspects	of	OOP	are	revealed	
through	uses	of	inheritance	

• However,	some	of	that	is	a	bit	detailed	and	
hard	to	work	with.	Definitely	worth	checking	
out	but	a	bit	beyond	the	class

builtins	are	objects	too

• One	nice	way,	easy	way,	to	use	inheritance	is	to	
note	that	all	the	builtin	types	are	objects	also	

• thus	you	can	inherit	the	properties	of	builtin	
types	then	modify	how	they	get	used	in	your	
subclass	

• you	can	also	use	any	of	the	types	you	pull	in	as	
modules

specializing	a	method

• One	technical	detail.	Normal	method	calls	are	
called	bound	methods.	Bound	methods	have	
an	instance	in	front	of	the	method	call	and	
automatically	pass	self	

my_inst = MyClass()
my_inst.method(arg1,arg2)

• my_inst	is	an	instance,	so	the	method	is	
bound

unbound	methods

it	is	also	possible	to	call	a	method	without	
Python	binding	self.	In	that	case,	the	user	has	
to	do	it.	
• unbound	methods	are	called	as	part	of	the	
class	but	self	passed	by	the	user	

my_inst = MyClass()
MyClass.method(my_inst, arg2, arg3)

self	is	passed	explicitly	(my_inst here)!

Why???

• Consider	an	example.	We	want	to	specialize	a	
new	class	as	a	subclass	of	list.		

	 class MyClass(list):
• easy	enough,	but	we	want	to	make	sure	that	
we	get	our	new	class	instances	initialized	the	
way	they	are	supposed	to,	by	calling	
__init__ of	the	super	class

Why	call	the	super	class	init?

If	we	don't	explicitly	say	so,	our	class	may	inherit	
stuff	from	the	super	class,	but	we	must	make	
sure	we	call	it	in	the	proper	context.	For	
example,	our	__init__	would	be:	
def __init__(self):
 list.__init__(self)
do anything else special to MyClass

explicit	calls	to	the	super

• we	explicitly	call	the	super	class	constructor	
using	an	unbound	method	(why	not	a	bound	
method????)	

• then,	after	it	completes	we	can	do	anything	
special	for	our	new	class	

• We	specialize	the	new	class	but	inherit	most	of	
the	work	from	the	super.	Very	clever!

Gives	us	a	way	to	organize	code

• specialization.	A	subclass	can	inherit	code	
from	its	superclass,	but	modify	anything	that	is	
particular	to	that	subclass	

• over-ride.	change	a	behavior	to	be	specific	to	a	
subclass	

• reuse-code.	Use	code	from	other	classes	
(without	rewriting)	to	get	behavior	in	our	class.

Exercise:	Multiple	Inheritance

• Multiple	inheritance	is	obtained	by	listing	two	
or	more	base	classes	in	parenthesis	after	the	
class	name.	

• Read	Python	code	MultInheritance.py.	What	is	
the	output	of	this	code?

Class	for	Scientific	Computing

Class	Programming
Write	a	Python	class	Trapezoidal	to	evaluate	
numerical	integration	using	the	trapezoidal	rule.

1

1
() (1) (1)f x dx f f

−
≈ − +∫

It	is	one	of	the	quadrature	rules	that	can	be	
expressed	in	the	general	form:	

1

1
1

() ()
n

i i
i

f x dx w f x
−

=

≈∑∫
Use	the	class	to	compute	

1 3

1
x dx

−∫

Inline	lambda	functions
• Python	offers	anonymous	inline	functions	known	as	
lambda	function.		

• The	construction	is		
“lambda	<args>:	<expression>”	
• It	is	equivalent	to	a	function	with	<args>	as	arguments	
and	<expression>	as	return	value:	

def	somefunc(<args>):	
							return	<expression>	
• For	example,	“lambda	x,	y,	z:	3*x+2*y-z”	is	a	short	cut	
for	

def	somefunc(x,	y,	z)	
							return	3*x	+	2*y	–	z

Inline	lambda	functions
• Lambda	function	can	be	used	in	place	where	we	expect	
variables.		

• Say	we	have	a	function	taking	another	function	as	
argument:	

def	fill(a,f)	
							n	=	len(a);	dx	=	1.0/(n-1)	
							for	i	in	range(n):	
													x	=	i	*	dx	
	 			a[i]	=	f(x)		
• A	lambda	function	can	be	used	for	the	f	argument:	
fill(a,	lambda	x:	<expression>)		
• Read	code	Trapezoidal.py.

OOP	for	Integration
Consider	other	quadrature	rules:	
• Simpson’s	rule	

• Two-point	Gauss-Legendre	rule	

Many	rules	of	this	form	can	be	defined.		
Complete	the	Python	program,	intergration.py,	to	
implement	the	quadrature	rules.

1

1

1 4 1() (1) (0) (1)
3 3 3

f x dx f f f
−

≈ − + +∫

1

1

1 1() () ()
3 3

f x dx f f
−

≈ − +∫

