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Some background on the program TREEMIX
Stephen (Alex) Townsend and Peter Beerli

The program TREEMIX described by Pickrell and Pritchard
[2012] uses allele frequencies of SNP (and microsatellite data:
https://treemix.googlecode.com/files/microsat model.pdf) to
infer trees representing the evolutionary relationships between
populations. Trees generally have a branch-and-leaf structure.
In TREEMIX the leaves are the populations and the branches
are the inferred relationships among them. Additionally,
TREEMIX can account for situations where one more
branches may lead to the same leaf suggesting population
admixture and migration between populations.

I. BASIC ASSUMPTIONS

TREEMIX uses allele frequency data of single nucleotide
polymorphisms (SNPs) assuming that only two alleles are
recognized. Additionally, TREEMIX has an option to run
microsatellite data using a mean number of repeats per pop-
ulation per locus. For the method to work well, the allele
frequency data should be accurate, thus it needs a decent
number of sampled individuals in each population. The model
also assumes a Wright-Fisher population model and that the
populations are in Hardy-Weinberg Equilibrium.

II. MODEL AND IMPLEMENTATION

TREEMIX infers a bifurcating tree between the populations
based on the maximum likelihood criterion. In a second step,
populations or nodes that do not fit well into the tree will be
found. The likelihood score is improved by adding additional
branches between such nodes. Any additional branch can be
interpreted as a migration event that led to admixture in the
leaf population.

A. Brownian motion

Suppose we have a single SNP for which we have a known
allele frequency data xA. This allele frequency is the one in the
ancestral population A. A second population B with unknown
frequency XB could be the ’offspring’ of A. So that we can
say

xA −→ XB (1)

Assuming that changes in the frequency xA are small per unit
time we can assume that the allele frequencies follow a random
walk. At any time there is chance to move the frequency up
or down (Brownian motion). This process can be modeled
assuming that XB is actually xA plus an error term:

XB = xA + εB , (2)

the error term can be modeled as a Normal distribution with
mean zero and standard deviation relative to xA. Assuming

that allele frequencies come from a Wright-Fisher population
model we get

εB ∼ N(0, cBxA(1− xA)) (3)

If we wanted to move from population XB to population XC

on our tree, we repeat the process and get

XC = XB + εC . (4)

Since we already know that XB can be modeled as xA plus
a normal-distributed error term, we have:

XC = xA + εB + εC . (5)

The error term for XC is modeled as

εC ∼ N(0, cC(1−XB)XB). (6)

Since we only know the allele frequency at the root, xA,
we may be more interested in the expected frequencies and
variances than the actually (unknown) frequencies; we can
calculate these

E(XC) = E(xA + εB + εC) = xA (7)

and

V ar(XC) = V ar(xA + εB + εC) (8)
= V ar(εB) + V ar(εC) + Cov(εB , εC) (9)

(10)

Genetic drift is usually small so that we can assume that
XB(1−XB ≈ xA(1− xA) and we further assume that there
is no correlation between XB and XC so that we can ignore
the covariance Cov(εB , εC). We get for

V ar(XC) ≈ V ar(εB) + V ar(εC) (11)
≈ cBxA(1− xA) + cCxA(1− xA) (12)
≈ (cB + cC)xA(1− xA) (13)

so we can see that XC is

XC ∼ N(xA, (cB + cC)xA(1− xA)) (14)

and XB is

XB ∼ N(xA, cBxA(1− xA)). (15)

This suggests that the populations differentiation can be mea-
sured with the coefficient c. Using the Wright-Fisher model
we can approximate

c =
t

2N
(16)

where t is the time between ancestor and descendant and N
is the population size. The parameter c can be thought of as
the length of a branch on the tree.
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III. THE TREE

If we are now interested in the tree (Figure 1) than we can
calculate the covariance between X1 and X2 as the expected
values of the differences to xA:

Cov(X1, X2) = E ((X1 − xA)(X2 − xA)) (17)
= c2xA(1− xA) (18)

Cov(X3, X4) = c1xA(1− xA) (19)
Cov(X1, X3) = 0 (20)

If there is migration between different populations than
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Figure 1. Figure of a population tree with 4 populations and labeled branch
lengths.

the covariance matrix will fit the data not very well. To
accommodate a better fit, one need to allow ancestry from
multiple populations, this contributions is weighted by w. For
example, Figure 2 and Table I shows the contribution to the
covariance for three leaves (X1, X2, X3), assuming that one
(X2) is admixed. We know now the structure of the covariance

Table I
Relationships among the three leaves in Figure 2. Each entry needs to be

multiplied with xA(1− xA)

X1 X2 X3

X1 V11 = c4 + c6 V12 = (1− w)c4 V13 = 0
X2 V22 = c1 + w2(c2 + c5)

+(c3 + c4)(1− w)2 V23 = wc5
X3 V33 = c5 + c7

matrix V and approximate this with W which we estimate
from the data

Wij = E[(Xi − µ̂)(Xj − µ̂)] (21)

µ̂ =

∑m
i=1Xi

m
(22)
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Figure 2. Tree showing admixture calculation

This will be biased because of finite sampling. The authors
supply a correction for finite sampling

Wij = Vij −
1

m

(
m∑
k
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)
+
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m∑
k

m∑
k′

Vkk′ (23)

where we assume that Xi and Xj are the allele frequencies
from the sample data and that m is the number of populations
in the sample. This covariance matrix assumes 1 SNP for m
populations. For n SNPs we simply take the averages of all
individual allele frequencies. We know now how to calculate
the covariance matrix from the data W , but what we want
is the covariance structure Ŵ given the tree G If we know
everything then we can calculate a likelihood as

P (W |Ŵ ) =

m∏
i=1

m∏
j=1

fij (24)

fij ∼ N(Wij , Gσ̂
2
ij) (25)

where G is a weighted, directed graph and the term
N(Wij , Gσ̂

2
ij is a Normal distribution whose mean is the

covariance of the current tree and where σ̂2
ij is the current

sample variance. Using a maximization routine we can find the
optimal Ŵ for the data. The methods starts out by assuming
there is no migration and calculates covariances, then it uses
the residuals

R = Ŵ −W (26)

to find the components that do not fit well and adjust those
components by adding branches to improve the fit. If there is
rampant migration, this model may struggle to be able to ac-
count for that due to the fact that it only adds migration to the
populations with the largest residuals rather than considering
all possible trees. Taking all possible trees is computationally
infeasible for data with many populations.
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IV. SIGNIFICANCE TESTING

The likelihood is a composite likelihood that assumes that
blocks of SNPs are independent of each other, this may or may
not be true. Standard confidence intervals based on the Fisher
information will be too conservative. Instead, the methods uses
a resampling technique, jackknifing, to test of significance and
confidence intervals.
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V. DISCLAIMER

This text was written by Stephen (Alex) Townsend and
Peter Beerli, Florida State University for a course on
practical population genetics inference, Fall 2015. These
notes are licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter
to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.


