
Programming for Scientific Applications
based on slides from Gordon Erlebacher and Xiaquiang Wang

2

Syllabus

p Class participation (questions,
suggestions, comments): might increase
your grade if otherwise too low

p Homeworks (1per week): 30%
p Labs: 30%
p Midterm: 20%
p Final: 20%

3

Class Attendance

■ Attendance Mandatory
■ Keep your cell phone in your pocket or purse

4

Class Objectives

p to understand the benefits of interpreted and compiled languages and
know when to use each one to best advantage

p to understand Python sufficiently to program applications with
confidence

p to understand C++ sufficiently to program applications
p learn to interface C++ and Python to each other, to take advantage of

the best features of both languages
p through lab work, develop the skills to apply Python and C++ to a

range of practical scientific applications, ranging from graphical user
interfaces, web-based display of results, processing of scientific data,
and visualization

5

Honor Code

p The Academic Honor System of The Florida State University is based on the premise that
each student has the responsibility 1) to uphold the highest standards of academic integrity
in the student's own work, 2) to refuse to tolerate violations of academic integrity in the
University community, and 3) to foster a high sense of integrity and social responsibility
on the part of the University community. Please note that violations of this Academic
Honor System will not be tolerated in this class. Specifically, incidents of plagiarism of
any type or referring to any unauthorized material during examinations will be rigorously
pursued by this instructor. Before submitting any work for this class, please read the
``Academic Honor System" in its entirety (as found in the FSU General Bulletin and in the
FSU Student Handbook and ask the instructor to clarify any of its expectations that you do
no understand.

http://www.eng.fsu.edu/%7Epeterson/fsuhc.html
http://www.eng.fsu.edu/%7Epeterson/fsuhc.html

6

Outline

p Class Work (T-H)
■ fundamentals of Python and C++

■ example-based

■ use of web to supplement class material

p Lab work (F)
■ illustration of Python and C++ in practical situations

■ 2.5 hours per week

■ write a report about lab (summary, pictures, tables)

■ each lab: 1-2 weeks. Reports due weekly

7

Labs (Python / C++) 
(may change and not in order of presentation)

p Introduction to Python (Python)
p Python Modules(Python)
p A small number game(Python)
p Monitoring and displaying stocks [or other online quantities] (Python)
p Plotting scientific data (Python)
p Use of the Python Imaging Library (Python)
p Application of FFTs: sound (Python)
p Solving ODEs (C++)
p Manipulating video (C++)
p Wrapping an existing scientific code in C++ and GUI construction

(Python/C++)

8

Class Contents: Python

p Overview (today)
p Modules, Operating system
p lists, dictionaries, sequences
p functions
p text processing
p files, I/O
p numpy for arrays
p classes
p numpy for statistics
p graphical user interfaces
p C/C++ and wrapping

9

Class contents: C++

1. documenting source code (Python and C++)

2. Hello world (#include, main, printf)

3. Functions (value, reference, pointers, overloading)

4. input/output (streams)

5. command line input (< and >, stdin, stdout)

6. class (attributes, functions, public, private, protected)

7. class (subclass, polymorphism)

8. Libraries (static and shared) + string, ar, nm

9. Standard Template Library

10. arrays (1d, 2d, 3d)

11. my array class (example)

12. Polymorphism

10

What is programming?
p What is a computer program?

■ “A set of coded instructions that enables a machine,
especially a computer, to perform a desired sequence of
operations.” – American Heritage Dictionary

p Programming instructions are written using a “programming
language”

■ Examples: C/C++, Java, Assembly, Fortran, Cobol, BASIC

■ LOTS of programming languages, different uses for different
languages

http://helloworldcollection.de

C++ Back to index

// Hello World in C++ (pre-ISO)

#include <iostream.h>

main()
{
 cout << "Hello World!" << endl;
 return 0;
}

Haskell Back to index

-- Hello World in Haskell

main = putStrLn "Hello World"

Lisp Back to index

;;; Hello World in Common Lisp

(defun helloworld ()
 (print "Hello World!")
)

Assembler-Linux Back to index

 ;; Hello World for the nasm Assembler (Linux)

 SECTION .data

 msg db "Hello, world!",0xa ;
 len equ $ - msg

 SECTION .text
 global main

main:
 mov eax,4 ; write system call
 mov ebx,1 ; file (stdou)
 mov ecx,msg ; string
 mov edx,len ; strlen
 int 0x80 ; call kernel

 mov eax,1 ; exit system call
 mov ebx,0
 int 0x80 ; call kernel

11

Terminology
p Computer program – a set of instructions that tell a computer

exactly what to do

■ The instructions might tell the computer to add up a set of

numbers, or compare two numbers and make a decision based
on the result, or whatever.

p Programming language – a language used by humans to program
computers

■ e.g., Fortran, Cobol, Basic, Pascal, C, C++, Java, Perl

p Compiler – translates a computer program written in a human-
readable computer language (like C++) into a form that a computer
can execute

■ You have probably seen .exe files or .app ‘files’ on your computer.

■ These executable files are the output of compilers.

■ They contain executables -- machine-readable programs

translated from human-readable programs.

12

Programming

p Problem solving
■ Logical/methodical way of solving a problem

p Algorithm/abstraction
■ An algorithm is a series of step-by-step instructions that produces

a solution to a problem

p Step wise refinement
■ Incrementally adding functionality to a program

13

Five steps to writing a program

p Define the problem

p Plan the solution

■ pseudocode

p Code the program

■ Using a programming language

p Test and debug

■ Using a compiler

p Document

14

Python vs C++

p Python is interpreted

p C++ is compiled

14

Python vs C++ and other languages

p Python is interpreted (and Julia)

p C++ is compiled (and D)

15

Hello World

p In a file named HelloWorld.py

p print ‘Hello World’

17

Scripting vs traditional

p Traditional programming
■ C, C++, Fortran, Java (kind of), C#
■ mostly computation, networking, other low-level activities
■ traditional code if often wrapped with scripting code for

ease of use and integration into scripting framework
p Scripting framework

■ Perl, Python, Ruby, Scheme, Julia, Tcl, ...
■ Integrates text processing, I/O, report writing, and

computation
■ Often sections of programs written in scripting languages

are translated to traditional code for efficiency

18

Why Scripting?

p Easier to use
p Faster development time
p Avoid compilation and linking
p Integration of visualization, networking, datea analysis, etc.
p Python makes it simple to glue together different applications

(plenty of tools, modules)
p Scientific computing is more than number crunching. In

addition:
■ data manipulation, data analysis, visualization, format

conversion, parametric studies, cataloguing, database
access, etc.

■ these tasks are much much easier in Python than C++,
Fortran, etc.

p Graphical user interfaces (use of Tk to wrap existing
programs)

19

Why Scripting (cont.)

p Creation of demos to illustrate one’s work. Use a
single GUI to
■ read the data, run a simulation code, visualize and

analyze the results
p Modern interfaces to old codes

■ Fortran codes from 1960’s still run
■ horrible to read
■ front-end GUIs make the codes useful again
■ Instead of code-rewrite into C++, wrap with Python

p Python can provide unix-interface on Windows
■ also write code that runs on all operating systems

20

Language Classification

p Scripting languages: dynamically typed
■ variables types are not declared

■ syntax closer to natural language

p Traditional programming languages: type
safe
■ declare variable types

■ syntax closer to the hardware

21

Gluing existing applications

p Visualization, application, data analysis can be glued
into a single larger application

p Needs a graphical user interface (GUI)
p Method 1

■ applications communicate through files

p Method 2
■ python calls functions from the different applications, and moves

data around through the use of pointers (a pointer is the memory
address of the data)

2322

Much more difficult in C++
Possible with a script, much harder with a compiled language

str(object) # convert object to string
eval(“strg”) # convert string to object  

Reading numbers from a file with Python

F=open(‘filename’, ‘r’)
n = F.read().split()

Extract real and imaginary part of the string ‘(3.45,-52)’

24

Efficiency
p Scripting languages

■ first compiled to byte code (independent of OS)

■ byte code is interpreted, line by line

■ better error messages

■ in general, codes run slower (not important for short codes)

■ sometimes speed is optimal (e.g., regular expressions)

■ inefficient sections of code can be rewritten in C/C++/Fortran/Java

p Traditional (compiled) languages
■ source code is translated to machine code (closer to the hardware)

■ machine code is hardware-dependent

■ in general, codes runs MUCH faster

25

Variable Declaration
p C, C++: type-safe languages

■ protect the user against himself

■ less bugs, safer programming

■ code reuse is harder (types are set in stone)

■ somewhat relaxed with classes and templates (for C++, but not for C)

p Python, Lua, etc.
■ when a variable is needed, assign a value

■ type is determined by the value

■ type conversion is sometimes automatic (Perl), sometimes not (Python)

■ same piece of code can be used in many different contexts

26

Dumping a datastructure: Python

▪ 

def debug(leading_text, variable):
if os.environ.get('MYDEBUG', '0') == '1':
print leading_text, variable

27

Dumping a datastructure:  
C++
template <class T>  
void debug(std::ostream& o,  
 const std::string& leading_text,  
 const T& variable)
{
 char* c = getenv("MYDEBUG");
 bool defined = false;
 if (c != NULL) { // if YDEBUG is defined ...

 if (std::string(c) == "1") { // IF MYDEBUG IS true
 defined = true;
 }
 }
 if (defined) {
 o << leading_text << " " << variable <<
std::endl;
 }
}

This is not
possible with
Java, Fortran, C: a
different function
must be written
for each type.

For large projects,
the flexibility of
Python might lead
to dangers, and
static typing (as
opposed to
dynamic) might
be important, at
the cost of longer
code
development.

28

Flexible Function Interfaces

p def function(a,b,c,*kw, **dict)
■ a,b,c are variables (like all languages)

■ kw is an arbitrary list of variables

■ dict is a dictionary (hash table)

p Calling functions
■ Multiple return values allowed

■ function(c=3.4, b=12,[5,6,’g’],{title:‘going home’})

■ types can be anything: checked at runtime

■ can use exception to handle errors (not possible in C and older versions of
Fortran (earlier than Fortran 90)

29

Interactive Computing

p Can use python interactively (not possible with Fortran, Java, C, C++)
p Type python at the command line
p Alternatives: iPython, ipythonx (try for example: ipython notebook)
p Python can be used as a sophisticated calculator

■ try some examples in class

p >>> from scipy import integrate 
>>> n = 2  
>>> integrate.quad(myfunc, 0, 10)  
(0.980006581161901407, 9.1588489241801687e-14) 
>>> n=4  
>>> integrate.quad(myfunc, 0, 10)  
(0.86330705300864041, 1.0255758932352094e-13) 
>>> integ, err = integrate.quad(myfunc, 0, 10) 
>>> print “integ= “, integ  

30

Code Creation at Runtime

p from math import sin 
val = ‘sin(1.2*x) + x**a’ # a string 
x = 2.2; a = 3 
print “val= “, eval(val)

p Store functions into input files, read the input file,
and execute the function

32

Heterogeneous Data Structures

p In C, C++, etc., arrays are of a single
type:
■ float* a = new float [20];
■ std::string* str = new string [20];
■ can be more general using subclassing and

polymorphism
p In Python, a list can be of any type:
■ functions, class instance, string, float, list
■ a = [‘temperature’, 3.45, [5,‘gone’], -35]

33

GUI (graphical user interfaces)  
Programming

p GUI interfaces in C/C++ are quite hard
to write and error-prone

p Libraries for GUI exist in C/C++, but
code writing is still harder than with
libraries for Python, Ruby, etc.

p Example on the next two slides

34

GUI: Python
import Tkinter
import tkMessageBox
top = Tkinter.Tk()
def helloCallBack():
 tkMessageBox.showinfo("Hello Python", "Hello World")

B = Tkinter.Button(top, text ="Hello", command = helloCallBack)

B.pack()
top.mainloop()

Equivalent Java code: 7 lines
Microsoft Foundation Classes: 25
lines

There are frameworks to create
GUIs for C++, but they are often
not portable across operating
systems

Many scripting languages can be
used to create GUIs that are
viewable from browsers (PHP,
Javascript, Ruby, Python, etc.)

36

Mixed Languages
p Each language is efficient for some tasks
p Dynamically typed languages are often implemented in C

■ as a result, extending these languages with functions written in C
is relatively straightforward and well-documented (SWIG, F2PY)

p C, C++, Fortran were originally written to handle large applications in
a single code. Thus calling functions written in other languages can
be difficult

p The computational scientists seeks efficiency and the best tool for
any job, for example,
■ python to call visualization tools
■ Fortran for fluid simulation
■ C++ to handle complex grids

p It is therefore useful to be able to write a code that can access each
of the above components

37

Efficiency

x is a list 
for i in
range(len(x)):  
 x[i] = sin(x[i])

Numpy module

Pure Python

x is a numpy array 
x = sin(x)

20x slower than Fortran

13x slower than Fortran

38

When to use a Statically Typed Language (C, C+
+, Fortran)
p Answer yes to one of the following:
■ do you need complex algorithms and data

structures where low level control of implement is
important?

■ does app manipulate large datasets so that low
level control of memory handling is important?

■ Are the application’s functions well-defined and
changing slowly?

■ Will static typing be an advantage, e.g., for large
development teams?

39

When to use a Dynamically Typed Language (Python,
Ruby, etc.)

p Answer yes to one of the following:
■ main task is to connect existing components?
■ application includes GUI
■ app performs extensive text manipulation
■ the design of the app is expected to change significantly
■ CPU-time intensive parts of the application are concentrated

in a tiny fraction of the code (so can be recoded in C/C++/
Fortran)

■ The app can be shortened if it is based heavily on lists and
dictionaries with automatic memory administration

■ The app needs to communication with web servers
■ The app must be portable on Unix, Windows and Mac, with a

GUI

40

Bottom line

p Most applications are a combination of
type-safe and dynamically typed
languages

41

Script or Program?

p Programs usually solve large, complex
problems: fluid simulation, building
simulation, biological problems, etc.

p Scripts can also solve large, complex
problems, but usually, they are used to
manipulate the results of these program,
glue things together, and perform a
variety of administrative tasks

42

Hello World 
Python

p file hello.py
p print “hello world”

p # execute program
p python hello.py

43

Hello World Python (2)

p file hello_2.py
p #!/usr/bin/env python 

print “hello world”
p chmod +x hello_2.py
p # execute program
p ./hello_2

44

Hello World (C++)

p Source code in hello.cpp
p #include <stdio.h>
p int main()
p {
p printf("hello world\n");
p return 0;
p }

p Compile and execute
p g++ -o hello hello.cpp
p ./hello

46

Python Documentation

p from within interactive python shell:
■ help(command)

p From the unix/mac shell:
■ pydoc command

p Books and tutorials
■ http://docs.python.org/

■ http://www.alan-g.me.uk/tutor/index.htm

■ http://www.awaretek.com/tutorials.html

http://docs.python.org/
http://www.alan-g.me.uk/tutor/index.htm
http://www.awaretek.com/tutorials.html

48

Class Contents: Python

p Overview (today)
p Modules, Operating system
p lists, dictionaries, sequences
p functions
p text processing
p files, I/O
p numpy for arrays
p classes
p numpy for statistics
p graphical user interfaces
p fortran/C++ and wrapping

47

Class contents: C++

1. documenting source code (Python and C++)

2. Hello world (#include, main, printf)

3. Functions (value, reference, pointers, overloading)

4. input/output (streams)

5. command line input (< and >, stdin, stdout)

6. class (attributes, functions, public, private, protected)

7. class (subclass, polymorphism)

8. Libraries (static and shared) + string, ar, nm

9. Standard Template Library

10. arrays (1d, 2d, 3d)

11. my array class (example)

12. Polymorphism

49

Labs (Python / C++) 
(may change and not in order of presentation)

p Introduction to Python (Python)
p Python Modules(Python)
p A small number game(Python)
p Monitoring and displaying stocks (Python)
p Plotting scientific data (Python)
p Use of the Python Imaging Library (Python)
p Application of FFTs: sound (Python)
p Solving ODEs (C++)
p Manipulating video (C++)
p Wrapping an existing scientific code in C++ and GUI construction

(Python/C++)

50

Tools

p iPython
■ simpler and more powerful command line

framework
p Editor: vi, emacs, pico, gedit, etc.
■ must be simple text (MS-Word not

appropriate)

