
ISC4221-1 Algorithms II Spring 2012

Lab 5: Random Processes

Solving Laplaces equation using Random Walks or How to approximate interior
points in a grid if we know the boundary

In this lab we want to see how we can use Monte Carlo simulation to approximate the solution
to the second order PDE ∆u(x, y) = uxx + uyy = 0 on a given domain such as [0, 1] × [0, 1]. Of
course we need to also specify boundary conditions. Typically, one would use a technique such as
finite difference methods to approximate the solution of a PDE. To solve the problem we overlay
the domain with a grid. If one uses finite difference techniques, then a difference equation is
written at each interior node where the difference equation is obtained by replacing the derivatives
in the original PDE with difference quotients. To use Random Walks to approximate the solution
we take a different approach. At each interior node where we want an approximate solution we
take M random walks (use M = 100). Each random walk is stopped when the walk reaches the
boundary. We then record the value of the boundary condition at the point where the random walk
terminates. We repeat this process M times and then average the values to find the approximation
at that node. We then repeat the process at the next node.

1. In this problem we want to write a routine to perform a single random walk in two dimensions.
If this was all we were going to use the code for, we might assume that the object always
starts at (0,0) and have a tiled square of (2n + 1) × (2n + 1) “tiles of length one and then
we could move one tile to the north, south, east or west; the random walk would continue
until it reaches the boundary, i.e., when x or y is n. Because we will use this routine to
approximate the solution to Laplaces equation we will write the code in a slightly different
way. As described above, we think of overlaying our domain which we assume is a square
region (say [xl, xr] × [yb, yt]) with a uniform grid with spacing ∆x = (xr − xl)/(n + 1) where
n + 1 is the number of cells in each direction. Then we can take a step of length ∆x to the
north, south, east or west. We also want the capability to start the random walk at each
cell point, i.e., (xl + iδx, yb + jδx). Thus we should input the boundaries of our rectangle
xl, xr, yb, yt;and the number of cells in each direction, and the starting point (i, j) whose
coordinates are (xl + iδ, yb + jδ). For this problem you need to output the number of steps,
and the path so you can plot it. Write your code and plot the path of a random walk starting
from 4 different interior locations in your grid. Use the box [0, 1] × [0, 1] with 10 cells in each
direction.

2. We now want to use our code from #1 to approximate the surface (the solution to our PDE)

−∆u = 0 on Ω = (0, 1) × (0, 1)

u = ey cosx on the boundary of Ω

With our brownian motion path we need to do little to get an approximation, once our path
hits the boundary we calculate the u, and add u to the sum for the point i, j, at the end we
divide by the number of steps to get an average for that point:

pi,j =
1

M

∑
u(i′, j′) (1)

where the i′, j′ are the last element in our path starting from i, j.

3. Calculate the sum of squared differences at each grid point i, j with the analytical result
which is u(x, y) = ey cosx; change the grid size from using n = 10 to n = 20 to n = 50, does
the approximation become more accurate, show in a table

1


