
Writing Fast Code with Cython

Robert Bradshaw

SciPy 2008

Bradshaw () Cython SciPy 2008 1 / 25

What is Cython?

Cython is...

an Open Source project

a Python compiler (almost)

an extended Python language for
writing fast Python extension modules
interfacing Python with C (C++, etc.) libraries

Bradshaw () Cython SciPy 2008 2 / 25

A bit of history

April 2002: release of Pyrex 0.1 by Greg Ewing

Greg considers Pyrex a language in design phase
over the years, many people patched their Pyrex
not many patches were accepted by Greg

minor forks and enhanced branches followed
March 2006: Stefan Behnel’s fork of Pyrex for lxml XML toolkit
November 2006: SageX fork of Pyrex

by Robert Bradshaw, William Stein (Univ. Washington)
context: Sage, a free mathematics software package

28th July 2007: o�cial Cython launch
integration of lxml’s Pyrex fork into SageX
the rest is in http://hg.cython.org/cython-devel/

Bradshaw () Cython SciPy 2008 3 / 25

Speed

Cython generates very e�cient C code

according to PyBench
conditions and loops run 2-8x faster than in Py2.5
most benchmarks run 30%-80% faster
overall more than 30% faster for plain Python code

optional type declarations
let Cython generate plain C instead of C-API calls
make code several times faster than the above (up to 100x)

incremental optimization
optimize, don’t re-write
only the pieces you need

Bradshaw () Cython SciPy 2008 4 / 25

How it Works

the Cython compiler reads in a .pxy file and produces a .c file

a C compiler (such as gcc) produces a .so file

the resulting module is linked against the CPython library, and loaded
into the Python runtime environment

The details can be handled by distutils and/or pyximport.

Bradshaw () Cython SciPy 2008 5 / 25

Lets get started

foo.pyx

print "Welcome to SciPy 2008!"

setup.py

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

setup(

cmdclass = {’build_ext ’: build_ext},

ext_modules = [Extension ("foo", ["foo.pyx"])],

)

$ python setup.py build ext --inplace

Bradshaw () Cython SciPy 2008 6 / 25

Declaring types

The primary speedup in Cython comes from statically declaring types.
This is done with the cdef keyword.

cdef keyword

cdef type var

def function(type arg , ...):

...

cdef return_type cfunction(type arg , ...):

...

In the future one will be able to provide typing information via decorators.

Bradshaw () Cython SciPy 2008 7 / 25

more on decorators: https://www.python-course.eu/python3_decorators.php

https://www.python-course.eu/python3_decorators.php

Declaring types

integrate.py

def f(x):

return x*x*x - 3*x

def integrate_f(a, b, N):

s = 0

dx = (b-a)/N

for i in range(N):

s += f(a+i*dx)

return s * dx

Goal: 100x speedup.

Bradshaw () Cython SciPy 2008 8 / 25

Declaring types

integrate.pyx

cdef double f(double x):

return x*x*x - 3*x

def integrate_f(double a, double b, int N):

cdef double s = 0

cdef double dx = (b-a)/N

cdef int i

for i in range(N):

s += f(a+i*dx)

return s * dx

Bradshaw () Cython SciPy 2008 9 / 25

Using external functions

External functions are declared in a cdef extern block

integrate.pyx

cdef extern from "math.h":

double sin(double)

double cos(double)

...

...

Modify your integration code to approximate
R b
a

1p
1+x2 .

Bradshaw () Cython SciPy 2008 10 / 25

Using external functions

You may have to modify your setup.py file as well.

setup.py

ext_modules =[Extension (" integrate", [" integrate.pyx"],

libraries=[’mymath ’],

library_dirs =[’extras ’],

include_dirs =[’extras ’]),

...

integrate.pyx

cdef extern from "mymath.h":

double sinc(double)

Modify your integration code to approximate
R b
a

sin x
x .

Bradshaw () Cython SciPy 2008 11 / 25

Using external functions

One can put declarations in a .pxd file for reuse.

cmath.pxd

cdef extern from "math.h":

double sin(double)

double cos(double)

...

integrate.pyx

from cmath cimport *

Several .pxd files are provided in /Cython/Includes. Additions are
welcome.

Bradshaw () Cython SciPy 2008 12 / 25

Pointers and memory allocation

Python is fully memory managed, C is not.

Cython is both.

stdlib.pxd

cdef extern from "stdlib.h":

ctypedef unsigned long size_t

void *malloc(size_t size)

void *realloc(void *ptr , size_t size)

void free(void *ptr)

Bradshaw () Cython SciPy 2008 13 / 25

Pointers and memory allocation

A list of ints is an int*.

fib.pyx

from stdlib cimport malloc , free

def fib(n):

cdef int* mylist = <int*>malloc(sizeof(int) * n)

mylist [0], mylist [1] = 1, 1

for i in range(n):

mylist[i] = mylist[i-1]+ mylist[i-2]

print mylist[n-1]

free(mylist) # or you will never get it back

Note: The python list type turns out to be quite fast for objects.

Bradshaw () Cython SciPy 2008 14 / 25

NumPy and Bu↵ers

NumPy arrays are fast, e�cient, and flexible.

This summer Dag Seljebotn was funded by Google and Enthought to
provide easy C access to NumPy arrays, and did an excellent job.

Up to 1000x speedup over pure Python code

Bradshaw () Cython SciPy 2008 15 / 25

NumPy and Bu↵ers

fastnumpy.pyx

cimport numpy

def sum(x):

cdef numpy.ndarray[int , ndim =1] arr = x

cdef int i, s = 0

for i in range(arr.shape [0]):

s += arr[i]

return s

This loop gets translated into pure C.

Bradshaw () Cython SciPy 2008 16 / 25

NumPy and Bu↵ers

heat.pyx

def solve_heat(initial_conditions , dx , dt , iter):

cur = initial_conditions.copy()

next = numpy.zeros_like(initial_conditions)

M, N = cur.shape

for count in range(iter):

print count

for i in range(1, M-1):

for j in range(1, N-1):

step = cur[i-1,j] + cur[i+1,j] + cur[i,j-1] + cur[i,j+1] - 4*cur[i,j]

next[i,j] = cur[i,j] + dt*step/dx^2

cur , next = next , cur

return cur

Goal: 1000x speedup.

Bradshaw () Cython SciPy 2008 17 / 25

NumPy and Bu↵ers

To speed things up even more, you can declare

@cython.boundscheck(False)

unsigned int indices

Bradshaw () Cython SciPy 2008 18 / 25

Declaring Extension Classes

.pyx files may contain both normal and extension classes

Extension classes can have

c attributes (public/readonly/private)

c methods (cdef and cpdef)

However, extension classes do not have

dictionaries

multiple inheritance

Take care with special methods

some methods (e.g. arithmetic) work di↵erently

No new , but cinit and dealloc

Bradshaw () Cython SciPy 2008 19 / 25

Declaring Extension Classes

.pyx files may contain both normal and extension classes

Extension classes can have

c attributes (public/readonly/private)

c methods (cdef and cpdef)

However, extension classes do not have

dictionaries

multiple inheritance

Take care with special methods

some methods (e.g. arithmetic) work di↵erently

No new , but cinit and dealloc

Bradshaw () Cython SciPy 2008 19 / 25

Declaring Extension Classes

.pyx files may contain both normal and extension classes

Extension classes can have

c attributes (public/readonly/private)

c methods (cdef and cpdef)

However, extension classes do not have

dictionaries

multiple inheritance

Take care with special methods

some methods (e.g. arithmetic) work di↵erently

No new , but cinit and dealloc

Bradshaw () Cython SciPy 2008 19 / 25

Declaring Extension Classes

.pyx files may contain both normal and extension classes

Extension classes can have

c attributes (public/readonly/private)

c methods (cdef and cpdef)

However, extension classes do not have

dictionaries

multiple inheritance

Take care with special methods

some methods (e.g. arithmetic) work di↵erently

No new , but cinit and dealloc

Bradshaw () Cython SciPy 2008 19 / 25

Declaring Extension Classes

cclass.pyx

cdef class Foo(Bar):

cdef int var

def __init__(self , ...):

...

def foo_py(self , ...):

...

cdef foo_c(self , ...):

...

cpdef foo_c_py(self , ...):

...

Classes must be cimported to use C-level properties.

Bradshaw () Cython SciPy 2008 20 / 25

More types

One can declare structs, unions, enums, and typedefs just as in C.

foo.pyx

ctypedef long foo

cdef struct point:

double x

double y

double z

cdef enum color:

red

orange

yellow

...

Bradshaw () Cython SciPy 2008 21 / 25

C++

Cython is not fully C++ aware (yet) but has the ability to wrap C++.

rect.h

class Rectangle {

public:

int x0 , y0 , x1 , y1;

Rectangle(int x0 , int y0 , int x1 , int y1);

~Rectangle ();

int getLength ();

int getHeight ();

int getArea ();

void move(int dx, int dy);

};

Bradshaw () Cython SciPy 2008 22 / 25

C++

setup.py

lang="c++"

rectangle.pyx

cdef extern from "rect.h":

ctypedef struct c_Rectangle "Rectangle ":

int x0 , y0 , x1 , y1

int getLength ()

int getHeight ()

int getArea ()

void move(int dx, int dy)

c_Rectangle *new_Rectangle "new Rectangle" (int x0, int y0, int x1, int y1)

void del_Rectangle "delete" (c_Rectangle *rect)

Bradshaw () Cython SciPy 2008 23 / 25

Common Pitfalls

Watch out for

untyped extension classes
especially with public attributes and cpdef methods

excessive conversions

too much Python

The easy answer: cython -a is your friend.

Bradshaw () Cython SciPy 2008 24 / 25

Common Pitfalls

Watch out for

untyped extension classes
especially with public attributes and cpdef methods

excessive conversions

too much Python

The easy answer: cython -a is your friend.

Bradshaw () Cython SciPy 2008 24 / 25

Common Pitfalls

Watch out for

untyped extension classes
especially with public attributes and cpdef methods

excessive conversions

too much Python

The easy answer: cython -a is your friend.

Bradshaw () Cython SciPy 2008 24 / 25

Common Pitfalls

Watch out for

untyped extension classes
especially with public attributes and cpdef methods

excessive conversions

too much Python

The easy answer: cython -a is your friend.

Bradshaw () Cython SciPy 2008 24 / 25

Questions?

Bradshaw () Cython SciPy 2008 25 / 25

