
Scipy

Bad	steppingsize		h:	yn	=	yn-1	+	h	f(y,t)

SciPy	
• 	 Is	 a	 collection	 of	 mathematical	 algorithms	 and	
convenience	functions	built	on	the	Numpy	extension	
of	Python.	

• 	 It	 adds	 significant	 power	 to	 the	 interactive	 Python	
session	 by	 providing	 the	 user	 with	 high-level	
commands	 and	 classes	 for	 manipulating	 and	
visualizing	data.	

• Is	the	core	package	for	scientific	routines	in	Python	

• Operate	 efficiently	 on	 numpy	 arrays,	 so	 that	 numpy	
and	scipy	work	hand	in	hand.	

• Contains	 various	 toolboxes	 dedicated	 to	 common	
issues	in	scientific	computing	such	as:	

	 	 	 	 	 interpolation,	 integration,	 optimization,	 image	
processing,	statistics,	special	functions,	etc.	

The	additional	benefit	of	basing	SciPy	:	

• Making	 a	 powerful	 programming	 language	 available	
for	 use	 in	 developing	 sophisticated	 programs	 and	
specialized	applications.		

• 	 Everything	 from	 parallel	 programming	 to	 web	 and	
data-base	 subroutines	 and	 classes	 have	 been	 made	
available	to	the	Python	programmer.	

• scipy.cluster	:		Vector	quantization	/	Kmeans	
• scipy.constants	:	Physical	and	mathematical	constants	
• scipy.fftpack:		Fourier	transform	
• scipy.integrate:		Integration	routines	
• scipy.interpolate:		Interpolation	
• scipy.io:		Data	input	and	output	
• scipy.linalg:		Linear	algebra	routines	
• scipy.ndimage:		n-dimensional	image	package	
• scipy.odr:		Orthogonal	distance	regression	
• scipy.optimize:		Optimization	
• scipy.signal:		Signal	processing	
• scipy.sparse:		Sparse	matrices	
• scipy.spatial:		Spatial	data	structures	and	algorithms	
• scipy.special:		Any	special	mathematical	functions	
• scipy.stats:		Statistics

Solving	ODEs	using	scipy

a = 1.0
b = 0.1
c = 1.5
d = 0.75
rabbits0 = 40
foxes0=25

def myodes(X, t=0):
 """ Return the growth rate of fox and rabbit populations. """
 return np.array([a*X[0] - b*X[0]*X[1] ,
 -c*X[1] + d*b*X[0]*X[1]])

t = np.linspace(0, 30, 1000) # time
X0 = np.array([rabbits0,foxes0]) # initials conditions: 10
rabbits and 5 foxes
X,infodict = integrate.odeint(myodes, X0, t, full_output=True)
infodict['message'] #>>>'Integration successful.'

rabbits, foxes = X.T

Solving	ODEs	using	scipy

File	input/output:	scipy.io  
 
matlab	files: 
	sio.loadmat  
	sio.savemat  
	sio.whosmat  

Savemat:	Save	a	dictionary	of	names	and	arrays	into	a	
MATLAB-style	.mat	file.	

• Reading	Image:

Linear	Algebra:		scipy.linalg	
• The	scipy.linalg.det()	function	computes	the	
determinant	of	a	square	matrix

The	scipy.linalg.inv()	function	computes	the	inverse	of	a	
square	matrix:

SVD:	Singular	Value	Decomposition

• The	original	matrix	can	be	re-composed	by	matrix	
multiplication	of	the	outputs	of	svd	with	np.dot:

Optimization	and	fit:	scipy.optimize

Optimization	is	the	problem	of	finding	a	numerical	solution	to	
a	minimization	or	equality.	The	scipy.optimize	module	
provides	useful	algorithms	for	function	minimization	(scalar	
or	multidimensional),	curve	fitting	and	root	finding.	

This	function	has	a	global	minimum	around	-1.3	and	a	
local	minimum	around	3.8

• The	general	and	efficient	way	to	find	a	minimum	for	
this	function	is	to	conduct	a	gradient	descent	starting	
from	a	given	initial	point.	The	BFGS	algorithm	is	a	
good	way	of	doing	this:

A	possible	issue	with	this	approach	is	that,	if	the	
function	has	local	minima	the	algorithm	may	find	
these	local	minima	instead	of	the	global	minimum	
depending	on	the	initial	point:	

If	 we	 don’t	 know	 the	 neighborhood	 of	 the	 global	
minimum	to	choose	the	initial	point,	we	need	to	resort	
to	 costlier	 global	 optimization.	 To	 find	 the	 global	
minimum,	 the	 simplest	 algorithm	 is	 the	 brute	 force	
algorithm,	 in	which	 the	 function	 is	evaluated	on	each	
point	of	a	given	grid:

Brute	Force	algorithm	becomes	quite	slow	for	larger	
grid	sizes.	Simulated	annealing	can	be	a	good	
alternative:	

Scipy.optimize.anneal()	

For	local	minimum,	we	can	constraint	the	variable	to	the	
interval	and	use:

Root	finding

To	find	a	root,	a	point	where	f(x)	=	0

Only	one	root	is	found.	But	there	is	a	second	root	
around	-2.5.	We	find	
the	exact	value	of	it	by	adjusting	our	initial	guess:	

scipy.optimize.fsolve()		

Other	modules:

Curve	fitting:	
Suppose	we		have	data	sampled	from	f	with	some	noises.	
if	we	know	the	functional	form	of	the	function	from	which	the	
sample,	were	but	not	the	amplitudes	of	the	terms,	we	can	find	
those	by	least	squares	curve	fitting.		
1. we	have	to	define	the	function	to	fit:	
2. We	have	data	sampled	from	f	with	some	noise:	
3. can	use	scipy.optimize.curve_fit()	to	find	a	and	b

Plot	the	curve	and		
fitted	points:

Histogram	and	probability	density	function

Given	observations	of	a	 random	process,	 their	histogram	 is	
an	 estimator	 of	 the	 random	 process’s	 PDF	 (probability	
density	function):	

Scipy	statistic		

cdf:	Cumulative	Distribution	Function  

Interpolation:	scipy.interpolate	  
The	scipy.interpolate	is	useful	for	fitting	a	function	from	experimental	
data	and	thus	evaluating	points	where	no	measure	exists.  

The	scipy.interpolate.interp1d	class	can	build	a	linear	interpolation	
function:	

Then	the	scipy.interpolate.linear_interp	instance	needs	to	be	
evaluated	at	the	time	of	interest:	

A	cubic	interpolation	can	also	be	selected	by	providing	the	kind	
optional	keyword	argument:

Geometrical	transformations	on	images  

http://www.scipy-lectures.org/advanced/image_processing/auto_examples/plot_geom_face.html

plt.imshow(rotate_face_noreshape, cmap=plt.cm.gray)

