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Python programming steps

#!/usr/bin/env python
from __future__ import print_function
import random
import math
#initialize variables
i = 0
n = 100000
r = 1.0
circle = 0.0
square = 0.0
# Do many times:
while i < n:

i = i + 1
#    draw x, y coordinate
x = random.uniform(0.0,r)
y = random.uniform(0.0,r)
#    calculate d from center
d = math.sqrt(x**2 + y**2)
#    check whether d < r:
if d < r:

#       True: add 1 to circle
circle = circle + 1
#       False: do nothing

#    add 1 to square
square = square + 1

# print pi: ratio circle/square * 4
print (“pi = “ + str(circle/square * 4.0))

Enter in file:



Our Pi estimates
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History of ⇡

223/71 < π < 22/7
Archimedes (300 BC)
using 96-side polygons

3.14285714285714283.140845070422535

History topic: A history of Pi

A little known verse of the Bible reads

And he made a molten sea, ten cubits from the one brim to the other: it was round all about, and
his height was five cubits: and a line of thirty cubits did compass it about. (I Kings 7, 23)

The same verse can be found in II Chronicles 4, 2. It occurs in a list of specifications for the great temple of
Solomon, built around 950 BC and its interest here is that it gives ! = 3. Not a very accurate value of course
and not even very accurate in its day, for the Egyptian and Mesopotamian values of 25/8 = 3.125 and "10 =
3.162 have been traced to much earlier dates: though in defence of Solomon's craftsmen it should be noted that
the item being described seems to have been a very large brass casting, where a high degree of geometrical
precision is neither possible nor necessary. There are some interpretations of this which lead to a much better
value.

The fact that the ratio of the circumference to the diameter of a circle is constant has been known for so long
that it is quite untraceable. The earliest values of ! including the 'Biblical' value of 3, were almost certainly
found by measurement. In the Egyptian Rhind Papyrus, which is dated about 1650 BC, there is good evidence
for 4  (8/9)2 = 3.16 as a value for !.

The first theoretical calculation seems to have been carried out by Archimedes of Syracuse (287-212 BC). He
obtained the approximation

223/71 < ! < 22/7.

Before giving an indication of his proof, notice that very considerable sophistication involved in the use of
inequalities here. Archimedes knew, what so many people to this day do not, that ! does not equal 22/7, and
made no claim to have discovered the exact value. If we take his best estimate as the average of his two
bounds we obtain 3.1418, an error of about 0.0002.

Here is Archimedes' argument.

Consider a circle of radius 1, in which we inscribe a regular polygon of 3  2n-1 sides, with semiperimeter bn,
and superscribe a regular polygon of 3  2n-1 sides, with semiperimeter an.

The diagram for the case n = 2 is on the right.

The effect of this procedure is to define an increasing sequence

b1 , b2 , b3 , ...

and a decreasing sequence

a1 , a2 , a3 , ...

such that both sequences have limit !.

Using trigonometrical notation, we see that the two semiperimeters

are given by

an = K tan(!/K), bn = K sin(!/K),

where K = 3  2n-1. Equally, we have

an+1 = 2K tan(!/2K), bn+1 = 2K sin(!/2K),

and it is not a difficult exercise in trigonometry to show that

(1/an + 1/bn) = 2/an+1   . . . (1)

an+1bn = (bn+1)2       . . . (2)

Archimedes, starting from a1 = 3 tan(!/3) = 3"3 and b1 = 3 sin(!/3) = 3"3/2, calculated a2 using (1), then b2
using (2), then a3 using (1), then b3 using (2), and so on until he had calculated a6 and b6. His conclusion was
that

b6 < ! < a6 .

It is important to realise that the use of trigonometry here is unhistorical: Archimedes did not have the
advantage of an algebraic and trigonometrical notation and had to derive (1) and (2) by purely geometrical
means. Moreover he did not even have the advantage of our decimal notation for numbers, so that the
calculation of a6 and b6 from (1) and (2) was by no means a trivial task. So it was a pretty stupendous feat
both of imagination and of calculation and the wonder is not that he stopped with polygons of 96 sides, but
that he went so far.

For of course there is no reason in principle why one should not go on. Various people did, including:

Ptolemy (c. 150 AD) 3.1416
Zu Chongzhi (430-501 AD) 355/113
al-Khwarizmi (c. 800 ) 3.1416
al-Kashi (c. 1430) 14 places
Viète (1540-1603) 9 places
Roomen (1561-1615) 17 places
Van Ceulen (c. 1600) 35 places

Except for Zu Chongzhi, about whom next to nothing is known and who is very unlikely to have known about
Archimedes' work, there was no theoretical progress involved in these improvements, only greater stamina in
calculation. Notice how the lead, in this as in all scientific matters, passed from Europe to the East for the
millennium 400 to 1400 AD.

Al-Khwarizmi lived in Baghdad, and incidentally gave his name to 'algorithm', while the words al jabr in the
title of one of his books gave us the word 'algebra'. Al-Kashi lived still further east, in Samarkand, while Zu
Chongzhi, one need hardly add, lived in China.

The European Renaissance brought about in due course a whole new mathematical world. Among the first
effects of this reawakening was the emergence of mathematical formulae for !. One of the earliest was that of
Wallis (1616-1703)
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History of ⇡
Here is a summary of how the improvement went:

1699: Sharp used Gregory's result to get 71 correct digits
1701: Machin used an improvement to get 100 digits and the following used his methods:
1719: de Lagny found 112 correct digits
1789: Vega got 126 places and in 1794 got 136
1841: Rutherford calculated 152 digits and in 1853 got 440
1873: Shanks calculated 707 places of which 527 were correct

A more detailed Chronology is available.

Shanks knew that ! was irrational since this had been proved in 1761 by Lambert. Shortly after Shanks'
calculation it was shown by Lindemann that ! is transcendental, that is, ! is not the solution of any polynomial
equation with integer coefficients. In fact this result of Lindemann showed that 'squaring the circle' is
impossible. The transcendentality of ! implies that there is no ruler and compass construction to construct a
square equal in area to a given circle.

Very soon after Shanks' calculation a curious statistical freak was noticed by De Morgan, who found that in
the last of 707 digits there was a suspicious shortage of 7's. He mentions this in his Budget of Paradoxes of
1872 and a curiosity it remained until 1945 when Ferguson discovered that Shanks had made an error in the
528th place, after which all his digits were wrong. In 1949 a computer was used to calculate ! to 2000 places.
In this and all subsequent computer expansions the number of 7's does not differ significantly from its
expectation, and indeed the sequence of digits has so far passed all statistical tests for randomness.

We should say a little of how the notation ! arose. Oughtred in 1647 used the symbol d/! for the ratio of the
diameter of a circle to its circumference. David Gregory (1697) used !/r for the ratio of the circumference of
a circle to its radius. The first to use ! with its present meaning was an Welsh mathematician William Jones in
1706 when he states "3.14159 andc. = !". Euler adopted the symbol in 1737 and it quickly became a standard
notation.

We conclude with one further statistical curiosity about the calculation of !, namely Buffon's needle
experiment. If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length k
< 1 on the grid, the probability that the needle falls across a line is 2k/!. Various people have tried to calculate
! by throwing needles. The most remarkable result was that of Lazzerini (1901), who made 34080 tosses and
got

! = 355/113 = 3.1415929

which, incidentally, is the value found by Zu Chongzhi. This outcome is suspiciously good, and the game is
given away by the strange number 34080 of tosses. Kendall and Moran comment that a good value can be
obtained by stopping the experiment at an optimal moment. If you set in advance how many throws there are
to be then this is a very inaccurate way of computing !. Kendall and Moran comment that you would do better
to cut out a large circle of wood and use a tape measure to find its circumference and diameter.

Still on the theme of phoney experiments, Gridgeman, in a paper which pours scorn on Lazzerini and others,
created some amusement by using a needle of carefully chosen length k = 0.7857, throwing it twice, and
hitting a line once. His estimate for ! was thus given by

2  0.7857 / ! = 1/2

from which he got the highly creditable value of ! = 3.1428. He was not being serious!

Very soon after Shanks' calculation a curious statistical freak was noticed by De Morgan, who found that in the last of 707 
digits there was a suspicious shortage of 7's. He mentions this in his Budget of Paradoxes of 1872 and a curiosity it remained 
until 1945 when Ferguson discovered that Shanks had made an error in the
528th place, after which all his digits were wrong. In 1949 a computer was used to calculate π to 2000 places. In this and all 
subsequent computer expansions the number of 7's does not differ significantly from its expectation, and indeed the 
sequence of digits has so far passed all statistical tests for randomness.

Buffon's needle experiment. If we have a uniform grid of parallel lines, unit distance apart and if we drop a needle of length k 
< 1 on the grid, the probability that the needle falls across a line is 2k/π. Various people have tried to calculate π by 
throwing needles. The most remarkable result was that of Lazzerini (1901), who made 34080 tosses and got
π = 355/113 = 3.1415929
which, incidentally, is the value found by Zu Chongzhi. This outcome is suspiciously good, and the game is given away by the 
strange number 34080 of tosses. Kendall and Moran comment that a good value can be obtained by stopping the 
experiment at an optimal moment. If you set in advance how many throws there are to be then this is a very inaccurate way 
of computing π. Kendall and Moran comment that you would do better to cut out a large circle of wood and use a tape 
measure to find its circumference and diameter.



In the State of Indiana in 1897 the House of Representatives unanimously passed a Bill introducing 
a new mathematical truth:

Be it enacted by the General Assembly of the State of Indiana: It has been found that a circular 
area is to the square on a line equal to the quadrant of the circumference, as the area of an 
equilateral rectangle is to the square of one side. (Section I, House Bill No. 246, 1897)

The Senate of Indiana showed a little more sense and postponed indefinitely the adoption of the 
Act!

⇡
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Strings
>>> a = "going to class“
>>> b = 'going to class‘
>>> c = """going to class""“
>>> d = r'going to class'

using Triple quotes
‘\n’ is a carriage 

return
raw format

In [39]: a="""going  
   ....:     to school 
   ....:   late 
   ....: """ 

In [40]: a 
Out[40]: 'going \n    to school\n  late\n' 

In [41]: print a 
going  
    to school 
  late 
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Advantage of raw format
I want to encode the string:  “path\to\file”

“\” is a special character and one must do: “\\”

In [72]: a='\a\b\c' 

In [73]: a 
Out[73]: '\x07\x08\\c' 

In [74]: print a 
\c 

In [75]: a="""\a\b\c""" 

In [76]: print a 
\c 

In [77]: a=r'\a\b\c' 

In [78]: print a 
\a\b\c 

In [79]: a='\\a\\b\\c' 

In [80]: print a 
\a\b\c
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Booleans

A boolean is either True or False

In some languages, -1 if true, all else is false, in others, 0 is false, all else is true

In Python : the number 0 is false, all other numbers are true. Do not assume this!!!

None, (), [], 0, “” returns false

bool(None) ==> False

bool([]) ==> False

bool(34) ==> True

bool(None or 34) ==> True

bool(34 and (not 0 or “”)) ==> True 
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What is None?

None is the absence of definition

“”  is the empty string

In [1]: bool(trip) 
------------------------------------------------------------------ 
NameError                                 Traceback (most recent 
call last) 
<ipython-input-1-2b29e319ed42> in <module>() 
----> 1 bool(trip) 

NameError: name 'trip' is not defined 

In [2]: trip=None 
In [3]: bool(trip) 
Out[3]: False 

In [4]: trip="" 
In [5]: bool(trip) 
Out[5]: False 

In [6]: trip=3 
In [7]: bool(trip) 
Out[7]: True 



Lists

• A collection of objects

• There is an order

-    a[0] comes before a[1]

• List elements can be modified (mutable)

• Heterogeneous (strings, ints, floats, functions)



Lists
• a = []       #empty list

• a.extend([3,4])    # a = [3,4]

• a.append([3,4])    # a = [3,4,[3,4]]   (add single element)

• a.extend([3,4])     # a = [3,4,[3,4],3,4] (add elements)

• a[1] = ‘pyth‘         # a = [3,‘pyth’,[3,4]]

• mutable

• heterogeneous

• type(a)      #  <type ‘list’>



List Initialization
• Use the “*” operator

-     a = [3] * 10   ==> [3,3,....,3]

-     b = [3,4,5] * 7  ==> [3,4,5,3,4,5,...,3,4,5]

- c = ‘hu’ * 5  ==> ‘huhuhuhuhu’

• Use an iterator

- a = list(xrange(5)) #  [0,1,2,3,4]

- print xrange(5)     #   xrange(5)

- type(xrange(5))     # <type ‘xrange’> (iterator)

class xrange(object) 
 |  xrange(stop) -> xrange object 
 |  xrange(start, stop[, step]) -> xrange object 
 |   
 |  Like range(), but instead of returning a list, returns an object that 
 |  generates the numbers in the range on demand.  For looping, this is  
 |  slightly faster than range() and more memory efficient. 

xrange() obsolete in Python 3
it got rerplaced by range()



Special lists
• range(5)    # returns 0,1,2,3,4

• xrange(5)   # iterator object

• dir([])  
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', 
'__delslice__', '__doc__', '__eq__', '__format__', '__ge__', 
'__getattribute__', '__getitem__', '__getslice__', '__gt__', '__hash__', 
'__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', 
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', 
'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', 
'__setslice__', '__sizeof__', '__str__', '__subclasshook__', 'append', 
'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

• a = range(5)  
a.reverse().sort()   # in place reversion followed by a sort



References
>>> a = range(8)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7]
>>> b = a
>>> b[5] = 'class'
>>> a
[0, 1, 2, 3, 4, 'class', 6, 7]
>>> 

b is a reference to a
any change to an element to b also changes a



Slicing
>>> a = range(8)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7]
>>> b = a[:]
>>> b[5] = 'class'
>>> a
[0, 1, 2, 3, 4, 5, 6, 7]
>>> b
[0, 1, 2, 3, 4, 'class', 6, 7]

a[:] is an example of a splice
Slices are copies of a subset of the original array

b is a copy of a
Changing an element of b 
  does not change a



Slicing

• a = range(5) # [0,1,2,3,4]

• a[3:5]           #  [3,4]

• a[3:]            # [3,4]

• a[-3]            # 2

• a[-1]            # 4

• a[-3:-1]        # [2,3]



List Errors

• c[3] = 4   

- # Name error: c not defined

• c = []

• c[3] = 2    

- # Index error: list assignment index out 
of range



Sequences,Tuple

• A sequence is similar to a list, except that it 
cannot be modified

- immutable



Sequence (Tuple)

• Immutable (= Cannot be changed)

• a = (2,3,5)

• a[1] = 3   # exception

• a = (3)    # not a sequence

• a = 3,   # or (3,)  is a sequence



Sequence

>>> a = (1,2,3)
>>> type(a)
<type 'tuple'>
>>> dir(a)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', 
'__eq__','__format__', '__ge__', '__getattribute__', 
'__getitem__', '__getnewargs__','__getslice__', '__gt__', 
'__hash__', '__init__', '__iter__', '__le__', '__len__','__lt__', 
'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', 
'__repr__', '__rmul__', '__setattr__', '__sizeof__', '__str__', 
'__subclasshook__', 'count', 'index']

Immutable object



>>> a = ('notes',3,-34,7)
>>> a[1] = 3                # immutable
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> a + (5,6,7)             # a.__add__((5,6,7))
('notes', 3, -34, 7, 5, 6, 7)
>>> len(a)                    # a.__len__
4
>>> a*3                        #  a.__mul__(3)
('notes', 3, -34, 7, 'notes', 3, -34, 7, 'notes', 3, -34, 7)
>>> a[5]                       #  a.__getitem__(5)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: tuple index out of range
>>> a[2]
-34
>>> a
('notes', 3, -34, 7)



Dictionaries
• A list can contain anything, but there is an order: the list 

can be indexed. 

• A dictionary (also called hash) is a collection of (key:value) 
pairs

• There is no indexing

• The key can be any immutable object

- int, float, long, sequence, string

• The value can be any object (mutable, immutable)

- list, class, function, etc.



Dictionary
• a= {}    #  or a = dict()  (not common)

• c = {‘1’: ‘peter’, 2 : ‘lucrezia’}

- c[‘1’]  #   ‘peter’

- c[1]    # error (key not defined)

• a[3] = ‘gordon’

• a[‘egg’] = ‘steamed’

• a[(3,4,5)] = [‘class’, [3,4,5], 6]

• b = a[(3,4,5)][2]   returns  6

• dict[key] = value



Dictionary

•    variable[key] = value

• key can be:

- any immutable object

- string, int, float, sequence



Dictionary

• dir({})

• ['__class__', '__cmp__', '__contains__', '__delattr__', '__delitem__', 
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', 
'__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', 
'__len__', '__lt__', '__ne__', '__new__', '__reduce__', 
'__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', 
'__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'has_key', 
'items', 'iteritems', 'iterkeys', 'itervalues', 'keys', 'pop', 'popitem', 
'setdefault', 'update', 'values']



>>> a = {}
>>> a[3] = 'gor'
>>> a['frank'] = 'code'  
>>> a['grow'] = 35.5
>>> a.keys()          
['frank', 3, 'grow']
>>> del a['grow']
>>> a.keys()
['frank', 3]
>>> len(a)
2
>>> c = a[‘grow’]
>>> c = a.__getitem__('frank')
>>> c
‘code’



Dictionary Members
>>> a = {}
>>> a[3] = (3,5,6)
>>> a[('joe', 34)] = 'exam'
>>> a['area'] = 3.56
>>> a.keys()
[3, ('joe', 34), 'area']
>>> a.values()
[(3, 5, 6), 'exam', 3.5600000000000001]
>>> a.itervalues()
<dictionary-valueiterator object at 0x374a80>
>>> a.has_key((3,5))
False
>>> a.has_key((3,5,6))
False
>>> a.has_key(('joe',34))
True
>>> 

>>> a={} 
>>> a[1]='peter' 
>>> a[2]='jasmin' 

>>> a.items() 
[(1, 'peter'), (2, 'jasmin')] 

>>> a.keys() 
[1, 2] 
>>> a.values() 
['peter', 'jasmin'] 



Sets
• A set is a collection of objects

• There is no order to these objects

• Each element in a set is unique

- contrary to a list

- a list a = [1,2,3,3,3]   can contain the integer 3 
three times

- s = set((1,2,3,3,3)) or set([1,2,3,3,3]) returns 
set([1,2,3])  (the other two 3’s are removed)



Set
• a = set()

• dir(a)

• ['__and__', '__class__', '__cmp__', '__contains__', '__delattr__', 
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', 
'__gt__', '__hash__', '__iand__', '__init__', '__ior__', '__isub__', 
'__iter__', '__ixor__', '__le__', '__len__', '__lt__', '__ne__', 
'__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', 
'__repr__', '__ror__', '__rsub__', '__rxor__', '__setattr__', 
'__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 
'add', 'clear', 'copy', 'difference', 'difference_update', 
'discard', 'intersection', 'intersection_update', 'isdisjoint', 
'issubset', 'issuperset', 'pop', 'remove', 



Unique words with Sets
• Assume the following task: 

- given two books, what are the words common to 
both (plurals and other inflections count as 
separate words)

• Solution

- collect all the words from book A into setA, and 
collect all the words from book B into setB. The 
required set of unique words is then simply

- unique_words = setA.intersect(setB)


