ISC4304 Programming Science Applications Spring 2015

Lab 6: Bayesian analysis of a dice toss problem

Due date: Thursday Feb 26, 11:59pm

Short version of the assignment

Each you get a 4D die: Figure out whether the die is fair or unfair, report most likely probabilities
for each side. Write a report and tell Haleh your findings (including the code and the data)

Slightly longer version of the assignment

Use the die | gave you to throw, say 50 times,
and record the outcome (it will be 1,2,3, or 4),
this will be your data D for the exercise. We will
construct a program that is doing Bayesian in-
ference and estimate the posterior probabilities
P(p|D) of the probability p of each side of the
die. A short refresher on Bayesian inference:
Bayes theorem suggests that we can get proba-
bility of the parameters of a model (your p) given
the data D but assuming some distribution of the
parameters and also knowing how to calculate
the likelihood that the data fits a particular model
(with a specified set of p values), then we can
formulate:

P(p)P(Dlp)

P(pID) = =T

(1)

the quantity in the denominator is a scaler so that the posterior distribution integrates to 1.0,
thus we could say the P(D) is the integral over all possible values of p: fp P(p)P(D|p)dp, but for
our analysis we can dodge the calculation of this because we use Markov chain Monte Carlo to
estimate our quantities. We thus can use

P(p|D) o< P(p)P(Dlp). (2)
Our task can be broken down into 4 steps:
1. Construct the likelihood function
2. Construct the prior

3. Construct Markov chain Monte Carlo sampler (including a method how to change the p using
our prior)

4. Visualize the results, print means etc.

ISC4304 Programming Science Applications Spring 2015

1 Likelihood

We observe results that could be summarized like this: 1: 5, 2: 10, 3:6, 4:9. We have 5 throws
that resulted in a 1, 10 throws for 2, 6 throws for 3 and 9 throws for 4, for a total of 30 throws. We
will use this data further as a list [5,10,6,9], or more abstract [a,b,c,d]. If we would use a coin that
we could report heads or tails and would use a binomial distribution, bur for our problem we have
4 sides, thus will need an extension of the binomial and use the multinomial distribution, that can
be calculated like this

30!
R (3)

o n! ab c d __
P(Dlp) = iiaaiPiP2PsPs = 501619

The problem with this is that the result will be difficult for large numbers of throws, for example 100
or 200 throws will result in problems to calculate the factorials, a remedy to this is to operate all
calculations in logs, if we do that then we get

log P(D|p) = (logf(n) — (logf(a) + logf (b) + logf(c) + logf(d))) + alogpi + blogps + clogps + dlog ps
(4)

We could calculate logf as the log of a factorial but that breaks with large numbers, we approxi-
mate using this

log(z!) = gammaln(z + 1) (5)

gammaln is available within numpy or scipy.

2 Prior

we will use prior that can take the p and calculate probability density function, appropriate for our
problem is the Dirichlet distribution that takes p assuming that the p sum to 1 and also uses a set

of parameters, we are laze and use a vector a with all ones, for our problem o = [1, 1,1, 1], this is
equivalent to flat prior where we believe all p come from the same distribution. The Dirichlet PDF
needs to be coded because neither numpy nor scipy have it (weirdly enough). There is sample

code in this post
http://stackoverflow.com/questions/10658866/calculating-pdf-of-dirichlet-distribution-in-python,
take the code and create a function that may look like this:

def pdf dirichlet(alpha):

3 Markov chain Monte Carlo (MCMC)

e Propose new values p: We can propose new values for p from the prior, this is easy because
numpy HAS a function for that: np.random.dirichlet(alpha) where alpha is our o from
above.

e Start with an arbitrary value for example p=np.random.dirichlet (alpha), evaluate the pos-
terior with these p, post=pdf dirichlet(alpha) * like(data,p),then run for alarge num-
ber of cycles through this recipe:

1. propose new p

ISC4304 Programming Science Applications Spring 2015

2. evaluate the new posterior new

3. compare new with o1d (see above the post that probably should better called 014); if the
new is better than the o1d we will accept the new p and record it (for example append
it to results), if new is smaller than o1d we accept with some probability r, this can be
done easily using a condition » < new/old, but remember, we used logs to calculate all
quantities, so our condition turns into this:

r = numpy.random.uniform(0,1)
if np.log(r) < new - old:
append new p to results
oldp = p
old = new
else:
append old p to results

The results contain now a chain of accepted’ p values, a histogram of these will represent the
posterior.

4 Visualize results

Use a histogram to show the bars for each posterior for each side of the die. Check out the hist
examples. Discuss your results, if you are adventours, try to calculate the credibility intervals.

Peter Beerli February 2015

