
Object	Oriented	Programming

Haleh	Ashki	2015,	updated	Peter	Beerli	2017

Object	Oriented	Programming

Traditionally,	a	program	has	been	seen	as	a	recipe	–	a	set	of	
instructions	that	you	follow	from	start	to	finish	in	order	to	complete	a	
task.	That	approach	is	sometimes	known	as	procedural	
programming.	

Broadly,	object	oriented	programming	is	the	concept	that,	in	
programming,	the	objects	that	we’re	manipulating	are	more	
important	than	the	logic	needed	to	manipulate	those	objects.	

Putting	the	objects	at	the	center	of	the	process,	instead	of	simply	
using	them	as	necessary	containers	for	information	as	part	of	our	
procedural	instructions	

First,	we	define	the	objects	we	want	to	manipulate	and	how	they	
relate	to	each	other,	and	then	we	start	to	flesh	it	out	with	logic	to	
make	the	program	actually	work.

The	roots	go	back	to	1960s.	The	first	programming	language	to	
use	objects	was	Simula	67.	

There	are	those	who	glorify	OOP	and	think	that	anything	which	is	
not	programmed	in	an	object	oriented	way	can't	be	good.	On	the	
other	hand	there	are	well	known	computer	scientists	and	
specialists	who	criticize	OOP.	

OOP	helps	for	software	engineering	(SE)	
• 	(SE)	is	the	discipline	of	managing	code	to	ensure	its	long-term	

use	
• remember	SE	via	refactoring:	
– takes	existing	code	and	modifies	it	
– makes	the	overall	code	simpler,	easier	to	understand	
– doesn't	change	the	functionality,	only	the	form!

OOP	principles

• encapsulation:	hiding	design	details	to	make	the	program	
clearer	and	more	easily	modified	later	

• modularity:	the	ability	to	make	objects	stand	alone	so	they	can	
be	reused	(our	modules).	Like	the	math	module	

• inheritance:	create	a	new	object	by	inheriting	(like	father	to	
son)	many	object	characteristics	while	creating	or	over-riding	
for	this	object	

• polymorphism:	(hard)	Allow	one	message	to	be	sent	to	any	
object	and	have	it	respond	appropriately	based	on	the	type	of	
object	it	is.

An	object	oriented	program	is	based	on	classes	and	there	exists	a	
collection	of	interacting	objects,	as	opposed	to	the	conventional	
model,	in	which	a	program	consists	of	functions	and	routines.	In	OOP,	
each	object	can	receive	messages,	process	data,	and	send	messages	to	
other	objects.

An	OOP	approach	is	to	define	the	objects	we’re	going	to	be	using.	The	
way	we	do	this	is	to	first	define	the	properties	that	it	possesses	using	a	
class.	You	can	think	of	a	class	as	a	sort	of	template;	a	guide	for	the	way	
an	object	should	be	structured.	Each	object	belongs	to	a	class	and	
inherits	the	properties	of	that	class,	but	acts	individually	to	the	other	
objects	of	that	class.	

An	object	is	sometimes	referred	to	as	an	‘instance’	of	a	class.

Class	versus	instance

• One	of	the	harder	things	to	get	is	what	a	class	is	and	what	an	
instance	of	a	class	is.	

• The	analogy	of	the	cookie	cutter	and	a	cookie.

Template	vs	exemplar
• The	cutter	is	a	template	for	stamping	out	cookies,	the	cookie	is	

what	is	made	each	time	the	cutter	is	used	
• One	template	can	be	used	to	make	an	infinite	number	of	

cookies,	each	one	just	like	the	other.	
• No	one	confuses	a	cookie	for	a	cookie	cutter,	do	they?

• You	define	a	class	as	a	way	to	generate	new	instances	of	that	
class.	

• Both	the	instances	and	the	classes	are	themselves	objects	
• The	structure	of	an	instance	starts	out		the	same,	as	dictated	

by	the	class.	
• The	instances	respond	to	the	messages	defined	as	part	of	the	

class.

Same	in	OOP

A	class	contains	variables	and	methods.	If	you	bake	a	cake	you	need	
ingredients	and	instructions	to	bake	the	cake.		

There	are	class	variables,	which	have	the	same	value	in	all	methods	
and	their	are	instance	variables,	which	have	normally	different	
values	for	different	objects.	A	class	also	has	to	define	all	the	
necessary	methods,	which	are	needed	to	access	the	data.	

Customer

Name		
Balance

Withdraw	
Deposit

Attributes,	properties

methods

A	simple	example:	

you	might	have	a	class	named	‘person’	with	an	age	and	a	name	
property.  

An	instance	of	that	class	(an	object)	would	be	a	single	person.	
That	person	might	have	a	name	of	“Andy”	and	an	age	of	23.	

	You	could	simultaneously	have	another	person	belonging	to	the	
same	class	with	the	name	of	“Lucy”	and	an	age	of	18.

class	pet:	
	 number_of_legs	=	0	

doug	=	pet()

Classes	in	python	start	with	keyword	“class”		

Class	pet	is	used	to	create	pet	object.		
Doug	is	an	object,	known	as	instant,	is	the	realized	version	of	the	pet		
class.	

We	can	create	as	many	pet	objects	as	we’d	like.	
There	is	still,	however,	only	one	Pet	class,	regardless	of	how	many	
instances	of	the	class	we	create.

dot	reference

• we	can	refer	to	the	attributes	of	an	object	by	doing	a	dot	
reference,	of	the	form:	

 object.attribute

• the	attribute	can	be	a	variable	or	a	function	
• it	is	part	of	the	object,	either	directly	or	by	that	object	being	

part	of	a	class

Example:

print(my_instance.my_val)
print	a	variable	associated	with	the	object	my_instance

my_instance.my_method()
call	a	method	associated	with	the	object	my_instance

variable	versus	method,	you	can	tell	by	the	parenthesis	at	the	end	
of	the	reference

dir()	function

The	dir() function	lists	all	the	attributes	of	a	class	
• you	can	think	of	these	as	keys	in	a	dictionary	stored	in	
the	class.

Instance	knows	its	class
• Because	each	instance	has	as	its	type	the	class	that	it	was	

made	from,	an	instance	remembers	its	class	
• This	is	often	called	the	instance-of	relationship	
• stored	in	the	__class__	attribute	of	the	instance

Pass	Keyword:	

The	pass	keyword	is	used	to	signify	that	you	have	intentionally	
left	some	part	of	a	definition	(of	a	function,	of	a	class)	undefined.	

by	making	the	suite	of	a	class	undefined,	we	get	only	those	things	
that	Python	defines	for	us	automatically

Scope	in	Class	and	Instance	 

Methods:	

	Essentially,	a	method	is	a	function,	but	it's	a	special	kind	of	function	
which	belongs	to	a	class.		

It	is	defined	within	a	class,	and	works	on	the	instance	and	class	data	of	
this	class.		

It	is	defined	in	exactly	the	same	way	as	function,	but	the	difference	is	it	
is		inside	a	class,	and	it	belongs	to	that	class.	

Methods	can	only	be	called	through	instances	of	a	class	or	a	subclass,	
i.e.	the	class	name	followed	by	a	dot	and	the	method	name.	

method	versus	function

• A	method	and	a	function	are	closely	related.	They	are	both	
“small	programs”	that	have	parameters,	perform	some	
operation	and	(potentially)	return	a	value	

• main	difference	is	that	methods	are	functions	tied	to	a	
particular	object

difference	in	calling

functions	are	called,	methods	are	called	in	the	context	of	an	
object:	
•function:		
 do_something(param1)

•method:		
 an_object.do_something(param1)

This	means	that	the	object	that	the	method	is	called	on	is	always	
implicitly	a	parameter!

difference	in	definition

• methods	are	defined	inside	the	suite	of	a	class	
• methods	always	bind	the	first	parameter	in	the	definition	to	
the	object	that	called	it	

• This	parameter	can	be	named	anything,	but	traditionally	it	is	
named	self	

class MyClass(object):
 def my_method(self,param1):
 suite

Example	of	using	classes	and	methods

There	is	another	difference	between	a	method	and	a	function:		

a	method	always,	always,	always	has	to	have	an	argument,	called	
‘self’	between	the	parentheses.	

	When	Python	calls	a	method,	what	it	does	is	passes	the	current	
object	to	that	method	as	the	first	argument.	In	other	words,	when	
we	call	doug.sleep(),	Python	is	actually	going	to	pass	the	object	
‘doug’	as	an	argument	to	the	sleep	method.

• Self	is	passing	parameter	to	all	of	the	Customer	methods	

• So	when	we	say	def	withdraw(self,	amount):,	we're	saying,	
"here's	how	you	withdraw	money	from	a	Customer	object	
(which	we'll	call	self)	and	a	dollar	figure	(which	we'll	
call	amount).		

• self	is	the	instance	of	the	Customer	that	withdraw	is	being	
called	on.	

Self

more	on	self

• self is	an	important	variable.	In	any	method	it	is	bound	to	
the	object	that	called	the	method	

• through	self we	can	access	the	instance	that	called	the	
method	(and	all	of	its	attributes	as	a	result)

Binding	self

Python	Standard	Methods

Python	provides	a	number	of	standard	methods	which,	if	
the	class	designer	provides,	can	be	used	in	a	normal	
"Python"	way	
• many	of	these	have	the	double	underlines	in	front	and	
in	back	of	their	name	

• by	using	these	methods,	we	"fit	in"	to	the	normal	
Python	flow

Standard	Method:	Constructor

• Constructor	is	called	when	an	instance	is	made,	and	provides	
the	class	designer	the	opportunity	to	set	up	the	instance	with	
variables,	by	assignment

calling	a	constructor	

As	mentioned,	a	constructor	is	called	by	using	the	name	of	the	
class	as	a	function	call	(by	adding	()	after	the	class	name)	

student_inst = student()

• creates	a	new	instance	using	the	constructor	from	class	
Student	

defining	the	constructor

• one	of	the	special	method	names	in	a	class	is	the	constructor	
name,	__init__

• by	assigning	values	in	the	constructor,	every	instance	will	start	
out	with	the	same	variables	

• you	can	also	pass	arguments	to	a	constructor	through	its	init	
method

Account	constructor
def __init__(self, holder, number,
balance,credit_line=1500):

 self.Holder = holder
 self.Number = number
 self.Balance = balance
 self.CreditLine = credit_line

• self	is	bound	to	the	default	instance	as	it	is	being	made	
• If	we	want	to	add	an	attribute	to	that	instance,	we	modify	the	

attribute	associated	with	self.

• This	is	why	when	we	call	__init__,	we	initialize	objects	by	saying	things	
like	self.name	=	name.		

• Remember,	since	self	is	the	instance,	this	is	equivalent	to	
saying	,	self.balance	=	balance	is	the	same	as	jeff.balance	=	1000.0.		

• After	these	two	lines,	we	consider	the	Customer	object	"initialized"	
and	ready	for	use.

