
Iterators, Generators

Iterators
An ITERABLE is:

	 •	 anything that can be looped over

(i.e. you can loop over a string or
file)

	 •	 anything that can appear on the
right-side of a for-loop: for	x	
in	iterable:	...

	 •	 anything you can call with
iter() have it return an
ITERATOR: iter(obj)

	 •	 an object that defines __iter__
that returns a fresh ITERATOR,
or it may have a __getitem__
method suitable for indexed
lookup.

Raymond Hettinger

Many functions consume iterables

Raymond Hettinger

An ITERATOR is:

	 •	 an object with state that

remembers where it is during
iteration

	 •	 an object with a __next__
method (Python 3; next before)
that:

	 •	 returns the next value in the
iteration

	 •	 updates the state to point at
the next value

	 •	 signals when it is done by
raising StopIteration

	 •	 an object that is self-iterable
(meaning that it has an
__iter__ method that returns
self).

Iterators are implemented as classes. Here is an iterator that works like built-in
xrange function.

How would we write a reverse iterator
given our class yrange ?

Generators

facilitate the construction of iterators

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

So a generator is also an iterator. You don’t have to worry about the iterator protocol.

The word “generator” is confusingly used to mean both the function that generates and
what it generates.

We will use the word “generator” to mean the generated object and “generator function”
to mean the function that generates it.

Can you think about how it is working internally?

When a generator function is called, it returns a generator object without even beginning
execution of the function. When next method is called for the first time, the function
starts executing until it reaches yield statement. The yielded value is returned by the
next call.
The following example demonstrates the interplay between yield and call to next
method on generator object.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

Another example:
Lets say we want to find first 10 (or any n) pythagorian triplets.
A triplet (x, y, z) is called pythagorian triplet if x*x + y*y == z*z.

It is easy to solve this problem if we know till what value of z to test for.
But we want to find first n pythagorian triplets.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

