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Some background on the program Structure
Lisa N. Barrow and Peter Beerli

The program Structure [Pritchard et al., 2000] uses multi-
locus genotype data to investigate population structure. The
program is used frequently to infer the presence of distinct
populations, assigning individuals to populations, studying
hybrid zones, identifying migrants and admixed individuals,
and estimate population allele frequencies in situations where
many individuals are migrants or admixed. Structure uses
Bayes theorem to calculate posterior distributions and uses
Markov Chain Monte Carlo (MCMC).

I. BACKGROUND

Often in population genetic studies, we record genetic
differences among sampled individuals. Some questions we
may want to address are: (1) Are populations really different
from each other?; and (2) If we have an individual’s genotype,
can we figure out which population it came from? If, for
example, we a have a set of individuals sampled for a number
of loci (Table I.

Table I
EXAMPLE OF A GENOPTYPE DATA SET.

Individual Locus1 Locus2

1 AA ...
2 AA ...
3 BB ...
4 CB ...
5 CB ...

We could sort the different genotypes into two groups,
e.g. Group 1: AA, AA and Group 2: BB, BB, and CB,
but we need some sort of justification for these groupings.
Clustering methods like Structure, Structurama [Huelsenbeck
and Andolfatto, 2007], and many others use an optimality
criterium to determine how different sampled individuals are.

Clustering methods fall into two main categories: distance-
based and model-based methods. Distance-based methods,
such as K-means clustering, work by calculating distances
between individuals and assigning them to clusters in a way
that minimizes the distances between an individual coordinate
and a center point for that cluster. Structure is in a way very
similar to k-means clustering but it does not use distances
among individuals. It is a model-based method that takes a
probabilistic approach to assign individuals to populations un-
der certain assumptions, for example the populations (clusters)
need to be in Hardy-Weinberg equilibrium (HWE), or there
is no admixture (each individuals is purely only from one
population). In contrast to distance methods such assumptions
can be relaxed and Structure allows for deviation of the HWE
and also for admixed individuals (an individuals could be a
mixture of different populations, for example locus 1 has an

ancestor in population A, whereas locus 5 has an ancestor in
population B.

II. THE MODEL

The basic model assumes Hardy-Weinberg equilibrium
within populations and linkage equilibrium between loci
within populations. Here we also assume that each locus is
independent. For each individual, we want to know its popu-
lation of origin. We also want to know the allele frequencies
in each population.

The vector, Zi, represents the population of origin of each
individual i, and Pj is a vector of the allele frequencies of
the population j. Both vectors Z and P are unknown and we
want to estimate them. We have the data X , which is a long
list of genotypes for every individual for every locus. IN our
framework we can now (in principle) calculate how probable
is it to see a particular data set X if we know Z and P , we
want to calculate the likelihood of Z and P or, equivalently,
the probability of the data X given known Z and known P .

Pr(X|Z,P )

In the best of all worlds we could experiment with different Z
and different P and find the best combination that maximizes
the probability, unfortunately this is commonly impossible be-
cause the problem (finding good Z and P ) is too complicated.
In order to infer the parameters of interest, Z and P , Structure
uses a Bayesian approach. This relies on Bayes’ theorem:

Pr(A|B) =
Pr(A) ∗ Pr(B|A)

Pr(B)

where the left side is ”the posterior probability density of
the model A given the data B”, Pr(A) is the model prior
distribution, Pr(B|A) is the likelihood, and Pr(B) is the
probability of the data, which can be thought of as a scalar
so that the right hand side is 1.0 if we integrate the posterior
distribution over all parameter values. It is common to leave
off the denominator and show

Pr(A|B) ∝ Pr(A) ∗ Pr(B|A).

If we now replace A and B with our quantities of interest, the
observed genotypes X , the unknown Z and P , we get:

Pr(Z,P |X) ∝ Pr(Z)× Pr(P )× Pr(X|Z,P )

This is the most important equation to understand Structure,
but it is hiding a lot. It also assumes that we know how
to calculate the prior distributions of the parameters and the
likelihood. Computing this probability distribution becomes
a high-dimensional mess, so Structure uses a method called
Markov Chain Monte Carlo (MCMC) to approximate the
sample, like many of the other programs we will discuss.
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III. IMPLEMENTATION OF Structure AND MCMC

In the 1950s Markov Chain Monte Carlo was developed
[for a short history, see Robert and Casella, 2011], a sampling
method that allows us to obtain an approximate sample from a
probability distribution, rather than trying to calculate a tricky
integral explicitly. A Markov chain has the property that it is
”memoryless”, that is, the next state it samples depends only
on the current state, and has no memory of where the chain
has been previously. MCMC is executed in series of steps,
usually we need to run thousands or millions of these steps.
Basically, the steps are

1) Start by setting arbitrary values for the quantities Q to
estimate.

2) Calculate the priors probabilities and the likelihood
3) Propose a change to the quantity Q′ of interest, for

example change an allele frequency in P .
4) Recalculate the likelihood and prior and compare with

the old value.
5) if we accept r < new likelihood*prior

old likelihood*prior , where r is a uniform
random number then we record the new quantities Q′

otherwise we record the old quantity Q and reset to the
old quantity.

6) Go to step 3 and repeat as many times as is needed.

After the run we can create histograms of the collected
quantities and these histograms are equivalent to the posterior
distribution.

In Structure, the algorithm starts with initial value Z(0) for
Z, then iterates the following steps:

• Step 1: Sample P (m) from Pr(P |X ,Z(m−1)) (1)

• Step 2: Sample Z(m) from Pr(Z|X ,P (m)) (2)

In Step 1, the allele frequencies are estimated for each popu-
lation assuming the population of origin for each individual is
known. In Step 2, the population of origin for each individual
is estimated assuming the allele frequencies for population are
known.

In general MCMC works by choosing some arbitrary start,
filling out all the values based on some distribution, then go to
the next step. The Metropolis algorithm is used as a validation
step to see how good the answer is. It is also important to
consider: How is the prior distribution determined? We might
have the alleles A = 0.4 and B = 0.6. We need a mechanism
that delivers numbers that are consistent with each other.

Structure uses the Dirichlet distribution to model the allele
frequencies for each locus in a population. This distribution
generates prior information for data that is fractional, that is,
allele frequencies sum to 1. It has a set of parameters such that
if you draw a sample from the Dirichlet distribution, the sum
of all samples will be 1. This becomes a more complicated
problem if you have three alleles. Two will co-vary to have
all of them add up to 1.

The distribution specifies the probability of the allele fre-
quencies pkl for population k at locus l:

pkl ∼ D(λ1, λ2, λ3, ....λJl
)

The vector pkl contains a random draw of allele frequencies for
population k at locus l. We use the observations to determine
how many times we see a given allele combination, and
modify the Dirichlet distribution based on these observations,
generating a population allele frequency that is biased towards
the observed data by changing the λi. The higher λi is the
more confidence we have in that particular allele frequency.
This results in a calculation of the likelihood

Pr(X|Z,P ) = p∗kl

where p∗kl is drawn from the data informed Dirichlet

p∗kl ∼ D(λ1 +#1kl, λ2 +#2kl, ...)

the #kl mark the allele frequency calculated from the data X
using the population assignment for each individual in Z.

To recapitulate: we start with guessed values for Z and P ,
then evaluate using MCMC many combinations of Z and P
using the procedure sketched out in formula (1) and (2), that
leads to a long lost of recorded pairs of Z and P (Table II).

Table II
RECORD OF AN MCMC RUN; m IS THE ITERATION OR INDICATOR, P IS

THE ALLELE FREQUENCY, AND Z IS THE POPULATION OF ORIGIN.

m p z

0 p0 z0

1 p1 z1

2 p2 z2

... ... ...

E(p) E(z)

This usually gets run hundreds of thousands of times. The
bad estimates at the beginning get thrown out as burn-in.
MCMC is driven by the data and the prior: Z are informed by
the P , and P are driven by the data. Eventually, they arrive at
some equilibrium. The average of these recorded values could
be a reported as the mean allele frequency for each population
and the mean location for each individual. We can also take
the values and form histograms (the posterior distribution) that
tells us about uncertainty of the estimates.

this section talks about the number of populations and will
be filled in on Wednesday
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