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Abstract. - We propose a new global optimization method (Simulated Tempering)  for simulating 
effectively a system with a rough free-energy landscape (i.e., many coexisting states) at finite 
nonzero temperature. This method is related to simulated annealing, but here the temperature 
becomes a dynamic variable, and the system is always kept at equilibrium. We analyse the 
method on the Random Field Ising Model, and we find a dramatic improvement over 
conventional Metropolis and cluster methods. We analyse and discuss the conditions under which 
the method has optimal performances. 

Simulated annealing is an efficient heuristic method which is used to find the absolute 
minimum of functions with many local minima: it has been introduced independently in the 
framework of the Monte Carlo approach for discrete variables in ref.[l], and in the 
framework of stochastic differential equations (of Langevin type) for continuous variables in 
ref. [2]. 

The essence of the method consists of the following. Let us suppose that we are interested 
in finding the minimum of a function H(X) ,  where X denotes an element of the configuration 
space (which has dimension N ,  where N is often a very high number). In most cases we do not 
know any method which can guarantee to find the minimum of H(x> with a computational 
effort that does not increase more than polynomially in N. In these cases one can try as a first 
guess a random search starting from a random configuration and minimizing H ( X )  with a 
steepest-descent algorithm. If the number of local minima increases as exp [ yN], with y 
different from zero, it often happens that this method also takes an exponentially large 
number of trials (ie., exp [NI, with in general 6 c 7). 

In the simulated annealing method one considers a @-dependent algorithm which 
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asymptotically generates the configurations X with Gibbs’s probability distribution, i.e. 
exp [ - pH(X)l; for definiteness we can consider the case of Monte Carlo steps. Simulations at 
increasing values of p are done (eventually at p = 03). Each time p is changed the system is 
driven out of equilibrium, but that does not matter since eventually we are interested in the 
p = 03 result. 

In general the simulated annealing method does not have any reason to converge to the 
exact result, i.e. to provide the minimum of H(X).  Only if we do an asymptotically large 
number of simulated annealing runs, or if the values of p are changed by an infinitesimal 
amount at each step and an infinite amount of Monte Carlo steps are done at each value of p, 
the simulated annealing method will converge to the exact result and will find the minimum 
of H .  But the convergence is guaranteed only if we asymptotically invest an infinite amount 
of computer time. If a reasonable annealing scaling is used ( p  is changed by a nonzero amount 
and only a finite number of Monte Carlo cycles are done at a given value of p) we have no 
reason to believe that this procedure ends up in the global minimum; indeed in the extreme 
case in which p takes only two values (0 and 03 ), we find the same result as the random search 
algorithm we have described before. 

The simulated annealing algorithm can however be used as a heuristic predictor for the 
global minimum: one can compare the values of the energy after many simulated annealing 
runs and if the probability of ending with the global minimum is not too small, the simulated 
annealing turns out to be a rather efficient algorithm. Let us note that this efficiency depends 
a lot on the shape of the phase space: if the absolute minimum has a small basin of attraction, 
and is separated from the large local minima by very high barriers, simulated annealing does 
not have any reason to be a good algorithm. 

Unfortunately if we want to extend the algorithm to finite temperature we are very soon 
in deep trouble. Indeed if we stop our simulations at a given value of p c 01, the one we want 
to use to evaluate observables, different runs will give different results ( i f p  is sufficiently 
large). In this case we cannot just select the runs which produce the configurations with 
lower energy: at T f 0 we have to minimize the free energy F and not the energy. 
Estimating the entropic contribution is a nontrivial task, and makes a straightforward 
generalization of the simulated annealing impossible. This problem is very severe in cases 
like spin glasses [3] or hetero-polymers folding [4] (maybe also peptides [5] )  in which there 
are more than one equilibrium state and we are actually interested in knowing the relative 
weight which the different equilibrium states carry in the partition function. 

The method we propose in this note is meant to bypass these difficulties, and to constitute 
a viable scheme to minimize free energy in an effective way. It can be regarded as a very 
efficient global optimization scheme. The basic idea of the Simulated Tempering method 
consists of changing the temperature while remaining at equilibrium: this is in contrast with 
the simulated annealing method, where every change of the temperature drives the system 
out of equilibrium. This can be achieved by enlarging the configuration space of the system in 
the following way. 

We define a large configuration space, which is characterized by the variables X (the 
original configuration space) and by a new variable m which can take M values (m = 1 ...W. 
The probability distribution P(X, m) will be chosen to be P(X, m) a exp [ - H(X, m)], where 
we have absorbed the factor p in the definition of the Hamiltonian. We set 

Here the pm and the gm can take arbitrary values we assign a priori. The g, will be a priori 
assigned constants, and the p, will be dynamical variables which will be allowed to span a set 
of values given a priori. For simplicity we can assume that the p, are ordered. It is evident 
that the probability distribution induced by this Hamiltonian, restricted to the subspace at 
fked m, is the usual Gibbs distribution for p = p,. On the other hand, the probability of 

H(X, m) E P m H ( X )  - g m .  
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having a given value of m is simply given by 

where the 2, are the partition functions at given p, and the f, are the corresponding free 
energies. If we make the choice g ,  = pm f,, then all the P, become equal. 

If our target is to do a simulation at a given value of p, we can take p% = p and with this 
choice for the g ,  we can perform a Monte Carlo simulation in which we also allow the change 
of m by 1 unit. In this case the system will be with a probability l/fi at m = fi. Only a 
fraction l/fi of the events will be interesting for measuring directly expectation values at p (if 
the use of a histogram reconstruction makes also the other p values very useful). The 
frequent visits of the system to lower values of pm will make it decorrelate much faster. 
Indeed at lower p values free-energy barriers are lower, and the system will find it much 
easier to jump. Then, when it decides to cool off again, it will be visiting, with the correct 
equilibrium probability, a different minimum. This method may be useful only if the 
transition from one value of pm to another happens with non-negligible probability. It is 
evident that if the two contiguous values of p are too different, the probability of accepting a 
change will be rather small, and that, on the contrary, if they are too similar, they will not 
help in decorrelating. 

Let us try to compute the probability of going from pm to pm + p, + 6. If we try to 
modify p, the variation of the Hamiltonian is given by AH = E6 - ( g ,  + - g,), where E is 
the instantaneous value of the energy H(x>. On the other hand, we have that g ,  + - gm is 
given by the value of the energy for some p in between p, and pm+ More precisely 

gm + - g ,  = E,J + - 1 cm 6 2  + 0 ~ ~ 3 1 ,  
2 

where E, is E@,) (E(@) is the expectation value of H(X)  as a function of p) and C, = d E / p m .  
If we assume that E is very close to E,, the variation AH will be not too large under the 
condition that C,S2 = O(1). One should also consider that there are thermal fluctuations in 
the value of the energy which are of order of C, . The condition on 6 is equivalent to requiring 
that there is a non-negligible overlap in the values of the energy computed at contiguous 
values of p,. 

In the usual thermodynamic limit the energy is a quantity of order N and the condition on 6 
requires that 6 is of order N -V2, which is not a very demanding condition. The main difficulty 
in the method is the required tuning in the choice of g,. Indeed, if one takes for ,& an 
unreasonable value, the simulation could get trapped at  a given value of p, . In this respect it 
is interesting to note that we are not introducing any systematic bias. One can also think 
about the possibility of performing an iterative procedure in which the values of the gm’s are 
adjusted during the simulation, but we will see that already with the naive choice we are 
using one gets very impressive results. 

We have applied the Simulated Tempering method to the Random Field Z s i n g  Model 
(RFIM), which has many features that are very relevant to our case. It has a rough 
landscape, and the symmetry of the + and the - state of the pure Ising model is broken by 
the random magnetic field. This is not a trivial symmetry any longer, and the flips from the + 
to the - sector (and back) are an essential part of the dynamics. The state oriented in the + 
direction and the one oriented in the - direction, which macroscopically are very similar, are 
completely different from a microscopic point of view. The transition from the favoured state 
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Fig. 1. - Specific 
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(which is selected by the specific realization of the magnetic field) to the suppressed one is a 
rare event. 

For the RFIM an extension of the cluster update method[6,7] does not give any 
improvement over the local classical Metropolis method [8]. The system undergoes the usual 
pathology of freezing already at T > T,, and the spins form a large cluster. In no way does 
the cluster method help in this case, for example, to tunnel from a + to a - state. 

We have implemented the Simulated Tempering by proposing one p update at  the end of 
each sweep of the lattice spins. The computational time required to compute the p update is 
negligible. 

Let us anticipate our results: as we will show in some detail the Simulated Tempering 
method helps a lot. In our test, correlation times for observable quantities which are not 
sensitive to the magnetization decrease by a factor of 6 as compared to the Metropolis and the 
cluster method. As fas as the estimate of the magnetization is concerned, the method changes 
the picture dramatically, allowing tunneling where the Metropolis method is trapped in a 
single state, and correcting, in some cases, wrong estimates given by the Metropolis 
method. 

The lattice Hamiltonian is the usual Ising model Hamiltonian, where the site random fields 
hi take values hi = ]hlei (ei = ? 1 with probability 1/2). 

We have taken in our simulations V =  lo3 and Ihl = 1. We have worked with a given 
realization of the random magnetic field. In order to characterize the system in fig. 1 we show 
its specific heat. The 3 points with errors are from 3 runs done by using the cluster algorithm, 
while the dotted, dashed and dot-dashed lines are done by using the reconstruction method 
(see ref. [9] for Ising model and SU(2) gauge theory applications, ref. [lo] for an earlier, 
independent introduction of the method, and ref. [113 for successive applications and detailed 
reviews). The continuous line uses the method by patching the 3 data points: The 
reconstruction is very reliable. 

We have analysed the measured observables by means of a binning procedure, obtaining 
an asymptotic estimate for the errors. We have also focused our analysis on the study of T ~ ~ ,  

which is the relevant quantity related to the true error over measured observables. 
Following ref. E121 we use an improved estimator for T ' ~ ,  taking up to 20 time steps for the 
estimation window. The errors on T~~ are, when we quote an asymptotic estimate for them, 
always of the order of 1 on the last digit. We have also monitored that T- gives consistent 
results. 

In table I we give two of the measured observables: the thermal part of the energy, E T ,  
and the magnetization m. ET has a behavior typical of the quantities that are 2, symmetric. 
The rows called (MC) and (CL) give information about the runs we have done with the 
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TABLE I. - Thermal energy, magnetization and related integrated autocorrelation times. Errors are in 
round brackets ( ). When in square brackets, [ 3, e m  and rint estimates are not asymptotic. The value 
for m given by the Metropolis method (MC) at p = 026 is wrong. 

P ET r $: m 7% N ~ ~ .  10-3 

0.24 (MC) 1.1980 (18) 10 - 0.161 [12] [701 200 
0.24 (CL) 1.2059 (22) 14 - 0.180 [lo] [go1 200 
0.24 (B) 1.2045 (19) 6 - 0.187 (10) 60 145 
0.24 (E) 1.2025 (13) 3.7 - 0.159 (10) 40 160 
0.24 (F) 1.2015 (11) 5.5 - 0.175 (5 )  32 290 

0.25 (MC) 1.5286 (15) 7 - 0.37 [6] [7001 200 
0.25 (CL) 1.5252 (25) 11 - 0.32 [4] [6601 200 
0.25 (B) 1.5311 (10) 3.9 - 0.363 (15) 150 297 
0.25 (C) 1.5303 (12) 4.8 - 0.351 (11) 70 226 
0.25 (D) 1.5299 (9) 3.5 - 0.350 (20) [WO1 300 
0.25 (E) 1.5279 (8) 2.4 - 0.320 (12) 105 301 
0.25 (F) 1.5281 (8) 3.3 - 0.352 (9) 52 290 

0.255 (MC) 1.6723 (12) 9 - 0.35 (13) [60001 200 
0.255 (D) 1.6723 (8) 1.5 - 0.414 (22) 180 151 
0.255 (E) 1.6718 (6) 1.8 - 0.382 (13) 108 301 

0.26 (MC) 1.7954 (8) 2.8 - 0.7016 (3) 3.8 200 
0.26 (CL) 1.7942 (11) 7.6 - 0.53 [5] [10001 200 
0.26 (B) 1.7925 (7) 1.6 - 0.476 [18] [811 158 
0.26 (E) 1.7924 (6) 1.15 - 0.433 (13) 52 150 
0.26 (F) 1.7928 (5) 1.75 - 0.473 (10) 64 307 

Metropolis method and with the cluster algorithm. These runs have been used to get a 
preliminary estimate of the system energy and to determine the values of the g, . It is in no 
way necessary to get, for estimating the g, , more than a rough estimate of the E,, and in a 
practical application of the method the preliminary MC runs can be very short. It is possible 
to determine directly the values of the exp [ - fJ, by using the energy histograms taken in the 
preliminary runs. Although we stress that this possibility exists, we do not think that it could 
dramatically increase the efficiency of the method. When, in table I, we put errors and .rht in 
square brackets we mean that we did not get an asymptotic estimate. Let us also note now 

TABLE 11. - p  values allowed in each of our *Simulated Tempering, runs, and number of iterations (in 
units of 103) the system spent at each p value. For historical reasons we label the runs with the capital 
letters B, C, D, E, F. 

B 0.24, 145 0.25, 297 0.26, 158 
C 0.23, 206 0.25, 226 0.27, 167 
D 0.245, 148 0.25, 301 0.255, 151 
E 0.24, 149 0.245, 300 0.25, 301 0.255, 301 0.26, 150 
F 0.23, 159 0.24, 290 0.25, 290 0.26, 306 0.27, 155 
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Fig. 2. - p as a function of the computer time for the runs of series B (3p values allowed, 60% acceptance 
ratio). 

that the MC run at p = 0.26 gets a wrong expectation value for m. In this case the standard 
Metropolis does not produce any tunneling event, and always stays in the - phase. 

In table I1 we give details about our Simulated Tempering runs. We have tried different 
combinations, allowing the system to take 3 or 5 p values, always centred around p = 0.25. In 
table I1 we check the performance of our method at the different p values we have allowed in 
the different simulations. The choice of the p values has been dictated, as we have discussed 
before, by the requirement of having a non-negligible overlap in the energy histograms of the 
preliminary MC runs. Runs D and E have a very small 6 value, and a high acceptance factor 
for a p update, of = 70%. Runs B and F have a medium 6, and a p acceptance factor of 
(40 t 501%. Run C has a higher 6 value and a very low acceptance factor for the p update, 
(10 t 15)%. 

In fig. 2 we give pm as a function of the computer time for system B. Let us start by 
commenting on the results for m, which are quite spectacular. At p = 0.24 (not so low T )  T, is 
higher than O(lO0) for the Metropolis and Cluster methods, and gets down to 32 in the F run. 
In general runs with a larger 6 value seem to be more effective for improving the estimate of 
m. Things are better and better at lower temperatures. At p = 0.25 from zm > 700 we go 
down to z,,, = 52 in run F,  with a gain of a factor larger than 12. At p = 0.255 from zm > 6000 
we go down to 108 in run E ,  with a gain of a factor better than 60. At p = 0.26 after 200000 
steps the Metropolis method does not succeed in getting a single tunneling event, while our 
run E has z, = 52. In fig. 3a)-c) we show what happens. In fig. 3a) we give the magnetization 
as a function of computer time for the Metropolis method, for 200 000 steps. The system stays 
in the - state, with very large fluctuations which never succeed in getting a complete flip. In 
fig. 3b) we plot m for our F system, only loo00 steps. Here the data points are at different p 
values, and it is clear that going to different p values allows an easy flipping. In order to make 
the situation clear in fig. 3c) we have selected only the first 10000 configurations, of the F 
dynamics, which happen to be at p = 0.26. The picture speaks for itself. 

Also for ET there is a large gain at all p values. One gains a factor 3 at p = 0.24, 0.25, a 
factor 6 at p = 0.255, and a factor 2.5 at p = 0.26. In this case the best performances are 
obtained for small 6 values. 
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Fig. 3. - a)-c) Magnetization m as a function of computer time. In a) for the Metropolis method at 
p = 0.26, in b) m for the F systems ( p  is here a dynamical variable which is allowed to take 5 values 
during the course of the dynamics), in c) the configurations of run F which have p = 0.26. 
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Additional remark. 

After submitting this note we learnt about ref. [13], which propose a different but related 
method. For our method we do not need any patching, and we just get the correct probability 
distribution at each p value. 
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