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SLICE SAMPLING1 

BY RADFORD M. NEAL 

University of Toronto 

Markov chain sampling methods that adapt to characteristics of the 
distribution being sampled can be constructed using the principle that one 
can sample from a distribution by sampling uniformly from the region under 
the plot of its density function. A Markov chain that converges to this uniform 
distribution can be constructed by alternating uniform sampling in the vertical 
direction with uniform sampling from the horizontal "slice" defined by the 
current vertical position, or more generally, with some update that leaves 
the uniform distribution over this slice invariant. Such "slice sampling" 
methods are easily implemented for univariate distributions, and can be 
used to sample from a multivariate distribution by updating each variable 
in turn. This approach is often easier to implement than Gibbs sampling 
and more efficient than simple Metropolis updates, due to the ability of 
slice sampling to adaptively choose the magnitude of changes made. It is 
therefore attractive for routine and automated use. Slice sampling methods 
that update all variables simultaneously are also possible. These methods can 
adaptively choose the magnitudes of changes made to each variable, based on 
the local properties of the density function. More ambitiously, such methods 
could potentially adapt to the dependencies between variables by constructing 
local quadratic approximations. Another approach is to improve sampling 
efficiency by suppressing random walks. This can be done for univariate 
slice sampling by "overrelaxation," and for multivariate slice sampling by 
"reflection" from the edges of the slice. 

1. Introduction. Markov chain methods such as Gibbs sampling and the 
Metropolis algorithm can be used to sample from many of the complex, 
multivariate distributions encountered in statistics. However, to implement Gibbs 
sampling, one may need to devise methods for sampling from nonstandard 
univariate distributions, and to use the Metropolis algorithm, one must find an 
appropriate "proposal" distribution that will lead to efficient sampling. The need 
for such special tailoring limits the routine use of these methods and inhibits the 
development of software that automatically constructs Markov chain samplers 
from model specifications. Furthermore, many common Markov chain samplers 
are inefficient, due to a combination of two flaws. First, they may try to make 
changes that are not well adapted to the local properties of the density function, 
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with the result that changes must be made in small steps. Second, these small steps 
take the form of a random walk, in which about n2 such steps are needed in order 
to move a distance that could be traversed in only n steps if these steps moved 
consistently in one direction. 

In this paper, I describe a class of "slice sampling" methods that can be applied 
to a wide variety of distributions. Simple forms of univariate slice sampling are 
an alternative to Gibbs sampling that avoids the need to sample from nonstandard 
distributions. These slice sampling methods can adaptively change the scale of 
changes made, which makes them easier to tune than Metropolis methods and also 
avoids problems that arise when the appropriate scale of changes varies over the 
distribution. More complex slice sampling methods can adapt to the dependencies 
between variables, allowing larger changes than would be possible with Gibbs 
sampling or simple Metropolis methods. Slice sampling methods that improve 
sampling by suppressing random walks can also be constructed. 

Slice sampling originates with the observation that to sample from a univariate 
distribution, we can sample points uniformly from the region under the curve 
of its density function and then look only at the horizontal coordinates of the 
sample points. A Markov chain that converges to this uniform distribution can be 
constructed by alternately sampling uniformly from the vertical interval defined by 
the density at the current point and from the union of intervals that constitutes the 
horizontal "slice" though the plot of the density function that this vertical position 
defines. If this last step is difficult, we may substitute some other update that leaves 
the uniform distribution over the slice invariant. To sample from a multivariate 
distribution, such single-variable slice sampling updates can be applied to each 
variable in turn. Section 4 presents these single-variable slice sampling methods. 

We can also apply the slice sampling approach to a multivariate distribution 
directly, as described in Section 5, by sampling uniformly under the multidimen
sional plot of its density function. As for a univariate distribution, this can be done 
by alternately sampling uniformly from the vertical interval from zero up to the 
density at the current point and then uniformly from the slice defined by this verti
cal position. When the slice is high-dimensional, how to sample efficiently from it 
is less obvious than for single-variable slice sampling, but one gains the possibility 
of sampling in a way that respects the dependencies between variables. I show how, 
in the context of slice sampling, the way changes are proposed can be adapted to 
respect these dependencies, based on local information about the density function. 
In particular, local quadratic approximations could be constructed, as have been 
used very successfully for optimization problems. However, further research will 
be needed to fully exploit the adaptive capabilities of multivariate slice sampling. 

One might instead accept that dependencies between variables will lead to 
the distribution being explored in small steps, but try at least to avoid exploring 
the distribution by an inefficient random walk, which is what happens when 
simple forms of the Metropolis algorithm are used. The benefits of random 
walk suppression are analyzed theoretically in some simple contexts by Diaconis, 
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Holmes and Neal (2000). Large gains in sampling efficiency can be obtained in 
practice when random walks are suppressed using the hybrid Monte Carlo or other 
dynamical methods [Duane, Kennedy, Pendleton and Roweth (1987), Horowitz 
(1991), Neal (1994, 1996)], or by using an overrelaxation method [Adler (1981), 
Barone and Frigessi (1990), Green and Han (1992), Neal (1998)). Dynamical and 
overrelaxation methods are not always easy to apply, however. Use of Markov 
chain samplers that avoids random walks would be assisted by the development of 
methods that require less special programming and parameter tuning. 

Two approaches to random walk suppression based on slice sampling are 
discussed in this paper. In Section 6, I show how one can implement an overrelaxed 
version of the single-variable slice sampling scheme. This may provide the benefits 
of Adler's (1981) Gaussian overrelaxation method for more general distributions. 
In Section 7, I describe slice sampling analogues of dynamical methods, which 
move around a multivariate slice using a stepping procedure that proceeds 
consistently in one direction while reflecting off the slice boundaries. These more 
elaborate slice sampling methods require more tuning than single-variable slice 
sampling, but they may still be easier to apply than alternative methods that avoid 
random walks. 

I illustrate the benefits of the adaptive nature of slice sampling in Section 8, 
showing that it avoids disaster when sampling from a distribution typical of priors 
for hierarchical Bayesian models. Simple Metropolis methods can give the wrong 
answer for this problem, while providing little indication that anything is amiss. 

I conclude with a discussion of the merits of the various slice sampling methods 
in comparison with other Markov chain methods and of their suitability for routine 
and automated use. Below, I set the stage by discussing general-purpose Markov 
chain methods that are currently in wide use. 

2. General-purpose Markov chain sampling methods. Applications of 
Markov chain sampling in statistics often involve sampling from many distribu
tions, such as posterior distributions for parameters of various different models, 
given various different datasets. For routine use of Markov chain methods, it is im
portant to minimize the amount of effort that the data analyst must spend in order 
to sample from all these distributions. Ideally, a Markov chain sampler would be 
constructed automatically for each model and dataset. 

The Markov chain method most commonly used in statistics is Gibbs sampling, 
popularized by Gelfand and Smith (1990). Suppose that we wish to sample 
from a distribution over n state variables (e.g., model parameters), written as 
x = (x1, ... , Xn), with probability density p(x). Gibbs sampling proceeds by 
sampling in succession from the conditional distributions for each Xi given the 
current values of the other x j for j i- i, with conditional densities written as 
p(xil{xj}j#i). Repetition of this procedure defines a Markov chain which leaves 
the desired distribution invariant, and which in many circumstances is ergodic 
[e.g., when p(x) > 0 for all x]. Running the Gibbs sampler for a sufficiently 
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long time will then produce a sample of values for x from close to the desired 
distribution, from which we can estimate the expectations of those functions of 
state that are of interest. 

Gibbs sampling can be done only if we know how to sample from all the 
required conditional distributions. These sometimes have standard forms for which 
efficient sampling methods have been developed, but there are many models for 
which sampling from these conditional distributions requires the development of 
custom algorithms, or is infeasible in practice (e.g., for multilayer perceptron 
networks [Neal (1996)]). Note, however, that once methods for sampling from 
these conditional distributions have been found, no further tuning parameters need 
be set in order to produce the final Markov chain sampler. 

The routine use of Gibbs sampling has been assisted by the development 
of adaptive rejection sampling (ARS) [Gilks and Wild (1992), Gilks (1992)], 
which can be used to sample efficiently from any conditional distribution whose 
density function is log concave, given only the ability to compute some function, 
fi(xd, that is proportional to the conditional density, p(xil{xj}hfi) [the ability 
to also compute the derivative, f( (xi), is helpful, but not essential]. This method 
has been used for some time by the BUGS software [Thomas, Spiegelhalter 
and Gilks (1992)] to automatically generate Markov chain samplers from model 
specifications. The first step in applying ARS is to find points on each side of 
the mode of the conditional distribution. This will in general require a search, 
which will in turn require the choice of some length scale for an initial step. 
However, the burden of setting this scale parameter is lessened by the fact that 
a good value for it can be chosen "retrospectively," based on past iterations of the 
Markov chain, without invalidating the results, since the value chosen affects only 
the computation time, not the distribution sampled from. 

The adaptive rejection Metropolis sampling (ARMS) method [Gilks, Best 
and Tan (1995)] generalizes ARS to conditional distributions whose density 
functions may not be log-concave. However, when the density is not log-concave, 
ARMS does not produce a new point drawn independently from the conditional 
distribution, but merely updates the current point in a fashion that leaves this 
distribution invariant. Also, when a conditional distribution is not log-concave, 
the points used to set up the initial approximation to it must not be chosen with 
reference to past iterations, as this could result in the wrong distribution being 
sampled [Gilks, Neal, Best and Tan (1997)]. The initial approximation must be 
chosen based only on prior knowledge (including any preliminary Markov chain 
sampling runs), and on the current values of the other variables. Unlike ARS, 
neither the current value of the variable being updated, nor any statistics collected 
from previous updates (e.g., the typical scale of changes) can be used. This hinders 
routine use of the method. 

Another general way of constructing a Markov chain sampler is to perform 
Metropolis updates [Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953), 
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Hastings (1970)), either for each variable in tum, as with Gibbs sampling, or for 
all variables simultaneously. A Metropolis update starts with the random selection 
of a "candidate" state, drawn from a "proposal" distribution. The candidate state 
is then accepted or rejected as the new state of the Markov chain, based on the 
ratio of the probability densities of the candidate state and the current state. If the 
candidate state is rejected, the new state is the same as the old state. 

A simple "random-walk" Metropolis scheme can be constructed based on a 
symmetric proposal distribution (e.g., Gaussian) that is centred on the current state. 
All variables could be updated simultaneously in such a scheme, or alternatively, 
one variable could be updated at a time. In either case, a scale parameter is required 
for each variable, in order to fix the width of the proposal distribution in that 
dimension. For the method to be valid, these scale parameters must not be set 
on the basis of past iterations, but rather only on the basis of prior knowledge 
(including preliminary runs), and the current values of too large a scale for the 
proposal distribution will result in a high rejection rate, while choosing too small 
a scale will result in inefficient exploration via a random walk with unnecessarily 
small steps. Furthermore, the appropriate scale for Metropolis proposals may vary 
from one part of the distribution to another, in which case no single value will 
produce acceptable results. Selecting a scale at random from some range can 
sometimes alleviate these problems, but at a large cost in wasted effort whenever 
the scale selected is inappropriate. 

It is tempting to tune the Metropolis proposal distribution based on the rejection 
rate in past iterations of the Markov chain, but such "retrospective tuning" is not 
valid, since it can disturb the stationary distribution to which the process converges. 
Fixing the proposal distribution based on a preliminary run is allowed, but if the 
original proposal distribution was not good, such a preliminary run may not have 
sampled from the whole distribution, and hence may be a bad guide for tuning. 

We therefore see that although Gibbs sampling and Metropolis methods have 
been used to do much useful work, there is a need for better methods that can 
be routinely applied in a wider variety of situations. One aim of this paper is to 
find variations on slice sampling that can be used to sample from any continuous 
distribution, given only the ability to evaluate a "black-box" function that is 
proportional to its density, and in some cases, to also evaluate the gradient of 
this function. For many distributions, these new methods will not sample more 
efficiently than Gibbs sampling or a well-designed Metropolis scheme, but the 
slice sampling methods will often require less effort to implement and tune. For 
some distributions, however, slice sampling can be much more efficient, because 
it can adaptively choose a scale for changes appropriate to the region of the 
distribution currently being sampled. Slice samplers that adapt in more elaborate 
ways, or that suppress random walks, can potentially be much faster than simple 
Metropolis methods or Gibbs sampling. 
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3. The idea of slice sampling. Suppose we wish to sample from a distri
bution for a variable, x, taking values in some subset of mn, whose density 
is proportional to some function f (x). We can do this by sampling uniformly from 
the (n + 1)-dimensional region that lies under the plot of f(x). This idea can be 
formalized by introducing an auxiliary real variable, y, and defining a joint dis
tribution over x and y that is uniform over the region U = { (x, y) : 0 < y < f (x)} 
below the curve or surface defined by f (x). That is, the joint density for (x, y) is 

(1) () { 1/Z, 
p X, y = 0, 

ifO < y < f(x), 
otherwise, 

where Z = J f (x) dx. The marginal density for x is then 

f(x) 

p(x) =lo (l/Z)dy = f(x)/Z (2) 

as desired. To sample for x, we can sample jointly for (x, y), and then ignore y. 

Generating independent points drawn uniformly from U may not be easy, 
so we might instead define a Markov chain that will converge to this uniform 
distribution. Gibbs sampling is one possibility: We sample alternately from the 
conditional distribution for y given the current x, which is uniform over the interval 
(0, f (x)), and from the conditional distribution for x given the current y, which is 
uniform over the region S = {x : y < f (x)}, which I call the "slice" defined by y. 
Generating an independent point drawn uniformly from S may still be difficult, in 
which case we can substitute some update for x that leaves the uniform distribution 
over S invariant. Higdon (1996) has interpreted the standard Metropolis algorithm 
in these terms. Beyond this, however, reducing the problem to that of updating x 
so as to leave a uniform distribution invariant allows us to use various tricks that 
would not be valid for a nonuniform distribution. 

Related methods have been used in the past. Chen and Schmeiser (1998) 
describe a method that samples from the distribution over the region U by 
moving in random directions. Their work shares with this paper the aim of finding 
a method that requires little or no tuning, and hence is suitable for use as a 
"black-box" sampler, when little is known of the distribution being sampled from. 
Unfortunately, Chen and Schmeiser do not achieve this goal: though they intend 
that causal users fix the ar and br parameters of their sampler at default values, 
these parameters in fact play essentially the same role as the proposal width in a 
simple random-walk Metropolis algorithm, and will sometimes have to be tuned if 
reasonable performance is to be achieved. This tuning is harder than for simple 
Metropolis updates, since the optimal setting of these parameters depends not 
just on the properties of the distribution but also on the normalizing constant, Z. 
In their main example, this problem is lessened by the way they periodically 
adjust the normalization constant based on the current point, but this state-
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dependent adjustment destroys the reversibility of the transitions, undermining the 
correctness of the algorithm. 

The highly successful Swendsen-Wang algorithm for the Ising model can also 
be seen as an auxiliary variable method, which led to its generalization by Edwards 
and Sokal (1988). In their scheme, the density (or probability mass) function is 
proportional to a product of k functions: p(x) ex fI(x) · · · fk(x). They introduce 
k auxiliary variables, YI, ... , Yk. and define a joint distribution for (x, YI, ... , Yk) 
which is uniform over the region in which 0 < Yi < f; (x) for i = 1, ... , k. Gibbs 
sampling, or some other Markov chain procedure, can then be used to sample for 
(x, YI, ... , Yk). The slice sampling procedure described above is a special case of 
this procedure, when there is a single auxiliary variable (i.e., k = 1). Besag and 
Green (1993) and Higdon (1996) have discussed applications in image analysis of 
these methods with k > 1 . 

Mira and Tierney (2002) have shown that these auxiliary variable methods, 
with one or with many auxiliary variables, are uniformly ergodic under certain 
conditions. Roberts and Rosenthal (1999) have shown that these methods are 
geometrically ergodic under weaker conditions, and have also found some 
quantitative convergence bounds. These results all assume that the sampler 
generates a new value for x that is uniformly drawn from S, independently of 
the old value, which is often difficult in practice. 

Concurrently with the work reported here, Damien, Wakefield and Walker 
(1999) have viewed methods based on multiple auxiliary variables as a general 
approach to constructing Markov chain samplers for Bayesian inference problems. 
They illustrate how one can often decompose f (x) into a product of k factors for 
which the intersection of the sets {x : Yi < f; (x)} is easy to compute. This leads 
to an easily implemented sampler, but convergence is slowed by the presence of 
many auxiliary variables. For example, for a model of k i.i.d. data points, one 
simple approach (similar to some examples of Damien, Wakefield and Walker) is 
to have one factor for each data point, whose product is the likelihood. (Suppose 
that prior is uniform, and so need not be represented in the posterior density.) For 
many models, {x : Yi < f; (x)} will be easy to compute when f; is the likelihood 
from one data point. However, if this approach is applied to n data points that 
are modeled as coming from a Gaussian distribution with mean µ and variance 1, 
one can show that after the Yi are chosen, the allowable range for µ will have 
width of order 1 / n. Since the width of the posterior distribution for µ will be 
of order 1 /,Jn, and since the posterior will be explored by a random walk, 
the convergence time will be of order n. Gibbs sampling would, of course, 
converge in a single iteration when there is only one parameter, and the slice 
sampling methods of this paper would also converge very rapidly, for any n. 
Using a large number of auxiliary variables is a costly way to avoid difficult 
computations. 
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I therefore am concerned in this paper with methods based on slice sampling 
with a single auxiliary variable. So that these methods will be practical for a wide 
range of problems, they often use updates for x that do not produce a point drawn 
independently from the slice, S, but merely change x in some fashion that leaves 
the uniform distribution over S invariant. This allows the methods to be used for 
any continuous distribution, provided only that we can compute some function, 
j(x), that is proportional to the density. 

4. Single-variable slice sampling methods. Slice sampling is simplest when 
only one (real-valued) variable is being updated. This will of course be the case 
when the distribution of interest is univariate, but more typically, the single
variable slice sampling methods of this section will be used to sample from a 
multivariate distribution for x = (XI, ••. , Xn) by sampling repeatedly for each 
variable in turn. To update Xi, we must be able to compute a function, fi (xi), 

that is proportional to p(xil{xj}hf;), where {xj}#i are the values of the other 
variables. 

To simplify notation, I will here write the single real variable being updated 
as x (with subscripts denoting different such points, not components of x ). I will 
write f (x) for the function proportional to the probability density of x. The single
variable slice sampling methods discussed here replace the current value, xo, with 
a new value, XI, found by a three-step procedure: 

(a) Draw a real value, y, uniformly from (0, f(xo)), thereby defining a 
horizontal "slice": S = {x: y < f (x)}. Note that xo is always within S. 

(b) Find an interval, I= (L, R), around x0 that contains all, or much, of the 
slice. 

( c) Draw the new point, XI, from the part of the slice within this interval. 

Step (a) picks a value for the auxiliary variable that is characteristic of slice 
sampling. Note that there is no need to retain this auxiliary variable from one 
iteration of the Markov chain to the next, since its old value is forgotten at this point 
anyway. In practice, it is often safer to compute g(x) = log(f (x)) rather than f (x) 
itself, in order to avoid possible problems with floating-point underflow. One can 
then use the auxiliary variable z = log(y) = g(xo) - e, where e is exponentially 
distributed with mean one, and define the slice by S = {x: z < g(x)}. 

Steps (b) and ( c) can potentially be implemented in several ways, which must of 
course be such that the resulting Markov chain leaves the distribution defined by 
f (x) invariant. Figure 1 illustrates one generally applicable method, in which the 
interval is found by "stepping out," and the new point is drawn with a "shrinkage" 
procedure. Figure 2 illustrates an alternative "doubling" procedure for finding the 
interval. These and some other variations are described in detail next, followed by 
a proof that the resulting transitions leave the correct distribution invariant. 
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(a) 

(b) ···············-------··········-······-----

t 

(c) ···············-t -t ·····r·-······ 
X 1 Xo 

FIG. l. A single-variable slice sampling update using the stepping-out and shrinkage procedures. 
A new point, xi. is selected to follow the current point, xo, in three steps. (a) A vertical level, y, is 
drawn uniformly from (0, f(xo)), and used to define a horiwntal "slice," indicated in bold. (b) An 
inten·al of width w is randomly positioned around xo, and then expanded in steps of size w until 
both ends are outside the slice. (c) A new point, XJ, is found by picking uniformly from the inten7al 
until a point inside the slice is found. Points picked that are outside the slice are used to shrink the 
interval. 

(a) ···············-------··········-······-----

t 
(b) ···············-------··········---······-----

t 
FIG. 2. The doubling procedure. In (a), the initial interval is doubled twice, until both ends are 
outside the slice. In (b), where the start state is different, and the initial interval's ends are already 
outside the slice, no doubling is done. 
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4.1. Finding an appropriate interval. After a value for the auxiliary variable 
has been drawn, defining the slice S, the next task is to find an interval I= (L, R), 
containing the current point, xo, from which the new point, xi, will be drawn. We 
would like this interval to contain as much of the slice as is feasible, so as to allow 
the new point to differ as much as possible from the old point, but we would also 
like to avoid intervals that are much larger than the slice, as this will make the 
subsequent sampling step less efficient. 

Several schemes for finding an interval are possible. 

I. Ideally, we would set L = inf(S) and R = sup(S). That is, we would set I to 
the smallest interval that contains all of S. This may not be feasible, however. 

2. If the range of possible values of x is bounded, we might let I be that range. 
However, this may not be good if the slice is typically much smaller than this. 

3. Given an estimate, w, for the scale of S, we can randomly pick an initial 
interval of size w, containing xo, and then perhaps expand it by a "stepping 
out" procedure. 

4. Similarly, we can randomly pick an initial interval of size w, and then expand 
it by a "doubling" procedure. 

For each scheme, we must also be able to find the set A of acceptable successor 
states, defined as follows: 

(3) A= {x :x ES n I and P(Select I I At state x) = P(Select I I At state xo) }. 

That is, A is the set of states from which we would be as likely to choose 
the interval I as we were to choose this I from the current state. When we 
subsequently sample from within I (see Section 4.2), we will ensure that the state 
chosen is in A, a fact that will be used in the proof of correctness in Section 4.3. 
Clearly, for schemes (1) and (2), A = S. For scheme (3), we will arrange that 
A = S n /. For scheme (4), a special test of whether a state is in A may be 
necessary. 

Scheme (1), in which I is set to the smallest interval containing S, will be 
feasible when all solutions off (x) = y can be found analytically, or by an efficient 
and robust numerical method, but one cannot expect this in general. Often, even 
the number of disjoint intervals making up S will be hard to determine. 

Scheme (2) is certainly easy to implement when the range of xis bounded, and 
we can always arrange this by applying a suitable transformation. However, if the 
slice is usually much smaller than the full range, the subsequent sampling (see 
Section 4.2) will be inefficient. This scheme has been used by Frey (1997). 

The "stepping out" procedure [scheme (3) above] is appropriate for any 
distribution, provided that some rough estimate, w, for the typical width of the 
slice is available. The manner in which an interval is found by stepping out is 
illustrated in Figure l(b) and the procedure is given in detail in Figure 3. The 
size of the interval found can be limited to m w, for some specified integer m, or 
the interval can be allowed to grow to any size (i.e., m can be set to infinity), in 
which case the procedure can be simplified in an obvious way. Simplification is 
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Input: f function proportional u Uniform(O, 1) 
to the density L +-- xo - w * u 

xo = the current point R +-- L+w 
v Uniform(O, 1) 

y = the vertical level defining J +-- Floor(m * V) 
the slice K +-- (m-1) - J 

w = estimate of the typical repeat while J > 0 and y < f (L): 
size of a slice 

= integer limiting the size 
L +-- L - w 

m 
J +-- J -1 

of a slice to mw 
repeat while K > 0 and y < f (R): 

Output: (L, R) = the interval found 
R +-- R+w 
K +-- K-1 

FIG. 3. The "stepping out" procedure for finding an interval around the current point. The notation 
U ~ Uniform (0, 1) indicates that U is set to a number randomly drawn from the uniform 
distribution on (0, 1). 

also possible when m is l, in which case the interval will always be of size w, 
and there will be no need to evaluate f at its endpoints. Note that the random 
positioning of the initial interval and the random apportioning of the maximum 
number of steps m into a limit on going to the left and a limit on going to the right 
are essential for correctness, as they ensure that the final interval could equally 
well have been produced from any point within S n I. 

The "doubling" procedure [scheme (4)] can expand the interval faster than the 
stepping out procedure, and hence may be more efficient when the estimated size 
of the slice ( w) turns out to be too small. This procedure is illustrated in Figure 2, 
and given in detail in Figure 4. Doubling produces a sequence of intervals, each 

Input: f = function proportional u Uniform(O, 1) 
to the density L +-- xo - w * u 

xo = the current point R +-- L+ w 
K +-- p 

y = the vertical level defining 
the slice repeat while K > 0 

w = estimate of the typical and { y < f (L) or y < f (R) }: 

size of a slice v ~ Uniform (0, 1) 

p = integer limiting the size if V < 1/2 then L +-- L - (R - L) 

of a slice to 2P w else R +-- R + (R - L) 
K +-- K -1 

Output: (L, R) = the interval found 

FIG. 4. The "doubling" procedure for finding an interval around the current point. Note that it is 
possible to save some computation in second and later iterations of the loop, since only one of f(L) 
and f(R) will have changed from the previous iteration. 
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twice the size of the previous one, until an interval is found with both ends outside 
the slice, or a predetermined limit is reached. Note that when the interval is doubled 
the two sides are not expanded equally. Instead just one side is expanded, chosen 
at random (irrespective of whether that side is already outside the slice). This is 
essential to the correctness of the method, since it produces a final interval that 
could have been obtained from points other than the current one. The set A of 
acceptable next states is restricted to those for which the same interval could have 
been produced, and is in general not all of S n I. This complicates the subsequent 
sampling somewhat, as described below. 

4.2. Sampling from the part of the slice within the interval. Once an interval, 
I= (L, R), has been found containing the current point, xo, the final step of the 
single-variable slice sampling procedure is to randomly draw a new point, x1, from 
within this interval. This point must lie within the set A of points acceptable as the 
next state of the Markov chain, defined in (3). 

Two methods could be used to sample from I. 

(i) Repeatedly sample uniformly from I until a point is drawn that lies 
within A. 

(ii) Repeatedly sample uniformly from an interval that is initially equal to I, 
and which shrinks each time a point is drawn that is not in A, until a point within 
A is found. 

Method (i) could be very inefficient, if A turns out to be a tiny portion of I. The 
shrinkage of the interval in method (ii) ensures that the expected number of points 
drawn will not be too large, making it a more appropriate method for general use. 

The shrinkage procedure is shown in detail in Figure 5. Note that each rejected 
point is used to shrink the interval in such a way that the current point remains 

Input: f = function proportional 
to the density 

xo = the current point 

y = the vertical level defining 
the slice 

(L, R) = the interval to sample from 

Output: x 1 = the new point 

L +-- L, R +-- R 

Repeat: 
u 
XJ 

Uniform (0, 1) 

+-- L + u * (R - i) 

if y < f(x1) and Accept(x1) then 

exit loop 

if x1 < xo then L +-- xi 
else R +-- x1 

FIG. 5. The "shrinkage" procedure for sampling from the interval. Accept (x1) is notation for a test 
of whether a point, xi, that is, within Sn I is an acceptable next state. If scheme (1), (2) or (3) was 
used for constructing the interval, all points within S n I are acceptable. If the doubling procedure 
[scheme (4)] was used, the point must pass the test of Figure 6. 



SLICE SAMPLING 717 

Input: f function proportional 
to the density 

xo = the current point 

x1 = the possible next point 

y = the vertical level defining 
the slice 

w = estimate of the typical 
size of a slice 

(L, R) = the interval found by 
the doubling procedure, 
using w 

Output: whether or not x1 is acceptable 
as the next state 

i +-- L, R +-- R 
D +-- false 

repeatwhileR-i > l.l*w: 
M +-- (L + R) /2 
if { xo < M and x 1 ::::: M } or 

{ xo::::: Mand x1 < M } then 

D +-- true 

if x1 < M then R +-- M 
else i +-- M 

if Dandy::'.'.: f (L) and y ::'.'.: f(R) then 

the new point is not acceptable 

The new point is acceptable if it is 
not rejected in the loop above 

FIG. 6. The test for whether a new point, x1, that is, within Sn I is an acceptable next state, 
when the interval was found by the "doubling" procedure. The multiplication by I. I in the "while" 
condition guards against possible round-off error. The variable D tracks whether the intervals that 
would be generated from the new point differ from those leading to the current point. When they 
don't, time can be saved by omitting a check. 

within it. Since the current point is always within A, the interval used always 
contains acceptable points, ensuring that the procedure will terminate. 

If the interval was found by scheme (1), (2), or (3), the set A is simply Sn I. 
However, if the doubling procedure [scheme (4)] was used, A may be a smaller 
subset of S n I. This is illustrated in Figure 2. In 2(a), an interval is found by 
doubling an initial interval until both ends are outside the slice. A different starting 
point is considered in 2(b ), one which might have been drawn from the interval 
found in 2(a). The doubling procedure terminates earlier starting from here, so this 
point is not in A. (Note that A is here defined conditional on the alignment of the 
initial interval.) 

The Accept (x1) predicate in Figure 6 tests whether a point in Sn I is in A when 
the doubling procedure [scheme ( 4)] was used. This procedure works backward 
through the intervals that the doubling procedure would pass through to arrive at I 
when starting from the new point, checking that none of them has both ends outside 
the slice, which would lead to earlier termination of the doubling procedure. 

4.3. Correctness of single-variable slice sampling. To show that single
variable slice sampling is a correct procedure, we must show that each update 
leaves the desired distribution invariant. To guarantee convergence to this distribu
tion, the resulting Markov chain must also be ergodic. This is not always true, but 
it is in those situations [such as when f (x) > 0 for all x] for which one can easily 
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show that Gibbs sampling is ergodic. I will not discuss the more difficult situations 
here. 

To show invariance, we suppose that the initial state, xo, is distributed according 
to f (x). In step (a) of single-variable slice sampling, a value for y is drawn 
uniformly from (0, f (x)). The joint distribution for xo and y will therefore be 
as in equation (1). If the subsequent steps update xo to x1 in a manner that leaves 
this joint distribution invariant, then when we subsequently discard y, the resulting 
distribution for x1 will be the marginal of this joint distribution, which is the same 
as that defined by f(x), as desired. 

We therefore need only show that the selection of x1 to follow xo in steps (b) 
and ( c) of the single-variable slice sampling procedure leaves the joint distribution 
of x and y invariant. Since these steps do not change y, this is the same as leaving 
the conditional distribution for x given y invariant, and this conditional distribution 
is uniform over S = {x : y < f (x)}, the slice defined by y. We can show invariance 
of this distribution by showing that the updates satisfy detailed balance, which for 
a uniform distribution reduces to showing that the probability density for x1 to 
be selected as the next state, given that the current state is xo, is the same as the 
probability density for xo to be the next state, given that x1 is the current state, for 
any states xo and x1 within S. 

In the process of picking a new state, various intermediate choices are made 
randomly. When the interval is found by the stepping out procedure of Figure 3, 
the alignment of the initial interval is randomly chosen, as is the division of the 
maximum number of intervals into those used to extend to the left and those used 
to extend to the right. For the doubling procedure of Figure 4, the alignment of 
the initial interval is random and the decisions whether to extend to the right or 
to the left are also made randomly. When sampling is done using the shrinkage 
procedure of Figure 5, zero or more rejected points will be chosen before the final 
point. Let r denote these intermediate random choices. I will prove that detailed 
balance holds for the entire procedure by showing the following stronger result: 

(4) 
P(next state= x1, intermediate choices= r I current state= xo) 

= P(next state= xo, intermediate choices= :rr(r) I current state= x1), 

where :rr (r) is some one-to-one mapping that has Jacobian one (with regard to 
the real-valued variables), which may depend on xo and x1. Integrating over all 
possible values for r then gives the desired result. 

The mapping :rr used is as follows. If the interval I is found by the stepping 
out or doubling procedure, an intermediate value, U, will be generated by the 
procedure of Figure 3 or 4, and used to define the initial interval. We define :rr so 
that it maps the value Uo chosen when the state is xo to the following U1 when the 
state is x1: 

(5) U1 = Frac (Uo + (x1 - xo)/w ), 
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where Frac (x) = x - Floor (x) is the fractional part of x. This mapping associates 
values that produce the same alignment of the initial interval. Note also that it has 
Jacobian one. If the stepping out procedure is used, a value for l is also generated, 
uniformly from the set {O, ... , m - 1}. The mapping rr associates the lo found 
when the state is xo with the following 11 when the state is x 1: 

(6) 11 =lo+ (x1/w - U1) - (xo/w - Uo). 

Here, (xi/w - U1) - (xo/w - Uo) is an integer giving the number of steps (of 
size w) from the left end of the interval containing xo to the left end of the 
interval containing x1. This is the amount by which we must adjust lo in order 
to ensure that if the interval found starting from xo grows to its maximum size, 
the associated interval found starting from x 1 will be identical. Similarly, if the 
doubling procedure of Figure 4 is used, the sequence of random decisions as to 
which side of the interval to expand is mapped by rr to the sequence of decisions 
that would cause the interval expanding from x1 to become identical to the interval 
expanding from xo when the latter first includes xi, and to remain identical through 
further expansions. Note here that there is at most one way to obtain a given 
final interval by successive doublings from a given initial interval, and that the 
alignment of the initial intervals by the association of Uo with U1 ensures that 
doubling starting from x1 can indeed lead to the same interval as found from xo. 
Finally, to complete the definition, rr maps the sequence of rejected points used 
to shrink the interval found from xo (see Figure 5) to the same sequence of points 
when x1 is the start state. 

It remains to show that with this definition of rr, ( 4) does indeed hold, for all 
points xo and x1, and all possible intermediate values r. The equation certainly 
holds when both sides are zero, so we can ignore situations where movement 
between xo and x1 is impossible (in conjunction with the given intermediate 
values). 

Consider first the probability (density) for producing the intermediate values 
that define the interval I. For the stepping out and doubling procedures, the values 
Uo and U1 (related by rr) that are generated from xo and x1 will certainly have the 
same probability density, since U is drawn from a uniform distribution. Similarly, 
for the stepping out procedure, the values lo and 11 are drawn from a uniform 
distribution over { 0, ... , m - I }, and hence have the same probability as long as 
lo and 11 are both in this set, which will be true whenever movement between 
xo and x1 is possible. For the doubling procedure, a sequence of decisions as to 
which side to extend is made, with all sequences of a given length having the 
same probability. Here also, the sequences associated by rr will have the same 
probability, provided the same number of doublings are done starting from xo as 
from x1. This need not be true in general, but if the sequence from x1 is shorter, the 
test of Figure 6 will eliminate x1 as a possible successor to xo, and if the sequence 
from xo is shorter, x1 will not be a possible successor because it will be outside the 
interval I found from xo. Both sides of (4) will therefore be zero in this situation. 



720 R. M.NEAL 

Note next that the intervals found by any of the schemes of Section 4.1 will be 
the same for xo as for x1, when the intermediate values chosen are related by rr, 
assuming a transition from xo to xi is possible. For the stepping out procedure, the 
maximum extent of the intervals will be the same because of the relationships 
between Uo and U1 and between Jo and Ji. Furthermore, the actual intervals 
found by stepping out (limited by the maximum) must also be the same whenever 
a transition between xo and x1 is possible, since if the interval starting from xo 
has reached x1, expansion of both intervals will continue in the same direction 
until the outside of the slice or the maximum is reached, and likewise in the other 
direction. Similarly, the mapping rr is defined to be such that if the interval found 
by the doubling procedure starting from xo includes x1, the same interval would 
be found from XI, provided the process was not terminated earlier (by both ends 
being outside the slice), in which case XI is not a possible successor (as it would be 
rejected by the procedure of Figure 6). Note also that since the set A is determined 
by I (for any start state), it too will be the same for xo as for xi. 

If we sample from this I by simple rejection [scheme (i) in Section 4.2), 
the state chosen will be uniformly distributed over A, so the probability of 
picking xo will be the same as that of picking x 1• If we instead use the shrinkage 
procedure [scheme (ii) in Section 4.2, detailed in Figure 5), we need to consider 
as intermediate values the sequence of rejected points that was used to narrow 
the interval (recall that under rr this sequence is the same for xo as for XI). The 
probability density for the first of these is clearly the same for both starting points, 
since I is the same. As the interval shrinks, it remains the same for both xo and XI, 

since the rejection decisions (based on A) are the same, and since we need consider 
only the case where the same end of the interval is moved to the rejected point (as 
otherwise a transition between xo and XI in conjunction with these intermediate 
values would be impossible). The probability densities for later rejected points, 
and for the final accepted state, are therefore also the same. 

This completes the proof. Various seemingly reasonable modifications, such as 
changing the doubling procedure of Figure 4 so as not to expand the interval on a 
side that is already outside the slice, would undermine the argument of the proof 
and hence cannot be used. 

4.4. Shortcuts for unimodal distributions. Some shortcuts are, however, 
allowable when the distribution is unimodal, because the slice, S, is then 
guaranteed to consist of a single interval. The acceptance test in Figure 6 can 
be omitted, since one can show that it will always indicate that the new point is 
acceptable. The interval found by the doubling procedure can also be shrunk at the 
outset by setting its endpoints to the first point in each direction that was found 
to lie outside the slice, since for a unimodal distribution, this shrinkage cannot 
eliminate any points within the slice and hence will not change the distribution of 
the point selected. 
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If the distribution is known to be unimodal and no limit is imposed on the size 
of the interval found (i.e., m and p in Figures 3 and 4 are infinite), the estimate, w, 
for the typical size of a slice can be set on the basis of past iterations. One could, 
for example, set w to the average distance between the old and new points in past 
iterations. This is valid because the distribution of the new point does not depend 
on w in this situation, even though w influences how efficiently this new point is 
found. Indeed, when the distribution is known to be unimodal, one can use any 
method at all for finding an interval that contains the current point and has both 
ends outside the slice, as any such interval will lead to the new point finally chosen 
being drawn uniformly from the slice. 

5. Multivariate slice sampling methods. Rather than sample from a distri
bution for x = (x1, ... , Xn) by applying one of the single-variable slice sampling 
procedures described above to each Xi in tum, we might try instead to apply the 
idea of slice sampling directly to the multivariate distribution. I will start by de
scribing a straightforward generalization of the single-variable methods to multi
variate distributions, and then describe a more sophisticated method, which can 
potentially allow for adaptation to the local dependencies between variables. 

5.1. Multivariate slice sampling with hyperrectangles. We can generalize the 
single-variable slice sampling methods of Section 4 to methods for performing 
multivariate updates by replacing the interval I = (L, R) by an axis-aligned 
hyperrectangle H = {x: Li < Xi < Ri for all i = 1, ... , n}. Here, Li and Ri define 
the extent of the hyperrectangle along the axis for variable Xi . 

The procedure for finding the next state, x1 = (xu, ... , x1,n), from the current 
state, xo = (xo, 1, ... , xo,n), parallels the single-variable procedure: 

(a) Draw a real value, y, uniformly from (0, f(xo)), thereby defining the slice 
S= {x:y < f(x)}. 

(b) Find a hyperrectangle, H = (L1, Ri) x · · · x (Ln, Rn), around xo, which 
preferably contains at least a big part of the slice. 

( c) Draw the new point, x1, from the part of the slice within this hyperrectan
gle. 

It would perhaps be ideal for step (b) to set H to the smallest hyperrectangle 
containing S, but this is unlikely to be feasible. When all the variables have 
bounded ranges we might set H to the entire space, but this may be inefficient, 
since S is likely to be much smaller. We may therefore have to be content with 
finding an H that contains the current point, xo, but probably not all of S. We will 
need estimates, Wi, for the appropriate dimensions of H along each axis, which 
we might set to a common value, w, if we know nothing about the relative scales 
of the variables. The simplest way of finding H is then to randomly position a 
hyperrectangle with these dimensions, uniformly over positions that lead to H 
containing xo. This generalizes the random positioning of the initial interval I for 
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single-variable slice sampling. The stepping out and doubling procedures do not 
generalize so easily, however. The goal of finding an interval whose endpoints are 
outside the slice would generalize to finding a hyperrectangle all of whose vertices 
are outside the slice, but since an n-dimensional hyperrectangle has 2n vertices, 
we would certainly not want to test for this when n is large. The stepping out 
procedure seems to be too time consuming in any case, since one would need 
to step out in each of the n directions. The doubling procedure does generalize 
appropriately, and one could decide to stop doubling when a randomly drawn 
point picked uniformly from the current hyperrectangle is outside the slice. Here, 
however, I will consider only the simplest scheme, which is to use the randomly 
positioned hyperrectangle without any expansion, though it is then crucial that the 
Wi not be much smaller than they should be. 

The shrinkage procedure of Figure 5 generalizes easily to multiple dimensions: 
the hyperrectangle is simply shrunk independently along each axis. Combining 
this with random positioning of H gives the multivariate slice sampling method 
shown in Figure 7(a), and given in detail in Figure 8. The validity of this method 
can be proved in the same way as was done for single-variable slice sampling in 
Section 4.3. 

Although this simple multivariate slice sampling method is easily implemented, 
in one respect it works less well than applying single-variable slice sampling to 
each variable in turn. When each variable is updated separately, the interval for 
that variable will be shrunk only as far as needed to obtain a new value within the 
slice. The amount of shrinkage can be different for different variables. In contrast, 
the procedure of Figure 8 shrinks all dimensions of the hyperrectangle until a point 
inside the slice is found, even though the probability density may not vary rapidly 
in some of these dimensions, making shrinkage in these directions unnecessary. 

One way to try to avoid this problem is illustrated in Figure 7(b). Rather 
than shrink all dimensions of the hyperrectangle when the last point chosen was 
outside the slice, we can instead shrink along only one axis, basing the choice 
on the gradient of log f (x), evaluated at the last point. Specifically, only the axis 
corresponding to variable Xi is shrunk, where i maximizes the following product: 

(7) (Ri - Li) [Gil, 

where G is the gradient of log f (x) at the last point chosen. By multiplying the 
magnitude of component i of the gradient by the width of the hyperrectangle in 
this direction, we get an estimate of the amount by which log f (x) changes along 
axis i. The axis for which this change is thought to be largest is likely to be the 
best one to shrink in order to eliminate points outside the slice. Unfortunately, if 
this decision were based as well on whether the sign of the gradient indicates that 
log f (x) is increasing or decreasing as we move toward the current point, xo, the 
shrinkage decision might be different if we were to shrink from the final accepted 
point, x1, which would invalidate the method. 
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(a) 

--- - - -- - - - - - - - ---... 

(b) 

FIG. 7. Multivariate slice sampling with hyperrectangles. The heavy line outlines the slice, 
containing the current point, xo. The large square is the initial hyperrectangle. In (a), the 
hyperrectangle is shrunk in all directions when the point drawn is outside the slice, until a new 
point, x1, inside the slice is found. In (b), the hyperrectangle is shrunk along only one axis, 
determined from the gradient and the current dimensions of the hyperrectangle. The dashed lines 
are contours of the density function, indicating the direction of the gradient. 

Many more elaborate schemes along these lines are possible. For instance, 
we might shrink along all axes for which the product (7) is greater than some 

Input: f 

xo 

w; 

Output: x1 

function proportional 
to the density 

the current point, 
of dimension n 

scale estimates for each 
variable, i = 1, ... , n 

the new point 

Step (a): Find value of y that defines the slice 

y ~ Uniform(O, f(xo)) 

Step (b ): Randomly position the hyperrectangle 
H = (L1, R1) x · · · x (Ln, Rn) 

For i = 1 ton: 

U; Uniform(O, 1) 
L; +-- xo,; - w; * U; 
R; +-- L; + W; 

Step ( c ): Sample from H, shrinking 
when points are rejected. 

Repeat: 

For i = 1 ton: 

U; Uniform(O, 1) 
X[,i +-- L; + U; * (R; - L;) 

ify < f(x1) thenexitloop 

For i = 1 ton: 
if x1,; < xo,; then L; +-- xu 

else R; +-- x1,i 

FIG. 8. A simple multivariate slice sampling procedure, with randomly positioned hyperrectangle 
and shrinkage in all directions, as in Figure 7(a). 
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threshold. A good scheme might preserve the ability of single-variable slice 
sampling to adapt differently for different variables, while keeping the advantages 
that simultaneous updates may sometimes have (e.g., in producing an ergodic chain 
when there are tight dependencies between variables). 

More ambitiously, we might hope that a multivariate slice sampler could adapt 
to the dependencies between variables, not just to their different scales. This 
requires that we go beyond axis-aligned hyperrectangles, as is done in the next 
section. 

5.2. A framework for adaptive multivariate slice sampling. We would like a 
more general framework by which trial points outside the slice that were previously 
rejected can be used to guide the selection of future trial points. In contrast to 
schemes based on hyperrectangles, we would like future trial points to potentially 
come from distributions that take account of the dependencies between variables. 
The scheme I present here achieves this by laying down a trail of "crumbs" that 
guides the selection of future trial points, leading eventually to a point inside the 
slice. A crumb can be anything, for example, a discrete value, a real number, 
a vector, a hyperrectangle, or a point in the state space being sampled from. 

As with the previous slice sampling schemes, we start by choosing a value y 
uniformly between zero and f (xo), where xo is the current point. A crumb, q, is 
then drawn at random from some distribution with density (or probability mass) 
function gi (c; xo, y). Note that this distribution may depend on both the current 
point, xo, and on the value of y that defines the slice. A first trial point, xi, is then 
drawn from the distribution with density hi (x*; y, CJ) = gi (q; x*, y)/ Z1 (y, c1), 
where Z1(y,q) = JgJ(CJ;x*,y)dx* is the appropriate normalizing constant. 
One can view xi as being drawn from a pseudo-posterior distribution, based on 
a uniform prior, and the "data" that the first crumb was q. If xi is inside the 
slice, it becomes the new state, and we are finished. Otherwise, a second crumb 
c2, is drawn from some distribution g1 (c; xo, y, CJ, xi), which may depend on the 
previous crumb and the previous trial point, as well as xo and y. The second trial 
point is then drawn from the pseudo-posterior distribution based on the "data" 
CJ and c2; that is, x2 is drawn from 

(8) h1(x*; y, q, xf, c2) = gJ (CJ; x*, y)g2(c2; x*, y, CJ, xi)/Z2(y, CJ, xf, c2), 

where Z2(y,CJ,xf,c2) =JgJ(c1;x*,y)g2(c2;x*,y,CJ,Xi)dx*. If x2 is inside 
the slice, it becomes the new state. Otherwise, we draw a third crumb, from a 
distribution that may depend on the current state, the value defining the slice, the 
previous crumbs and the previous trial points, generate a third trial point using this 
and the previous crumbs, and so forth until a trial point lying within the slice is 
found. 

The distributions of trial points in this sequence will become more and more 
concentrated, since they are pseudo-posterior distributions based on more and 
more pseudo-data (the crumbs). Since this pseudo-data is generated from the 
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current point, the concentration will be around this point, which is of course within 
the slice. The probability of a trial point being within the slice therefore increases 
towards one as the procedure progresses. 

To show that this procedure leaves the distribution with density f (x) / Z 
invariant, it suffices to show that it separately satisfies detailed balance with respect 
to transitions that occur in conjunction with any given number of crumbs being 
drawn. In the case, for instance, of transitions involving two crumbs, we can show 
this by showing the stronger property that for any xj that is not in the slice defined 
by y and any x2 that is in this slice, the following will hold: 

(9) P(xo)P(y, CJ, xj, c2, x2lxo) = P(x2)P(y, CJ, xj, c2, xolx2). 

Here, P (xo) and P (x2) are the probability densities for the current point and 
the point that will become the new point [which are proportional to f (x)]. 
The conditional probabilities above are the densities for the given sequence of 
values being chosen during the procedure, given that the current point is the one 
conditioned on. The left-hand side of (9) can be written as follows: 

P(xo)P(ylxo)P(cilxo, y)P(xj[y, c1)P(c2lxo, y, CJ, xj)P(x2ly, CJ, xj, c2) 

= [f(xo)/Z][l/f(xo)]g1 (ci; xo, y)[g1 (ci; xj, y)/ZJ (y, ci)] 

x g2(c2; xo, y, CJ, xj)[g1 (CJ; x2, y)g2 (c2; x2, y, CJ, xj) I Z2(Y, CJ, xj, c2)]. 

The right-hand side is 

P(x2)P(y[x2)P(ci lx2, y)P(xj[y, ci)P(c21x2, y, CJ, xj)P(xo[y, c1, xj, c2) 

= [f(x2)/Z][l/f(x2)]g1 (CJ; x2, y)[g1 (c1; xj, y)/Z1 (y, CJ)] 

x g2(c2; x2, y, c1, xj)[g1 (CJ; xo, y )g2 (c2; xo, y, CJ, xj) / Z2(Y, CJ, xj, c2)]. 

These are equal, as is true in general for transitions involving any number of 
crumbs. 

The hyperrectangle methods of Section 5 .1 can be viewed in this framework. 
The randomly placed initial hyperrectangle is the first crumb. The first trial 
point is chosen from those points that could produce this initial hyperrectangle, 
which is simply the set of points within the hyperrectangle. The second and 
later crumbs are the shrunken hyperrectangles. Conditional on the current point, 
the previous crumb (i.e., the previous hyperrectangle), and the previous trial 
point, these later crumbs have degenerate distributions, concentrated on a single 
hyperrectangle. The possible corresponding trial points are the points within the 
shrunken hyperrectangle. 

By using different sorts of crumbs, and different distributions for them, a huge 
variety of methods could be constructed within this framework. I discuss here only 
methods in which the crumbs are points in the state space, and have multivariate 
Gaussian distributions. The distributions of the trial points given the crumbs will 
then also be multivariate Gaussians. 
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In the simplest method of this sort, every gi is Gaussian with mean xo and 
covariance matrix a 2 I, for some fixed a 2 . The distribution, hi, for xt is then 
Gaussian with mean Ci= (ct+··· +ci)/ i and covariance matrix (a 2 / i)l. As more 
and more trial points are generated, they will come from narrower and narrower 
distributions, which wi11 be concentrated closer and closer to the current point 
(since Ci will approach xo). This is analogous to shrinkage in the hyperrectangle 
method. In practice, it is probably desirable to let a? decrease with i (perhaps 
exponentially), so that the trial points would be forced closer to xo more quickly. 
Alternatively, we might look at j(xt_1)/y in order to estimate what value for ai 

would produce a distribution for the next trial point, xt, that is likely to lie within 
the slice. 

More generally, gi could be a multivariate Gaussian with mean xo and some 
covariance matrix 'Ei, which may depend on the value of y, the previous crumbs, 
and the previous trial points. In particular, 'Ei could depend on the gradients 
of f(xj) for j < i, which provide information on what Gaussian distribution 
would be a good local approximation to f (x). The distribution, hi, for trial 
point xt will then have covariance 'Et= ['Ej1 + · · · + 'Ei-1r 1 and mean Ci = 
'Et ['EjlC] + ... + 'Ei-lciJ. 

When x is of only moderate dimensionality, operations on covariance matrices 
would be fairly fast, and a wide variety of ways for producing 'Ei would be feasible. 
For higher-dimensional problems, such operations would need to be avoided, as is 
done in an optimization context with the conjugate gradient and related methods. 
Further research is therefore needed in order to fully exploit the potential of this 
promising framework for adaptation, and to compare it with methods based on the 
"delayed rejection" (also called "splitting rejection") framework of Tierney and 
Mira [Mira (1998), Chapter 5; Tierney and Mira (1999); Green and Mira (2001)]. 

6. Overrelaxed slice sampling. When variables are updated in ways that 
do not take account of their dependencies, changes must be small, and many 
updates will be needed to move from one part of the distribution to another. 
Sampling efficiency can be improved in this context by suppressing the random 
walk behavior characteristic of simple schemes such as Gibbs sampling. One 
way of achieving this is by using "overrelaxed" updates. Like Gibbs sampling, 
overrelaxation methods update each variable in tum, but rather than drawing a new 
value for a variable from its conditional distribution independently of the current 
value, the new value is instead chosen to be on the opposite side of the mode 
from the current value. In Adler's (1981) scheme, applicable when the conditional 
distributions are Gaussian, the new value for variable i is 

(10) 

where µi and ai are the conditional mean and standard deviation of variable i, 
n is a Gaussian with mean zero and variance one, and a is a parameter slightly 
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greater than -1. This method is analyzed and discussed by Barone and Frigessi 
(1990) and by Green and Han (1992), though these discussions fail in some 
respects to elucidate the true benefits and limitations of overrelaxation: the crucial 
advantage being that it sometimes (though not always) suppresses random walks 
[Neal (1998)]. 

Various attempts have been made to produce overrelaxation schemes that can 
be used when the conditional distributions are not Gaussian. I have reviewed 
several such schemes and introduced one of my own [Neal (1998)]. The concept 
of overrelaxation seems to apply only when the conditional distributions are 
unimodal, so we may assume that this is usually the case, though we would like the 
method to at least remain valid (i.e., leave the desired distribution invariant) even if 
this assumption turns out to be false. To obtain the full benefits of overrelaxation, 
it is important that almost every update be overrelaxed, with few or no "rejections" 
that leave the state unchanged, as such rejections reintroduce an undesirable 
random walk aspect to the motion through state space [Neal (1998)]. 

In this section, I will show how overrelaxation can be done using slice sampling. 
Of the many possible schemes, I will describe only one in detail, based on stepping 
out and bisection, which is illustrated in Figure 9, and detailed in Figure 10. 

To begin, we apply the stepping out procedure of Figure 3 to find an interval 
around the current point. Normally, we would set the maximum size of the 
interval (m) to infinity, since a proper overrelaxation operation requires that the 
entire slice be found, but the scheme remains valid for any m. 

If the stepping out procedure finds an interval around the slice that is bigger 
than the initial interval, the two outermost steps will serve to locate the endpoints 

(a) ................ 

t 
(b) ·············-·· 

t 
(c) ................ 

t t 
L L L+A 

2 
A R 

FIG. 9. Overrelaxation using the stepping out procedure and bisection. In (a), an interval, (L, R), 
with both ends outside the slice is found by stepping out from the current point. In (b ), the endpoints 
of the slice are located more accurately using bisection. In (c), a candidate point is found by flipping 
through the point half-way between the approximations to the endpoints. In this case, the candidate 
point is accepted, since it is within the slice, and within the interval prior to bisection. 
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Input: f = function proportional 
to the density 

xo = the current point 

y = the vertical level 
defining the slice 

w = estimate of the typical 
size of a slice 

a = integer limiting endpoint 
accuracy to 2-a w 

(L. R) = interval found by the 
stepping out procedure 
using stepsize w 

Output: x 1 = the new point 

L ~ L, R ~ R 
w ~ w, a~ a 

When the interval is only of size w, 
narrow it until the mid-point is inside 
the slice (or accuracy limit is reached). 

if R - L < 1.1 * w then 

repeat: 

M ~ (L+R)/2 
if a = 0 or y < f(M) then 

exit loop 

if xo > M then L ~ M 
else R ~ M 

a ~a- I 
w ~ w/2 

Refine endpoint locations by bisection, 
to the spec(fied accuracy. 

i ~ L, R. ~ R 
repeat while a > 0: 

a ~a-I 
w ~ w/2 
ify:::: f(i+w)theni ~ i+w 
if y :::: f ( R. - w) then R. ~ R. - w 

Find a candidate point by flipping from 
the current point to the opposite side of 
(L, R), then test it for acceptability. 

X[ ~ i + R - XO 

if x1 < i or xi> Rory ::;: f(x1) then 

X[ ~XO 

Fro. l 0. The overrelaxation procedure using bisection. 

of the slice to within an interval of size w (assuming the slice consists of a single 
interval, as it will if the distribution is unimodal). We then locate the endpoints 
more precisely using a bisection procedure. For each endpoint, we test whether 
the midpoint of the interval in which it is located is inside or outside the slice and 
shrink this interval appropriately to narrow the location of the endpoint. After this 
is done a times, each endpoint will be known to lie in an interval of size 2-a w. 

If the stepping out procedure finds that the initial interval (of size w) already 
has both ends outside the slice, then before doing any bisection, we narrow this 
interval, by shrinking it in half repeatedly until its midpoint is within the slice. 
We then use bisection as above to locate the endpoints to within an interval of 
size 2-a w. 

After the locations of the endpoints have been narrowed down, we approximate 
the entire slice by the interval (L, R), formed from the outer bounds on the 
endpoint locations. To do an overrelaxed update, we flip from the current point, xo, 
to a new point, x1, that is the same distance as the current point from the middle of 
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this interval, but on the opposite side. That is, we let 
A A A A 

(11) L + R ( L + R) A A 

x1 = - 2- - xo - - 2- = L + R -xo. 

We must sometimes reject this candidate point, in which case the new point 
is the same as the current point. First, we must reject x1 if it lies outside the 
interval, (i, R), that was found prior to bisection, since the interval found from 
x1 would then be different, and detailed balance would not hold. However, this 
cannot happen when the distribution is unimodal. Secondly, we must reject x1 if it 
lies outside the slice. This can happen even for a unimodal distribution, when the 
endpoints of the slice have not been located exactly. However, the probability of 
rejection for a unimodal distribution can be reduced to as low a level as desired, at 
moderate cost, by locating the endpoints more precisely using more iterations of 
bisection. 

The correctness of this procedure can be seen using arguments similar to 
those of Section 4.3. The interval before bisection can be found by the doubling 
procedure instead of stepping out, provided the point found is rejected if it fails the 
acceptance test of Figure 6. However, rejection for this reason will not occur in the 
case of a unimodal distribution, which is presumably typical, since overrelaxation 
is likely inappropriate for a multimodal distribution. 

Many methods other than bisection could be used to locate the endpoints before 
overrelaxing. If the derivative of f (x) can easily be calculated, we could use 
Newton iteration, whose rapid convergence would often allow the endpoints to 
be calculated to machine precision in a few iterations. For unimodal distributions, 
such exact calculations would eliminate the possibility of rejection, and make the 
final result be independent of the way the interval containing the slice was found, 
thereby allowing use of retrospective methods for tuning the procedure for finding 
this interval. 

To obtain a full sampling scheme, overrelaxed updates of this sort would be 
applied to each variable in tum, in a fixed order, for a number of cycles, after 
which a cycle of normal single-variable slice sampling updates would be done. 
Alternatively, each update could be done normally with some small probability. 
A Markov chain consisting solely of overrelaxed updates might not be ergodic 
(perhaps staying on one contour of the probability density), and might in any case 
suppress random walks for too long. The frequency of normal updates is a tuning 
parameter, analogous to the choice of a in Adler's overrelaxation method, and 
would ideally be set so that the Markov chain moves systematically, rather than 
in a random walk, for long enough that it traverses a distance comparable to the 
largest dimension of the multivariate distribution, but for no longer than this. To 
keep from doing a random walk for around k steps, one would do every kth update 
normally and also arrange for the rejection rate for the overrelaxed updates to be 
less than 1/ k. 
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7. Reflective slice sampling. Multivariate slice sampling methods can also 
be designed to suppress random walks. In this section I describe methods that 
"reflect" off the boundaries of the slice. Such movement with reflection can be 
seen as a specialization to uniform distributions of the Hamiltonian dynamics on 
which the hybrid Monte Carlo method of Duane, Kennedy, Pendleton and Roweth 
(1987) is based. 

As before, suppose we wish to sample from a distribution over mn, defined by a 
function f (x) that is proportional to the probability density. We assume here that 
we can compute both f (x) and its gradient. In each iteration of the Markov chain, 
we will draw a value for an auxiliary variable, y, uniformly from (0, f (x) ), thereby 
defining an n-dimensional slice S = {x: y < f(x)}. We also introducen additional 
"momentum" variables, written as a vector, p, which serve to indicate the current 
direction and speed of motion through state space. At the start of each iteration, 
we pick a value for p, independently of x, from some rotationally symmetric 
distribution, typically Gaussian with mean zero and identity covariance. 

Once y and p have been drawn, we repeatedly update x by stepping in the 
direction of p. After some predetermined number of steps, we take the final 
value of x as our new state (provided it is acceptable). In each step, we try to 
set x' = x + wp, for some scale parameter w that determines the average step 
size. However, if the resulting x' is outside the slice S [i.e., y '.'.'.: f(x')], we must 
somehow try to bring it back inside. The schemes considered here all do this by 
some form of reflection, but differ in the exact procedure used. 

Ideally, we would reflect from the exact point at which movement in the 
direction of p first takes us outside the slice. This reflection operation modifies p, 
after which motion continues in the new direction, until we again encounter the 
boundary of the slice. When we hit the boundary at a point where the gradient of 
f (x) is h, reflection will change pas follows: 

I p·h 
(12) p = p - 2h lhl2. 

This ideal reflection scheme is illustrated for a two-dimensional slice in Figure 11. 
Using the fact that the reflection transformation above has Jacobian one and is its 
own inverse, one can show that movement with reflection for some predetermined 
duration leaves invariant the joint distribution of x (uniform within the slice) and p 
(rotationally symmetric, independent of x ), so this way of sampling is valid, with 
no need for an acceptance test. One can also see from the figure how such motion 
can proceed consistently in one direction (until the end of the slice is reached), 
rather than in a random walk. 

Ideal reflection may be difficult to implement, however, as it requires precise 
calculation of where the current path intersects the boundary of the slice. Finding 
this point analytically is sometimes possible, as in the application of reflective slice 
sampling by Downs, MacKay and Lee (2000). We might instead try to solve for the 
intersection point numerically, but if the slice is not known to be convex, it may be 
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FIG. 1 1. Moving around a two-dimensional slice by reflection from the exact boundaries. 

difficult even to determine with certainty that any intersection point that has been 
found is in fact the first one that would be encountered. Rather than attempt such 
exact calculations, we can instead employ one of two approximate schemes, based 
on "inside" or "outside" reflection, although the trajectories these schemes produce 
must sometimes be rejected in order to produce the exactly correct equilibrium 
distribution (in which case, the chain remains in the state from which the trajectory 
began). 

When stepping from x to x' = x + wp takes us outside the slice, we can try 
to reflect from the last inside point, x, instead of from the exact point where the 
path intersects the boundary, using the gradient of f (x) at this inside point. The 
process is illustrated in Figure 12. However, for this method to be valid, we must 
check that the reverse trajectory would also reflect at this point, by verifying that a 
step in the direction opposite to our new heading would take us outside the slice. 
If this is not so, we must either reject the entire trajectory of which this reflection 
step forms a part, or alternatively, set p and x so that we retrace the path taken to 
this point (starting at the inside point where the reflection failed). 

Alternatively, when we step outside the slice, we can try to reflect from the 
outside point, x', based on the gradient at that point. A trajectory with several such 
reflections is shown in Figure 13. After performing a predetermined number of 

(a) (b) 

FIG. 12. Reflection from an inside point. The trajectories here go in steps of size wlpl, starting 
from the top right, until a point outside the slice is reached, when a reflection is attempted based 
on the inner contour shown. In (a), the reflection is successfal; in (b), it must be rejected, since the 
reverse trajectory would not reflect at this point. 
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------------------ --- - - . --- ---

--- --- --. -------------------------------
FIG. 13. Reflection from outside points. Starting from the left, two reflections based on outside 
contours lead back inside the slice after the next step. The step after the third reflection is still outside 
the slice, so further reflections must be done. In this case, the trajectory eventually returns to the slice, 
and its endpoint would therefore be accepted. 

steps, we accept the trajectory if the final point is inside the slice. Note that for this 
method to be valid, one must reflect whenever the current point is outside the slice, 
even if this leads one away from the slice rather than toward it. This will sometimes 
result in the trajectory never returning to the slice, and hence being rejected, but 
other times, as in the figure, it does return eventually. 

Many variations on these procedures are possible. Previously, it was assumed 
that values for y and p are randomly drawn at the beginning of a trajectory, and 
then kept the same for many steps (apart from changes to p due to reflections). 
When using inside reflection, we might instead pick a new value for y more often, 
perhaps before every step, and we might also partially update p, as is done in 
Horowitz's ( 1991) variation on hybrid Monte Carlo. When using outside reflection, 
the acceptance rate can be increased by terminating the trajectory when either some 
preset maximum number of steps have been taken, or some preset number of steps 
have ended inside the slice. When termination occurs for the latter reason, the 
final point will necessarily be inside the slice, and the trajectory will therefore be 
accepted. 

8. A demonstration. To illustrate the benefits stemming from the adaptive 
nature of slice sampling, I show here how it can help avoid a disastrous scenario, 
in which a seriously wrong answer is obtained without any obvious indication that 
something is amiss. 

The task is to sample from a distribution for ten real-valued variables, v and x1 

to x9. The marginal distribution of v is Gaussian with mean zero and standard 
deviation 3. Conditional on a given value of v, the variables x1 to x9 are 
independent, with the conditional distribution for each being Gaussian with mean 
zero and variance ev. The resulting shape resembles a ten-dimensional funnel, with 
small values for v at its narrow end, and large values for v at its wide end. Such 
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a distribution is typical of priors for components of Bayesian hierarchical models: 
x1 to x9 might, for example, be random effects for nine subjects, with v being 
the log of the variance of these random effects. If the data happens to be largely 
uninformative, the problem of sampling from the posterior will be similar to that 
of sampling from the prior, so this test is relevant to actual Bayesian inference 
problems. 

It is of course possible to sample from this distribution directly, by simply 
sampling for v, and then sampling for each of xi to x9 given this value for v, 
thereby obtaining independent points from exactly the correct distribution. And in 
any case, we already know the correct marginal distribution for v, which will be 
the main focus of this test. We will pretend, however, that we don't already know 
the answer and compare what we would then conclude using various Markov chain 
methods to what we know is actually correct. 

Figure 14 shows the results of trying to sample from this distribution using 
Metropolis methods and single-variable slice sampling. The upper plot shows 
2,000 iterations of a run in which each iteration consists of 10,000 multivariate 
Metropolis updates (i.e., 20 million Metropolis updates altogether). The proposal 
distribution was a spherical Gaussian centered on the current state, with standard 
deviation one for each of the ten variables. The initial state had v = 0 and all 
Xi = 1. The points plotted are the value of v at each iteration, with dotted lines 
shown at v = ±7.5. 

The results of this run are grossly incorrect. We know that the marginal 
distribution for v is Gaussian with mean zero and standard deviation 3. One 
would expect that out of 2,000 points from this distribution, on average 95.6 
(4.8%) should be less than -5, but none of the points sampled by the multivariate 
Metropolis method is in this region. Moreover, there is little in the plot to indicate 
that anything is wrong. In an actual application, the results of a run such as this 
could easily be accepted as being correct, with serious consequences. 

The source of the problem is the low probability of accepting a proposal when in 
a state where v is small. When v is -4, for example, the standard deviation of the Xi 

conditional on this value for vis 0.135. The chances that a multivariate Metropolis 
proposal in which each Xi has standard deviation one will produce values for 
all the Xi that are within this range of zero are about 0.1359 ~ 1.5 x 10-8. The 
proposal will include a change to v as well as the Xi, so this calculation does not 
give the exact acceptance probability, but it does indicate that when v is small, 
the acceptance probability can become very small, and the chain will remain in 
the same state for a very long time. Since the Markov chain leaves the correct 
distribution invariant, it follows that the chain will only very rarely move from a 
large value of v (which happens to be where this run was started) to a small value 
for v; indeed, this never occurred in the actual run. 

Once one suspects a problem of this sort, signs of it can be seen in the plot. In 
particular, starting at iteration 1,198, the value of v stays at around -3.3 for 25 
iterations (i.e., for 250,000 Metropolis updates). However, there are no obvious 
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Multivariate Metropolis updates, standard deviation 1 
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FIG. 14. Sampling from the funnel distribution using Metropolis and slice-sampling methods. 
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occurrences of this sort in the first 1,000 iterations, so the problem would not 
be apparent even to a suspicious user if only half as many iterations had been 
done. Running several chains from different starting states might have revealed 
the problem, but when sampling from more complex distributions, it is difficult to 
be sure that an appropriate variety of starting states has been tried. 

The second plot in Figure 14 shows the results of sampling from the funnel 
distribution using single-variable Metropolis updates, applied to each variable in 
sequence. The proposal distribution was a Gaussian centered on the current value, 
with standard deviation one. Each iteration for this run consisted of 1,300 updates 
for each variable in tum, which take approximately as long as 10,000 multivariate 
Metropolis updates (with the program and machine used). As before, the plot 
shows the value of v after each of 2,000 such iterations. 

The results using single-variable Metropolis updates are not as grossly wrong 
as those obtained using multivariate Metropolis updates. Small values for v are 
obtained in the expected proportion. The previous problem of very low acceptance 
rates when v is small is avoided because even when the standard deviation for one 
of the Xi given v is much smaller than the proposal standard deviation, proposals to 
change a single Xi are still accepted occasionally (e.g., when v = -9, the standard 
deviation of the Xi is 0.011, and about one proposal in 100 is accepted). 

However, large values for v are sampled poorly in this run. About 0.6% of the 
values should be greater than 7.5 (which is marked by a dotted line), but no such 
values are seen in the first half of the run ( 1,000 iterations, 1.3 million updates for 
each variable). Around iteration 1,200, the chain moves to large values of v and 
stays there for 17 iterations (22, 100 updates for each variable). This number of 
points above 7 .5 is not too far from the expected number in 2,000 iterations, which 
is 12.4, so in this sense the run produced approximately the right answer. However, 
it is clear that this was largely a matter of luck. Movement to large values of v is 
rare, because once such a value for v is reached, the chain is likely to stay at a large 
value for v for a long time. In this case, the problem is not a high rejection rate, 
but rather slow exploration of the space in small steps. For example, the standard 
deviation of the x; when v is 7 .5 is 42.5. Exploring a range of plus or minus twice 
this by a random walk with steps of size around 1 takes about ( 4 x 42.5)2 = 28, 900 
updates of each variable. While exploring this range, substantial amounts of time 
will be spent with values for the Xi that are not compatible with smaller values 
of v. (This problem is not as severe in the previous run, because the multivariate 
proposals take larger steps, since they change all variables at once.) 

We might try to avoid the problems with sampling for both large and small 
values of v by picking the proposal standard deviation at random, from a wide 
range. The third plot in Figure 14 shows the results when using multivariate 
Metropolis proposals in which the log base 10 of the proposal standard deviation 
is chosen uniformly from the interval (-3, 3). Large values for v are sampled 
fairly well, but small values for v are still a problem, though the results are not 
as bad as for multivariate Metropolis with the proposal standard deviation fixed 
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at 1. Increasing the range of proposal standard deviations to even more than six 
orders of magnitude might fix the problem, but at an even greater cost in wasted 
computation when the random choice is inappropriate. 

The bottom plot in Figure 14 shows the results of trying to sample from the 
funnel distribution using single-variable slice sampling. The initial interval was 
of size 1, and was expanded by the stepping-out procedure (Figure 3) until both 
ends are outside the slice, and then sampled from with the shrinkage procedure 
(Figure 5). Each of the 2,000 iterations done consisted of 120 such updates for 
each variable in tum, which takes approximately the same amount of time as 
the Metropolis methods. The average number of evaluations of f for these slice 
sampling updates was 12.7, but a few updates required more than a hundred 
evaluations. 

The results with single-variable slice sampling are quite good. Small values 
of v are perhaps sampled slightly less well than with single-variable Metropolis 
updates, but the difference is not large. Large values of v are sampled better than 
with any of the Metropolis methods. This good performance is due to the way the 
stepping out and shrinkage procedures can adapt to the local characteristics of the 
distribution. 

9. Discussion. The table in Figure 15 summarizes the characteristics of the 
slice sampling methods discussed in this paper and of some competing approaches 
for sampling from general distributions on continuous state spaces. I list methods 
that update a single variable at a time separately from multivariate methods. 
Single-variable methods may be preferred when the coordinate system used is such 
that one expects many of the variables to be almost independent. Furthermore, 
for some distributions, recomputing the probability density after a change to one 
variable may be much faster than recomputing it after a change to all variables. 
When there are strong dependencies between variables, however, single-variable 
updates may converge slowly, or even be nonergodic, though simple-minded 
multivariate methods will not necessarily be better in such a situation. 

The first column in the table indicates whether the method requires that deriv
atives of the log probability density be computable. Derivatives are needed by 
dynamical methods and reflective slice sampling, which limits their applicability. 
Adaptive rejection sampling [Gilks and Wild (1992), Gilks ( 1992)] and overre
laxed slice sampling can take advantage of derivatives, but can operate without 
them with only a moderate loss of efficiency; for example, with no derivatives 
available, overrelaxed slice sampling can find endpoints using bisection rather than 
Newton iteration. 

The second and third columns indicate how critical it is that tuning parameters 
be set to good values, and whether or under what conditions "retrospective 
tuning" is allowed; that is, whether parameters of the method can be set based 
on information from past iterations. Adaptive rejection sampling (ARS) for log 
concave distributions is very good in these respects; one must specify a stepsize 
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Derivatives How critical Retrospective Can suppress 
needed? is tuning? tuning allowed? random walks? 

Single-variable methods 

ARS/ARMS No (but helpful) Low-Medium If log concave No 

Single-variable No Medium No No 
Metropolis 

Single-variable No Low If unimodal No 
slice sampling 

Overrelaxed No (but helpful) Low If unimodal and Yes 
slice sampling endpoints exact 

Multivariate methods 

Multivariate No Medium-High No No 
Metropolis 

Dynamical methods Yes High No Yes 

Slice sampling with No Low-Medium No No 
hyperrectangles 

Slice sampling with Possibly Low-Medium No No 
Gaussian crumbs helpful 

Reflective Yes Medium-High No Yes 
slice sampling 

FIG. 15. Characteristics of some general-purpose Markov chain sampling methods. 

to use in searching for a point on the other side of the mode, but this parameter 
can be tuned retrospectively, and if it is too small, it can be rapidly increased by 
doubling. Parameter tuning is more of a problem when ARMS [Gilks, Best and 
Tan (1995)] is used for distributions not known to be log concave. A poor choice 
of parameters may have worse effects, and retrospective tuning is not allowed 
[Gilks, Neal, Best and Tan (1997)]. Tuning is also a problem for single-variable 
and multivariate Metropolis methods: proposing changes that are too small leads 
to an inefficient random walk, while proposing changes that are too large leads to 
frequent rejections. Metropolis methods must not be tuned retrospectively. 

Single-variable slice sampling and overrelaxed slice sampling offer advantages 
over other methods in these respects. Whereas ARS/ARMS allows retrospective 
tuning only for log concave distributions, it is allowed for these slice sampling 
methods when they are applied to any unimodal distribution (provided the interval 
is expanded to the whole slice, and endpoints for overrelaxation are computed 
exactly). Furthermore, the tuning is less critical for slice sampling than for the 
other methods (apart from ARS), as discussed further below. 
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The final column indicates whether the method can potentially suppress random 
walk behavior. This is important when sampling from a distribution with high 
dependencies between variables, which may have to be explored in small steps, 
since the difference in efficiency between diffusive and systematic exploration of 
the distribution can then be very large. Hybrid Monte Carlo works very well as a 
way of suppressing random walks, provided it is tuned properly. However, using a 
stepsize for hybrid Monte Carlo that is too large is disastrous, since the dynamical 
simulation becomes unstable, and very few changes are accepted. Reflective slice 
sampling offers an alternative that may sometimes be easier to tune. 

We can also explore the differences between these methods by seeing how 
well they work in various circumstances. The most favourable situation is when 
our prior knowledge lets us choose good tuning parameters for all methods. 
A Metropolis algorithm with a simple proposal distribution will then explore 
the distribution fairly efficiently (although in a random walk), and will have low 
overhead, since it requires evaluation of f (x) at only a single new point in each 
iteration. Single-variable slice sampling will be comparably efficient, however, 
provided we stick with the interval chosen initially (i.e., set m = 1). There will 
then be no need to evaluate f(x) at the boundaries of the interval, and if the 
first point chosen from this interval is within the slice, only a single evaluation 
of f (x) will be done. If this point is outside the slice, further evaluations will be 
required, but this inefficiency corresponds to the possibility of rejection with the 
Metropolis algorithm. Multivariate slice sampling with an initial hyperrectangle 
that is not expanded behaves analogously. Metropolis and slice sampling methods 
should therefore have similar performance when both are tuned well. However, 
slice sampling will work better if it turns out that we mistakenly chose too large a 
width for the Metropolis proposal distribution and initial slice sampling interval. 
This will lead to a high rejection rate for the Metropolis algorithm, but the sampling 
procedures of Figures 5 and 8 efficiently use rejected points to shrink the interval, 
lessening the impact of such a bad choice. 

As seen in the demonstration of Section 8, the advantage of slice sampling over 
Metropolis methods can be quite dramatic if we do not know enough to choose a 
good tuning parameter, or if no single value of the tuning parameter is appropriate. 

Another possibility is that we know that the conditional distributions are log 
concave, but we do not know how wide they are. Adaptive rejection sampling 
(ARS) with retrospective tuning will then work quite well. Single-variable 
slice sampling will also work well, since in this situation it too can be tuned 
retrospectively (provided no limit is set on the size of the interval). However, 
ARS does true Gibbs sampling, whereas the slice sampling updates do not produce 
points that are independent of the previous point. This dependency probably slows 
convergence, so ARS may be better than single-variable slice sampling in this 
context (though this will depend also on how many function evaluations each 
method requires). 



SLICE SAMPLING 739 

Suppose, however, that we know only that the conditional distributions are 
unimodal, but not necessarily log concave. We would then need to use ARMS 
rather than ARS, and would not be able to tune it retrospectively, whereas we can 
still use single-variable slice sampling with retrospective tuning. This will likely 
not be as good as true Gibbs sampling, however, which we should prefer if the 
conditional distribution happens to be one that can be efficiently sampled from. 
In particular, if slice sampling is used to sample from a heavy-tailed distribution, 
it may move only infrequently between the tails and the central region, since this 
transition can occur only when we move to a point under the curve of f (x) that 
is as low as the region under the tails. However, there appears to be no general 
purpose scheme that avoids problems in this situation. 

Finally, consider a situation where we do not know that the conditional 
distributions are unimodal, and have only a rough idea of an appropriate width 
for a proposal distribution or initial slice sampling interval. Single-variable slice 
sampling copes fairly well with this uncertainty. If the initial interval is too small it 
can be expanded as needed, either by stepping out or by doubling-which is better 
depends on whether the faster expansion of doubling is worth the extra overhead 
from the acceptance test of Figure 6. If instead the initial interval is too big, it 
will be shrunk efficiently by the procedure of Figure 5. We might try to achieve 
similar robustness with the Metropolis algorithm by doing several updates for each 
variable, using proposal distributions with a range of widths. For example, if w is 
our best guess at an appropriate width, we might do updates with widths of w /4, 
w/2, w, 2w and 4w. This may ensure that an appropriate proposal distribution is 
used some of the time, but it is unattractive for two reasons. First, the limits of the 
range (e.g., from w / 4 to 4w) must be set a priori. Second, for this approach to 
be valid, we must continue through the original sequence of widths even after it is 
clear that we have gone past the appropriate one. These problems are not present 
with slice sampling. 

Multivariate slice sampling using hyperrectangles will usually not offer much 
advantage over single-variable slice sampling (as is also the case with multivariate 
versus single-variable Metropolis methods). However, the more general framework 
for multivariate slice sampling based on "crumbs" that was outlined in Section 5.2 
offers the possibility of adapting not just to the scales of the variables, but also 
to the dependencies between them. The benefits of such methods can only be 
determined after further research, but huge increases in efficiency would seem 
conceivable, if one is to judge from the analogous comparison of minimization 
by simple steepest descent versus more sophisticated quasi-Newton or conjugate 
gradient methods. 

The practical utility of the slice sampling methods described here will ultimately 
be determined by experience in a variety of applications. Some applications 
will involve tailor-made sampling schemes for particular models-for instance, 
Frey (1997) used single-variable slice sampling to sample for latent variables 
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in a slice sampling for another neural network model. The adaptivity of slice 
sampling should prove particularly useful when using tempering or annealing 
methods [Geyer and Thompson (1995), Neal (2001)] in order to avoid problems 
with multimodality, since these methods require sampling from a whole sequence 
of distributions, and we would rather not have to manually tune a sampler for 
each one. Slice sampling is also particularly suitable for use in automatically 
generated samplers, and is now used in some situations by the WinBUGS system 
[Lunn, Thomas, Best and Spiegelhalter (2000)]. Readers can try out slice sampling 
methods for themselves, on a variety of Bayesian models, using the "software for 
flexible Bayesian modeling" that is available from my web page. This software 
(version of 2000-08-21) implements most of the methods discussed in this paper. 
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