(?:ftolhttos?):\/\/ Text Processing

’ .
(7:
C20C2: AOWNLN-NRISE NN)"\, 5=] 1 %] 0-9a-F] {2})+:)"
C7: DWW \-\4B1 88 \(\)*"\+, ;=] 1%[@-%a-f) {2})+&
)?
(7:10-26-9\-\. | |&]0-9a-f |{2})4
(7:\|(7:10-9a-f |{90,4}:)*(7:10-9a-1]19,4})\])

-

Text Manipulation

O Parsing text

= extract tokens and understand their significance

O Text transformation
= change all words to lower case

= replace multiple consecutive spaces by a single space

O Regular expressions

= identify text with specific structure

Strings

O s =‘“hello world”

O s ="""go home
class dismissed”

O s =‘gone with the wind’
O Strings are immutable.

O Strings are similar to sequences

- s[3] #

: s[3:6] # ‘ewi

Loops with String

s = "The huick fox jumps over the lazy dog"
for si in s:
print si,

T h e qudick f ox jumps over t he lazy dog

s = "The quick fox jumps over the lazy dog"
for si in s:
print si

(-

A Q- CQ

O rh

Splitting text

s = "The quick fox jumps over the lazy dog"

slist = s.split()
print slist

[' The', 'quick', 'fox', 'jumps',

s = """The quick fox
jumps over
the lazy dog
slist = s.split()
print slist

slist2 = s.split(' ')
print slist2

[' The', 'quick', 'fox',
[' The', 'quick', 'fox',

"jumps ', 'over',

'\njumps ',

'over', 'the', 'lazy', 'dog']
'the', 'lazy', 'dog']
'\nthe', 'lazy', 'dog']

'over',

Joining and printing

a="The"

b="lazy"

c="fox"

print a+b+c

blank = " "

print a+blank+b+blank+c+blank

print "%s %s %s" % (a,b,c)

print "Example: %1i %s %ses\ndivided the bounty of\t%.2f" % (5,b,c,5.4567)

Thelazyfox

The lazy fox

The lazy fox

Example: 5 lazy foxes
divided the bounty of 5.46

mnn

s = The quick fox
jumps over
the lazy dog
slist = s.split()
print "LIST: ", slist o o .
print "FOR: = }Olnlng LIStS
for si in slist:

print si,
print
print "APPEND: = g
news = ""
for si in slist:

news += si
print news
print "JOIN: ", "".join(slist)
print "JOIN with @: ","@".join(slist)
print "JOIN with blank: "," ".join(slist)
print "JOIN: with plus: "," + ".join(slist)

LIST: ['"The', 'quick', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
FOR: The quick fox jumps over the lazy dog

APPEND: Thequickfoxjumpsoverthelazydog

JOIN: Thequickfoxjumpsoverthelazydog

JOIN with @: The@quick@fox@jumps@over@the@lazy@dog

JOIN with blank: The quick fox jumps over the lazy dog
JOIN: with plus: The + quick + fox + Jjumps + over + the + lazy + dog

Regu Iar EXP reSS|OnS O Documentation

http://docs.python.org/library/re.html

O Tutorial

http://docs.python.org/howto/regex.html

O regular expression module

= importre

'‘compile', 'copy reg', 'error', 'escape', 'findall', 'finditer',’
match', 'purge', 'search', 'split’, 'sub’,

IF YOURE HAVIN' PERL T GOoT 99 SO T USED NowW T HAVE
PROBLEMS I FEEL PROBLEMS, REGULAR 100 PROBLEMS.
BAD FOR YOU, SON—)

TR

http://docs.python.org/library/re.html
http://docs.python.org/howto/regex.html

Simple Searches

CAP = re.compile(r"[ZQ][uo][a-2]*")

CAP.findall(text)
['Zoologique’, e
'Zoonomia’ > filename = "/Users/beerli/Documents/Work/talks/ISC-4304/misc/originéth.txt"
' " f = open(filename, 'rU"’)
ZOOlOg ’ text = f.read()
'Zoologisch’, #tt = re.split('\.["[\?2[\![-]_[\s[;[,[*[\n', text.lower())

' ' tt = re.split('\W',text.lower())
Quercus ,

' Quercus ' ’ filter(None,tt)
'Quatrefages’, T the
'Zoological'’, 'projegt' '

'gutenberg’,
'Quadrupeds’, . ebook ',
'Quadrupeds ', ‘of’,

on',
'Quagga’, ‘the',
'Quatrefages’, P?ghﬂ,

or ,
'Quercus’, 'species’',
'Quince’] ‘by’,

'charles’,

'darwin’,

'this',

'ebook’,

lis 1 ’

"for',

'the'’,

'use’,

Repetition

O pattern =*“a*b” # 0 or more

O pattern =“a+b” # | or more

O pattern ="“a’b” #O0 or |

O pattern =“a{2}” # 2 copies of a

Special Forms

[a-c3-5] : any of the characters within []

C :any character

0% :end of string

O A :beginning of string

O a-z : “-” range of characters
O

u

[Aa-c] :all characters except [abc]

11

Further abbreviations

\d :digit character class: [0-9]
\D : non-digit character

\w : alphanumeric char

\W: non-alphanumeric char
\A :beginning of string

O O O O O 0O

etc.

12

Greediness

O By default, matching generates the longest possible
match: greedy (*,+,?)

O It is possible to reverse the behavior to non-greedy
(2, +2, 1)

Greedy vs non-greedy

O tx ="abab c4 ab”

O re.search(“a.*b”, tx) # ==>“ab c4 ab”

O re.search(“a.?”*b”, tx) # ==>*“ab”

O re.search(“[ab]{2}.*[ab]”) ==> “abab c4 ab”

13

A few methods from re module

O re.search(pattern, str)

= returns a matchObject for the leftmost substring

O re.sub(pattern, replace, str)

= return string with pattern replaced by replace

O re.findall(pattern, str)

= return a list of nonoverlapping patterns in string

O re.compile(pattern, flags)

= compile the pattern for efficiency

14

Locating matches

pattern = re.compile(r'[Q][a-2z]+")
for m in pattern.finditer(text):
print m.start(), m.group()

139490 Quercus
139993 Quercus
676073 Quatrefages
1194386 Quadrupeds
1208959 Quadrupeds
1242547 Quagga
1242566 Quatrefages
1242602 Quercus
1242629 Quince

text[139490 : 139490 +50]

'Quercus robur has twenty-eight varieties, all of w'

re_show()

import re
def re show(pat, s):
print re.compile(pat, re.M).sub("{\g<0>}", s.rstrip()),'\n’

s = """Mary had a little lamb
And everywhere that Mary
went, the lamb was sure to go

' '

re show('a’', s) # letter 'a
re_show(r'"Mary', s) # beginning of line
re_show(r'Mary$', s) # end of line

re show(r'.a', s) # any letter + 'a’

M{a}ry h{a}d {a} little l{a}mb
And everywhere th{a}t M{a}ry
went, the l{a}mb w{a}s sure to go

{Mary} had a little lamb
And everywhere that Mary
went, the lamb was sure to go

Mary had a little lamb
And everywhere that {Mary}
went, the lamb was sure to go

{Ma}ry {ha}d{ a} little {la}mb
And everywhere t{ha}t {Ma}ry
went, the {la}mb {wa}s sure to go

16

re show(r'Wher|ever', s)

re show(r' (Wher)(ever)', s)
re show(r' (Wherever)', s)

re show(r'(th).*(th)', s)

re show(r'(th).*(th)+', s)
re show(r'(th).*?(th)??', s)
re show(r'(th).*(th)??', s)

Mary had a little lamb

And {everlvwhere that Mary
click to scroll output; double click to hide , 4

Mary had a little lamb
And everywhere that Mary
went, the lamb was sure to

Mary had a little lamb
And everywhere that Mary
went, the lamb was sure to

Mary had a little lamb
And everywhere that Mary
went, the lamb was sure to

Mary had a little lamb
And everywhere that Mary
went, the lamb was sure to

Mary had a little lamb
And everywhere {th}at Mary
went,

Mary had a little lamb
And everywhere {that Mary}
went,

go

go

go

go

go

{th}e lamb was sure to go

{the lamb was sure to go}

re.search

str = "The fuzz is on the street”
m = re.search("[tT]he", str)
print m

print m.groups()

print m.group(0)

print re.findall("[tT]he", str)

m = re.search(" (The).*(fu.*z)", str)
print "groups(): ", m.groups()

print "group(): ", m.group()

print "group(0): ", m.group(0)

print "group(l): ", m.group(l)

print "group(2): ", m.group(2)

< sre.SRE Match object at 0x10b5c59f0>
()

The

['The', 'the']

groups(): ('The', 'fuzz')

group(): The fuzz

group(0): The fuzz

group(l): The

group(2): fuzz

18

Some Constant flags

O rel :relGNORECASE:

O re.L :locale
O re.M : multiline

= pattern match do not cross

\n’ boundaries)

19

Explorations

O Regular expressions offer much more than
discussed

20

