
OOP	principles	(again)

• encapsulation:	hiding	design	details	to	make	the	program	
clearer	and	more	easily	modified	later	

• modularity:	the	ability	to	make	objects	“stand	alone”	so	they	
can	be	reused	(our	modules).	Like	the	math	module	

• inheritance:	create	a	new	object	by	inheriting	(like	father	to	
son)	many	object	characteristics	while	creating	or	over-riding	
for	this	object	

• polymorphism:	(hard)	Allow	one	message	to	be	sent	to	any	
object	and	have	it	respond	appropriately	based	on	the	type	of	
object	it	is.

There	are	now	three	groups	in	our	coding	scheme:	
user	
programmer,	class	user	
programmer,	class	designer

• The	class	designer	is	creating	code	to	be	used	by	other	
programmers	

• In	so	doing,	the	class	designer	is	making	a	kind	of	library	that	
other	programmers	can	take	advantage	of

encapsulation

• Hiding	the	details	of	what	the	message	entails	means	that	
changes	can	be	made	to	the	object	and	the	flow	of	messages	
(and	their	results)	can	stay	the	same	

• Thus	the	implementation	of	the	message	can	change	but	its	
intended	effect	stay	the	same	

• If	the	class	is	well	designed,	then	a	user	of	the	class	need	only	
use	the	provided	methods	to	use	the	class	instance.	

• The	class	designer	is	free	to	place	information	in	the	class	that	
is	important	to	the	designer,	but	not	the	user,	of	the	class.				

• The	class	designer	hides	details	of	the	implementation	so	that	
the	program	was	easier	to	read	and	write

• modularity,	make	an	object	so	that	it	can	be	reused	in	other	
contexts	

• providing	an	interface	(the	methods)	that	are	the	approved	
way	to	deal	with	the	class	Hides	details	of	the	implementation	
so	that	the	program	was	easier	to	read	and	write	

• Provides	modularity	that	makes	an	object	so	that	it	can	be	
reused	in	other	contexts

Inheritance

• Inheritance	allows	the	class	designer	to	utilize	the	design	of	an	
existing	class	to	create	a	new	class.		

• That	is,	we	can	create	a	new	class	that	specializes	an	existing	
class	by	utilizing	the	existing	class’s	attributes,	specializing	only	
those	attributes	that	distinguish	the	new	class.	

• In	this	way,	classes	can	share	common	elements	and	change	
only	those	attributes	that	distinguish	the	new	class.

Class-Instance	relations

• Remember	the	relationship	between	a	class	and	its	instances	
– a	class	can	have	many	instances,	each	made	initially	from	
the	constructor	of	the	class	

– the	methods	that	an	instance	can	call	are	initially	shared	by	
all	instances	of	a	class	

– When	referencing	a	value	in	an	attribute,	Python	first	looks	
in	the	instance	for	the	attribute,	and,	if	not	found	there,	it	
then	looks	in	the	class	the	instance	was	derived	from.	In	
this	way,	attributes	stored	in	the	class	are	available	to	every	
instance	derived	from	the	class.	

Class-Class	relations
• Classes	can	also	have	a	separate	relationship	with	other	classes	
• the	relationships	forms	a	hierarchy	
– hierarchy:	A	body	of	persons	or	things	ranked	in	grades,	
orders	or	classes,	one	above	another

• when	we	create	a	class,	which	is	itself	another	object,	we	can	
state	how	it	is	related	to	other	classes	

• the	relationship	we	can	indicate	is	the	class	that	is	'above'	it	in	
the	hierarchy	

• Every	class	maintains	at	least	one	parent	class.

Classes	related	by	a	hierarchy

class	statement

class MyClass (SuperClass):
 pass

• The	top	class	in	Python	is	called	object.	
• it	is	predefined	by	Python,	always	exists		
• use	object	when	you	have	no	superclass

name	of	the	class	above	
this	class	in	the	hierarchy

• The	is-a	relationship	is	one	way,	much	as	the	instance-of	
relationship.	

• The	instance	remember	who	its	class	is,	but	the	class	does	not	
track	its	instance.	

• A	class	remember	who	its	parent	class	is,	but	the	parent	class	
does	not	track	its	child	classes.	

Subclass	Example	
•	Polygon	
	 -	object	with	n	unequal	sides	
•	Regular	polygon:	special	Polygon	
	 -	object	with	n	sides,	all	equal	length	
•	Triangle:	special	polygon	(3	sides)	
•	Square:	special	regular	polygon	

Class	Hierarchy	
•	class	Polygon:	
•	class	regPolygon(Polygon):	
•	class	Triangle(Polygon):	
•	class	Square(regPolygon):	
•	class	equiTriangle(Triangle)	or	
class	equiTriangle(regPolygon)

• Each	Python	class	indicates	specifically	in	its	class	definition	who	
its	parent	is.	

• This	relationship	is	recorded	in	the	__bases__	attribute	of	each	
class.

is-a,	super	and	sub	class

• the	class	hierarchy	imposes	an	is-a	relationship	between	
classes	
– MyChildClass	is-a	(or	is	a	kind	of)	MyClass	
– MyClass	is-a	(or	is	a	kind	of)	object	

• An	example:	if	you	create	a	Car	class,	then	a	Ford	class	is	a	Car,	
but	a	more	particular	kind	of	Car.	Subsequently,	a	Mustang	
class	is	a	Ford	class,	but	a	more	particular	kind	of	Ford.

• the	hope	of	such	an	arrangement	is	the	saving/re-use	of	code.	
If	a	new	class	is	created	as	part	of	an	existing	class	hierarchy,	
then	the	new	class	can	reuse	existing	code	from	the	hierarchy,	
specializing	only	those	aspects	or	attributes	that	are	unique	to	
the	new	class.		

• superclass	code	contains	general	code	that	is	applicable	to	
many	subclasses.	By	sharing	code	from	the	class	hierarchy,	the	
coding	of	classes	can	be	somewhat	standardized.	

• subclass	uses	superclass	code	(via	sharing)	but	specializes	code	
for	itself	when	necessary

Scope	for	objects,	the	full	story

1. Look	in	the	object	for	the	attribute	
2. If	not	in	the	object,	look	to	the	object's	class	for	the	

attribute	(up	the	instance-of	creation)	
3. If	not	in	the	object's	class,	look	up	the	hierarchy	of	

that	class	for	the	attribute	(up	the	is-a	relation)	
4. If	you	hit	object,	then	the	attribute	does	not	exist

builtins	are	objects	too

• One	nice	way,	easy	way,	to	use	inheritance	is	to	note	
that	all	the	builtin	types	are	objects	also	

• thus	you	can	inherit	the	properties	of	builtin	types	
then	modify	how	they	get	used	in	your	subclass	

• you	can	also	use	any	of	the	types	you	pull	in	as	
modules

specializing	a	method

• One	technical	detail.	Normal	method	calls	are	called	
bound	methods.	Bound	methods	have	an	instance	in	
front	of	the	method	call	and	automatically	pass	self	

my_inst = MyClass()
my_inst.method(arg1,arg2)

• my_inst	is	an	instance,	so	the	method	is	bound

unbound	methods

it	is	also	possible	to	call	a	method	without	
Python	binding	self.	In	that	case,	the	user	has	
to	do	it.	
• unbound	methods	are	called	as	part	of	the	
class	but	self	passed	by	the	user	

my_inst = MyClass()
MyClass.method(my_inst, arg2, arg3)

self	is	passed	explicitly	(my_inst here)!

• Consider	an	example.	We	want	to	specialize	a	new	
class	as	a	subclass	of	list.		

	 class MyClass(list):

• easy	enough,	but	we	want	to	make	sure	that	we	get	
our	new	class	instances	initialized	the	way	they	are	
supposed	to,	by	calling	__init__ of	the	super	class

Why	call	the	super	class	init?

If	we	don't	explicitly	say	so,	our	class	may	inherit	stuff	
from	the	super	class,	but	we	must	make	sure	we	call	it	
in	the	proper	context.	For	example,	our	__init__	
would	be:	
def __init__(self):
 list.__init__(self)
do anything else special to MyClass

explicit	calls	to	the	super

• we	explicitly	call	the	super	class	constructor	using	an	
unbound	method	

• then,	after	it	completes	we	can	do	anything	special	
for	our	new	class	

• We	specialize	the	new	class	but	inherit	most	of	the	
work	from	the	super.

Gives	us	a	way	to	organize	code

• specialization.	A	subclass	can	inherit	code	from	its	
superclass,	but	modify	anything	that	is	particular	to	
that	subclass	

• over-ride.	change	a	behavior	to	be	specific	to	a	
subclass	

• reuse-code.	Use	code	from	other	classes	(without	
rewriting)	to	get	behavior	in	our	class.

Special	class	methods

What	are	magic	methods?	They're	everything	in	object-
oriented	Python.	They're	special	methods	that	you	can	define	
to	add	"magic"	to	your	classes.	They're	always	surrounded	by	
double	underscores	(e.g.__init__	or	__lt__).	
	

A	class	can	implement	certain	operations	that	are	invoked	by	
special	syntax	(such	as	arithmetic	operations	or	subscripting	and	
slicing)	by	defining	methods	with	special	names.	This	is	Python’s	
approach	to	operator	overloading,	allowing	classes	to	define	
their	own	behavior	with	respect	to	language	operators.	

Enhances	classes	with	features	such	as	slices,	item,	calling	
capability,	mathematical	operations	etc.

Class	Special	Methods	
•	__init__	
•	__call__	
•	__item__	
•	__add__	
•	__slice__	
•	__repr__	
•	__str__	
•	__hash__	
•	__len__	
•	__getattr__	
•	__setattr__	
•	__delattr__	
•	__delete__	
•	__getitem__	
•	__setitem__	
•	__delitem__	
•	__iter__

•	__reversed__	
•	__contains__	
•	__getslice__	
•	__delslice__	
•	__add__	
•	__sub__	
•	__mod__	
•	__divmod__	
•	__pow__	
•	__and__	
•	__xor__	
•	__or__	
•	__neg__	
•	__pos__	
•	__abs__	
•	__int__	
•	__float__	

•	__lt__	
•	__le__	
•	__eq__	
•	__ne__	
•	__gt__	
•	__ge__	
•	many	more

Operator	overloading
• the	plus	operator	is	overloaded	

• that	is,	the	operator	can	do/mean	different	things	(have	
multiple/overloaded	meanings)	depending	on	the	types	
involved	

• if	python	does	not	recognize	the	operation	and	that	
combination	of	types,	you	get	an	error

What	does	var1+var2 do?	
• with	two	strings,	we	get	concatenation	
• with	two	integers,	we	get	addition	
• with	an	integer	and	a	string	we	get:	
Traceback (most recent call last):
 File "<pyshell#9>", line 1, in <module>
 1+'a'
TypeError: unsupported operand type(s) for
+: 'int' and 'str'

Python	overload	ops
• Python	provides	a	set	of	operators	that	can	be	overloaded.	You	

can't	overload	all	the	operators,	but	you	can	for	many	

• Like	all	the	special	class	operations,	they	use	the	two	
underlines	before	and	after.	

• They	come	in	three	general	classes:	
– numeric	type	operations	(+,-,<,>,print	etc.)	
– container	operations	([],	iterate,len,	etc.)	
– general	operations	(printing,	construction)

how	does	v1+v2	map	to	__add__
v1 + v2

is	turned,	by	Python,	into	

v1.__add__(v2)

• These	are	exactly	equivalent	expressions.	It	means	that	the	
first	variable	calls	the	__add__	method	with	the	second	
variable	passed	as	an	argument

v1	is	bound	to	self,	v2	bound	to	param2

Example:	
-creation	of	a	specialized	vector	class	that	supports	addition,	
subtraction,	etc.	

- vector	should	be	able	to	hold	any	type	that	supports	addition,	
subtraction,	etc.	

Additions	of	lists	
a	=	[1,2,'string']	
b	=	[1,3,'cat']	

Output	
[1,	2,	'string',	1,	3,	'cat']	

Desired	output	
[2,	5,	'stringcat']

Using	__setitem__	and	__getitem__	for	this	
example.

object.__setitem__(self,	key,	value)	
Called	to	implement	assignment	to	self[key].	Same	note	as	for	
__getitem__().	This	should	only	be	implemented	for	mappings	
if	the	objects	support	changes	to	the	values	for	keys,	or	if	new	
keys	 can	 be	 added,	 or	 for	 sequences	 if	 elements	 can	 be	
replaced.	The	same	exceptions	should	be	raised	for	 improper	
key	values	as	for	the	__getitem__()	method.

Better	approaches	

•	Instead	of	creating	a	new	class,	take	advantage	of	
existing	classes	

•	Two	possibilities	
	 -	subclass	the	list	class	
	 -	extend	list	
	 	 	not	really	possible	because	list	is	built-in

Subclass	List	class

Extend	a	user	class

If	you	run	it	again:	

Callable	objects	
•	Inside	a	class,	define	a	method	__call__	
•	The	instance	of	a	class	can	now	be	used	as	
a	function

class	namespaces	are	dicts
• the	namespaces	in	every	object	and	module	is	indeed	a	namespace	
• that	dictionary	is	bound	to	the	special	variable	__dict__	
• it	lists	all	the	local	attributes	(variables,	functions)	in	the	object	
• 	Almost	everything	in	Python	works	through	dictionaries	
• Class	attributes	(variables)	are	stored	in	a	dictionary	associated	with	

the	class	
• •	The	__dict__	dictionary	is	not	shared	between	Attributes	

• Example:	
•	Dog	dog	
	 dog.weight	is	equivalent	to	
	 dog.__dict__[‘weight’]

Dictionaries  
Class	and	Class	instances	have	separate	dictionaries

Dog	dict:		{'__module__':	'__main__',	'pprint':	
<function	pprint	at	0x10a472ed8>,	'__doc__':	None,	
'__init__':	<function	__init__	at	0x10a472aa0>}		
		
		
dog	dict:		{'color':	'blue',	'name':	'punk',	'weight':	'100	
lb'}

Class	for	Scientific	Computing

Inline	lambda	functions
• Python	offers	anonymous	inline	functions	known	as	lambda	

function.		
• The	construction	is		“lambda	<args>:	<expression>”	

• It	is	equivalent	to	a	function	with	<args>	as	arguments	and	
<expression>	as	return	value:	

def	somefunc(<args>):	
							return	<expression>	

• For	example,	“lambda	x,	y,	z:	3*x+2*y-z”	is	a	short	cut	for	
def	somefunc(x,	y,	z)	
							return	3*x	+	2*y	–	z

Inline	lambda	functions
• Lambda	function	can	be	used	in	place	where	we	expect	
variables.		

• Say	we	have	a	function	taking	another	function	as	
argument:	

def	fill(a,f)	
							n	=	len(a);	dx	=	1.0/(n-1)	
							for	i	in	range(n):	
											x	=	i	*	dx	
	 					a[i]	=	f(x)		
• A	lambda	function	can	be	used	for	the	f	argument:	
fill(a,	lambda	x:	<expression>)	

OOP	for	Integration
Consider	other	quadrature	rules:	
• Simpson’s	rule	

• Two-point	Gauss-Legendre	rule

1

1

1 4 1() (1) (0) (1)
3 3 3

f x dx f f f
−

≈ − + +∫

1

1

1 1() () ()
3 3

f x dx f f
−

≈ − +∫

Write	a	Python	class	Trapezoidal	to	evaluate	
numerical	integration	using	the	trapezoidal	rule.

1

1
() (1) (1)f x dx f f

−
≈ − +∫

It	is	one	of	the	quadrature	rules	that	can	be	
expressed	in	the	general	form:	

1

1
1

() ()
n

i i
i

f x dx w f x
−

=

≈∑∫
Use	the	class	to	compute	

1 3

1
x dx

−∫

