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[ google “Steven Johnson MIT” |

Computational software you may know...
... mainly C/C++ libraries & software ...
... often with Python interfaces ...
(& Matlab & Scheme & ...)
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Confession: I've used Python’s internal C APl more than I’'ve coded in Python...



A new programming language?

Viral Shah

Jeff Bezanson
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Stefan Karpinski

J julialang.org

[begun 2009, “0.1” in 2013, ~20k commits]

[ 17+ developers with 100+ commits ]

[ usual fate of all

First reaction: You’re e s ]

.. subsequently: ... probably doomed-
... Still might be doomed



but, in the meantime,

I'm having fun with it...

.. and it solves a real problem
with technical computing
in high-level languages.



The “Two-Language” Problem

Want a high-level language that you can work with interactively
= easy development, prototyping, exploration
= dynamically typed language

Plenty to choose from: Python, Matlab / Octave, R, Scilab, ...

(& some of us even like Scheme / Guile)

Historically, can’t write performance-critical code (“inner loops”)
in these languages... have to switch to C/Fortran/... (static).
[ e.g. SciPy git master is ~70% C/C++/Fortran]

Workable, but Python - Python+C = a huge jump in complexity.



Just vectorize your code?
= rely on mature external libraries,
operating on large blocks of data,
for performance-critical code

Good advice! But...

e Someone has to write those libraries.

e Eventually that person may be you.
— some problems are impossible or
just very awkward to vectorize.



Dynamic languages
don’t have to be slow.

Lots of progress in JIT compilers, driven by web applications.
& excellent free/open-source JIT via LLVM.

Javascript in modern browsers achieves C-like speed.

Many other efforts to speed up dynamic languages, e.g. PyPy,
Numba / Cython (really 2"9 lower-level language embedded in Python).

What if a dynamic language were designed for JIT

level as possible while staying within 2x C speed?

O
O o0
from the beginning, with the goal of being as high- Ju Ia




(and it’s easier to call SciPy
from Julia than from PyPy)



Today

A brief introduction to Julia,
its key features,
and how it gets performance.

How Julia leverages Python and IPython
to lessen the “infrastructure problem” of new languages

time permitting:
How tools can flow in the other direction too...



O 0
J u Ia [ julialang.org ]
Dynamically typed

Multiple dispatch: a generalization of OO

Metaprogramming (code that writes code)

Direct calling of C and Python functions

Coroutines, asychronous |/O .

Designed for Unicode Most of Julia (70%+)
Distributed-memory parallelism is written in Julia.

User-defined types == builtin types ...
extensible promotion and conversion rules,
etc.

Large built-in library: regex, linear algebra,
special functions, integration, etcetera...

git-based package manager



(roughly) How IPython Notebooks Work
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goto live lJulia notebook demo...



Why is Julia fast?



Why is Julia fast?
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Julia performance on synthetic benchmarks

[ loops, recursion, etc., implemented in most straightforward style ]
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Matlab

Octave

benchmark
® rand_mat_mul
©® rand_mat_stat
@ pi_sum
@ printfd

mandel
@ quicksort
@ fib
@ parse_int



What about real problems,
compared to highly optimized code?



Special Functions in Julia

Special functions s(x): classic case that cannot be vectorized well
... switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries,
but some are written in pure Julia code.

Pure Julia erfinv(x) [ = erf1(x) ]
3—4x faster than Matlab’s and 2—3x faster than SciPy’s (Fortran Cephes).

Pure Julia polygamma(m, z) [ = (m+1)t" derivative of the In I function ]
~ 2x faster than SciPy’s (C/Fortran) for real z
... and unlike SciPy’s, same code supports complex argument z

|ll

Julia code can actually be faster than typical “optimized”
C/Fortran code, by using techniques [metaprogramming/
code generation] that are hard in a low-level language.



speed (mtlops)

Pure-Julia FFT performance

double-precision complex, 1d transforms

powers of two

s-----w intel-mkl-dfti in-place
13000 e B—a intel-mkl-dfti out-of-place

Cme (FFTW’ MKL: “unfair” e—e fftw3 out-of-place

" e-----o fftw3 in-place
faCtor Of 2 from 6—o fftw3-no-simd out-of-place

manual SIMD)

o-----0 fftw3-no-simd in-place
dfftpack
emayer

@----8 bloodworth

+—+ Cross

cwplib
= —-m esrfft

already comparable to FFTPACK

[ probably some tweaks to
inlining will make it better ]

FFTW 1.0-like code generation
+ recursion in Julia
~ 1/3 lines of code compared to
FFTPACK, more functionality




Why is Julia fast?



Why can Julia be fast?

(You can write slow code in any language, of course.)

... and couldn’t Python do the same thing?



Type Inference

To generate fast code for a function f(x,y), the compiler needs to be

able to infer the types of variables in f, map them to hardware types
(registers) where possible, and call specialized code paths for those

types (e.g. you want to inline +, but this depends on types).

At compile-time, the compiler generally only knows types of x,y, not
values, and it needs to be able to cascade this information to infer
types throughout f and in any functions called by f.

Julia and its standard library are designed so type inference is possible
for code following straightforward rules.

... sometimes this requires subtle choices that would be
painful to retrofit onto an existing language.



Type Stability

Key to predictable, understandable type inference:
e the type of function’s return value

should only depend on the types of its arguments

A counter-example in Matlab and GNU Octave:

sqrt(1) == 1.0 — real floating-point
sgrt(—1) == 0.0+1.0i — complex floating-point

Hence, any non-vector code that calls sgrt(x) in Matlab cannot
be compiled to fast code even if x is known to be real scalar —
anything “touched” by the sgrt(x) is “poisoned” with an
unknown type — unless the compiler knows x > 0.

Better to throw an exception for sqrt(—1), requiring sqrt(-1+0i).



Type Stability

Key to predictable, understandable type-inference:
e the type of function’s return value

should only depend on the types of its arguments

Common counter-examples in Python

Typical idiom:
foo(x) returns y, or None if [exceptional condition]

[e.g. numpy.ma.notmasked edges, scipy.constants.find, ...]

Better: Throw an exception.



Type Stability

Key to predictable, understandable type-inference:
e the type of function’s return value

should only depend on the types of its arguments

A counter-example in Python
integer arithmetic

Integer arithmetic in Python automatically uses bighums
to prevent overflow. Unless the compiler can detect that
overflow is impossible [which may be detectable sometimesl],
integers can’t be compiled to integer registers & hw arithmetic.

Julia tradeoff: default integers are 64-bit, overflow possible
... use explicit BigInt type if you are doing number theory.



goto live lJulia notebook demo...



Julia: fun, fast, and
you don’t lose your Python stuff.

New languages are always a risk...

...but maybe not doomed?



Acknowledgements

Julia core team:
Jeff Bezanson (MIT)
Stefan Karpinski (MIT)

julia -

julialang.org ...(17+ developers with 100+ commits)...

& Shashi Gowda
(GSo(C)

Fernando & Jake Bolewski
Perez (pyjulia)

Bussonier



http://www.julialang.org
http://www.julialang.org

