
Optimization, Speed

For example, letting c = 1 gives the sequence 0, 1,
2, 5, 26, ..., which tends to infinity. As this
sequence is unbounded, 1 is not an element of the
Mandelbrot set. On the other hand, c = −1 gives
the sequence 0, −1, 0, −1, 0, ..., which is bounded,
and so −1 belongs to the Mandelbrot set.

Main took 0:00:12.465387
Main took 0:00:01.190245

Main took 0:00:08.769609

Main took 0:00:00.863155

pure python code

pure python code
better referencing

python pure_python.py 1000 1000

pypy pure_python_2.py 1000 1000

pypy pure_python.py 1000 1000

python pure_python_2.py 1000 1000

The profile module is the standard way to profile Python
code, take a look at it here http://docs.python.org/
library/profile.html. We’ll run it on our simple Python
implementation:

python -m cProfile -o rep.prof pure_python.py 1000 1000

This generates a rep.prof output file containing the
profiling results, we can now load this into the pstats
module and print out the top 10 slowest functions:

pip install line_profiler

Excursion into Decorators:
http://thecodeship.com/patterns/guide-to-python-function-
decorators/

Total sum of elements (for validation): 75014
Wrote profile results to pure_python.py.lprof
Timer unit: 1e-06 s

Total time: 0.806372 s
File: pure_python.py
Function: calculate_z_serial_purepython at line 9

Line # Hits Time Per Hit % Time Line Contents
==
 9 @profile
 10 def calculate_z_serial_purepython(q, maxiter, z):
 11 """Pure python with complex datatype, iterating over list of q and z”
 12 1 128 128.0 0.0 output = [0] * len(q)
 13 22501 9281 0.4 1.2 for i in range(len(q)):
 14 22500 9853 0.4 1.2 if i % 1000 == 0:
 15 # print out some progress info since it is so slow...
 16 23 403 17.5 0.0 print "%0.2f%% complete" % (1.0/len(q) * i * 100)
 17 560314 220829 0.4 27.4 for iteration in range(maxiter):
 18 555686 293387 0.5 36.4 z[i] = z[i]*z[i] + q[i]
 19 555686 255247 0.5 31.7 if abs(z[i]) > 2.0:
 20 17872 7377 0.4 0.9 output[i] = iteration
 21 17872 9866 0.6 1.2 break
 22 1 1 1.0 0.0 return output

def calculate_z_serial_purepython(q, maxiter, z):
 """Pure python with complex datatype, iterating over list of q and z"""
 output = [0] * len(q)
 for i in range(len(q)):
 if i % 1000 == 0:
 # print out some progress info since it is so slow...
 print "%0.2f%% complete" % (1.0/len(q) * i * 100)
 for iteration in range(maxiter):
 z[i] = z[i]*z[i] + q[i]
 if abs(z[i]) > 2.0:
 output[i] = iteration
 break
 return output

pure python code

def calculate_z_serial_purepython(q, maxiter, z):
 """Pure python with complex datatype, iterating over list of q and z"""
 output = [0] * len(q)
 for i in range(len(q)):
 zi = z[i]
 qi = q[i]
 if i % 1000 == 0:
 # print out some progress info since it is so slow...
 print "%0.2f%% complete" % (1.0/len(q) * i * 100)
 for iteration in range(maxiter):
 #z[i] = z[i]*z[i] + q[i]
 zi = zi * zi + qi
 #if abs(z[i]) > 2.0:
 if abs(zi) > 2.0:
 output[i] = iteration
 break
 return output

pure python code
improved

Total time: 0.804272 s
File: pure_python_2.py
Function: calculate_z_serial_purepython at line 10

Line # Hits Time Per Hit % Time Line Contents
==
 10 @profile
 11 def calculate_z_serial_purepython(q, maxit
 12 """Pure python with complex datatype, i
 13 1 119 119.0 0.0 output = [0] * len(q)
 14 22501 9386 0.4 1.2 for i in range(len(q)):
 15 22500 9574 0.4 1.2 zi = z[i]
 16 22500 9512 0.4 1.2 qi = q[i]
 17 22500 10169 0.5 1.3 if i % 1000 == 0:
 18 # print out some progress info
 19 23 437 19.0 0.1 print "%0.2f%% complete" % (1.0/
 20 560314 231067 0.4 28.7 for iteration in range(maxiter):
 21 #z[i] = z[i]*z[i] + q[i]
 22 555686 257318 0.5 32.0 zi = zi * zi + qi
 23 #if abs(z[i]) > 2.0:
 24 555686 258388 0.5 32.1 if abs(zi) > 2.0:
 25 17872 7872 0.4 1.0 output[i] = iteration
 26 17872 10429 0.6 1.3 break
 27 1 1 1.0 0.0 return output

def calculate_z_numpy(q, maxiter, z):
 """use vector operations to update all zs and qs to create new output array"""
 output = np.resize(np.array(0,), q.shape)
 for iteration in range(maxiter):
 z = z*z + q
 done = np.greater(abs(z), 2.0)
 q = np.where(done,0+0j, q)
 z = np.where(done,0+0j, z)
 output = np.where(done, iteration, output)
 return output

>>>python numpy_vector.py 1000 1000
x and y have length: 500 500
Total elements: 250000
Main took 0:00:02.927419
Total sum of elements (for validation): 1148485

>>>python numpy_vector_2.py 1000 1000
x and y have length: 500 500
Total elements: 250000
STEP_SIZE 20000
Main took 0:00:02.488578
Total sum of elements (for validation): 1148485

def calculate_z_numpy(q, maxiter, z):
 """use vector operations to update all zs and qs to create new output array"""
 output = np.resize(np.array(0,), q.shape)
 for iteration in range(maxiter):
 z = z*z + q
 done = np.greater(abs(z), 2.0)
 q = np.where(done,0+0j, q)
 z = np.where(done,0+0j, z)
 output = np.where(done, iteration, output)
 return output

def calculate_z_numpy(q_full, maxiter, z_full):
 output = np.resize(np.array(0,), q_full.shape)
 #STEP_SIZE = len(q_full) # 54s for 250,000
 #STEP_SIZE = 90000 # 52
 #STEP_SIZE = 50000 # 45s
 #STEP_SIZE = 45000 # 45s
 STEP_SIZE = 20000 # 42s # roughly this looks optimal on Macbook and dual core desktop i3
 #STEP_SIZE = 10000 # 43s
 #STEP_SIZE = 5000 # 45s
 #STEP_SIZE = 1000 # 1min02
 #STEP_SIZE = 100 # 3mins
 print "STEP_SIZE", STEP_SIZE
 for step in range(0, len(q_full), STEP_SIZE):
 z = z_full[step:step+STEP_SIZE]
 q = q_full[step:step+STEP_SIZE]
 for iteration in range(maxiter):
 z = z*z + q
 done = np.greater(abs(z), 2.0)
 q = np.where(done,0+0j, q)
 z = np.where(done,0+0j, z)
 output[step:step+STEP_SIZE] = np.where(done, iteration, output[step:step+STEP_SIZE])
 return output

 # create a Pool which will create Python processes
 p = multiprocessing.Pool()
 start_time = datetime.datetime.now()
 # send out the work chunks to the Pool
 # po is a multiprocessing.pool.MapResult
 po = p.map_async(calculate_z_serial_purepython, chunks)
 # we get a list of lists back, one per chunk, so we have to
 # flatten them back together
 # po.get() will block until results are ready and then
 # return a list of lists of results
 results = po.get() # [[ints...], [ints...], []]

nagal:parallelpython_pure_python>python parallelpython_pure_python.py 1000 1000
Total elements: 250000
31250 8 31250
Starting pp with 8 local CPU workers
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Job execution statistics:
 job count | % of all jobs | job time sum | time per job | job server
 8 | 100.00 | 14.2874 | 1.785928 | local
Time elapsed since server creation 3.75450515747
0 active tasks, 8 cores

None
Main took 0:00:04.008474
Total sum of elements (for validation): 1148485

 # tuple of all parallel python servers to connect with
 ppservers = () # use this machine
 # I can't get autodiscover to work at home
 #ppservers=("*",) # autodiscover on network

 job_server = pp.Server(ppservers=ppservers)
 # it'll autodiscover the nbr of cpus it can use if first arg not specified

 print "Starting pp with", job_server.get_ncpus(), "local CPU workers"
 output = []
 jobs = []
 for chunk in chunks:
 print "Submitting job with len(q) {}, len(z) {}".format(len(chunk[0]), len(chunk[2]))
 job = job_server.submit(calculate_z_serial_purepython, (chunk,), (), ())
 jobs.append(job)
 for job in jobs:
 output_job = job()
 output += output_job
 # print statistics about the run
 print job_server.print_stats()

Parallel Python

import pp

Use the best algorithms and fastest tools

Membership testing with sets and dictionaries is much faster, O(1), than searching sequences, O(n). When
testing "a in b", b should be a set or dictionary instead of a list or tuple.

String concatenation is best done with ''.join(seq) which is an O(n) process. In contrast, using the '+'
or '+=' operators can result in an O(n**2) process because new strings may be built for each
intermediate step. The CPython 2.4 interpreter mitigates this issue somewhat; however,
''.join(seq) remains the best practice.

Many tools come in both list form and iterator form (range and xrange, map and itertools.imap, list
comprehensions and generator expressions, dict.items and dict.iteritems). In general, the iterator
forms are more memory friendly and more scalable. They are preferred whenever a real list is not
required.

Many core building blocks are coded in optimized C. Applications that take advantage of them can make
substantial performance gains. The building blocks include all of the builtin datatypes (lists, tuples,
sets, and dictionaries) and extension modules like array, itertools, and collections.deque.

Likewise, the builtin functions run faster than hand-built equivalents. For example, map(operator.add, v1,
v2) is faster than map(lambda x,y: x+y, v1, v2).

Lists perform well as either fixed length arrays or variable length stacks. However, for queue applications
using pop(0) or insert(0,v)), collections.deque() offers superior O(1) performance because it avoids the
O(n) step of rebuilding a full list for each insertion or deletion.

Custom sort ordering is best performed with Py2.4's key= option or with the traditional decorate-sort-
undecorate technique. Both approaches call the key function just once per element. In contrast, sort's
cmp= option is called many times per element during a sort. For example, sort(key=str.lower) is faster
than sort(cmp=lambda a,b: cmp(a.lower(), b.lower())). See also TimeComplexity.

https://wiki.python.org/moin/TimeComplexity

Take advantage of interpreter optimizations

 • In functions, local variables are accessed more quickly than global variables, builtins, and attribute
lookups. So, it is sometimes worth localizing variable access in inner-loops. For example, the code for
random.shuffle() localizes access with the line, random=self.random. That saves the shuffling loop
from having to repeatedly lookup self.random. Outside of loops, the gain is minimal and rarely worth it.

 • The previous recommendation is a generalization of the rule to factor constant expressions out of
loops. Likewise, constant folding needs to be done manually. Inside loops, write "x=3" instead of
"x=1+2".

 • Function call overhead is large compared to other instructions. Accordingly, it is sometimes worth in-
lining code inside time-critical loops.

 • List comprehensions run a bit faster than equivalent for-loops (unless you're just going to throw away
the result).

 • Starting with Py2.3, the interpreter optimizes "while 1" to just a single jump. In contrast "while True"
takes several more steps. While the latter is preferred for clarity, time-critical code should use the first
form.

 • Multiple assignment is slower than individual assignment. For example "x,y=a,b" is slower than "x=a;
y=b". However, multiple assignment is faster for variable swaps. For example, "x,y=y,x" is faster than
"t=x; x=y; y=t".

 • Chained comparisons are faster than using the "and" operator. Write "x < y < z" instead of "x < y and y
< z".

 • A few fast approaches should be considered hacks and reserved for only the most demanding
applications. For example, "not not x" is faster than "bool(x)".

