

Zn4l = Z% + C,
ce M < limsup |z,.1| < 2.

n—o0

L1

For example, letting ¢ = 1 gives the sequence 0, 1,
2,5, 26, ..., which tends to infinity. As this
sequence is unbounded, 1 is not an element of the
Mandelbrot set. On the other hand, ¢ = -1 gives
the sequence 0, -1, 0, -1, O, ..., which is bounded,
and so —1 belongs to the Mandelbrot set.

Re[c]

The Mandelbrot set is the set of values of ¢ in the complex plane for which the orbit of 0 under iteration of the quadratic map
241 =28+ C

remains bounded.!'3] Thatis, a complex number ¢ is part of the Mandelbrot set if, when starting with zy = C and applying the iteration repeatedly, the absolute value of
z, remains bounded however large n gets. This can also be represented as!'4

Zns1 = 25 + ¢,
ce M <= limsup|z,.| <2.

n—oo

For example, letting ¢ = 1 gives the sequence 0, 1, 2, 5, 26, ..., which tends to infinity. As this sequence is unbounded, 1 is not an element of the Mande brot set. On
the other hand, ¢ = -1 gives the sequence 0, -1, 0, -1, 0, ..., which is bounded, and so -1 belongs to the Mandelbrot set.

The Mandelbrot set M is defined by a family of complex quadratic polynomials
P.:C—-C

given by
P.:z= 2* +c,

where c¢ is a complex parameter. For each ¢, one considers the behavior of the sequence

(0, P.(0), P.(P.(0)), P.(P.(P.(0))),...)

pure python code

pure python code
better referencing

Main took 0:00:12.465387
Main took 0:00:01.190245

Main took 0:00:08.769609
Main took 0:00:00.863155

python pure_python.py 1000 1000
pypy pure_python.py 1000 1000

python pure_python_2.py 1000 1000
pypy pure_python_2.py 1000 1000

Seconds

,—4; | |
15 |
10
5 7
S
0.49 0.4
0 — — =
PyPy 1 S

Cython 2 Cython+numpy ShedSkin 2
Py 2.7 Cython 1 Cython 3 ShedSkin 1

Figure 4.1: Run times on laptop for Python/C implementations

The profile module 1s the standard way to profile Python
code, take a look at i1t here http://docs.python.org/
library/profile.html. We’ll run it on our simple Python
imp lementation:

python -m cProfile —-o rep.prof pure_python.py 1000 1000

This generates a rep.prof output file containing the
profiling results, we can now load this into the pstats
module and print out the top 10 slowest functions:

import pstats
p = pstats.Stats(' rep.prof')
p.sort stats('cumulative').print stats(10)

import pstats

p = pstats.Stats('rep.prof')

p.sort stats('cumulative').print stats(10)

Thu Feb 19 08:11:49 2015

rep.prof

Ordered by: cumulative time
List reduced from 656 to 10 due to restriction <10>

ncalls

1

1

1
51414419
250076

1

e

<pstats.Stats instance at 0x110a2b518>

tottime
0.011
0.077
14.250
3.366
0.994
0.008
0.000
0.009
0.001
0.017

percall
0.011
0.077
14.250
0.000
0.000
0.008
0.000
0.009
0.001
0.017

cumtime
18.920
18.909
18.610
3.366
0.994
0.154
0.118
0.116
0.092
0.091

percall
18.920
18.909
18.610
0.000
0.000
0.154
0.118
0.116
0.092
0.091

51927850 function calls (51927727 primitive calls) in 18.920 seconds

filename:lineno(function)

pure python.py:1(<module>)

pure python.py:23(calc_pure python)

pure python.py:9(calculate z serial purepython)

{abs}

{range}
/usr/local/lib/python2.7/site-packages/numpy/ init .py:106(<mc
/usr/local/lib/python2.7/site-packages/numpy/add newdocs.py:10(<
/usr/local/lib/python2.7/site-packages/numpy/lib/ init .py:1(<
/usr/local/lib/python2.7/site-packages/numpy/lib/type check.py:3
/usr/local/lib/python2.7/site-packages/numpy/core/ init .py:1(

For more complex programs the output becomes hard to understand. ~ur.snake 1s a great tool to visualise the profilec
results:

>> runsnake rep.orof

This generates a display like:

SNOo Run Snake Run: rep.prof ()

=% 03 {3 4F | Percent | File View
[Name Calls RCalls Local Jjcall Cun §

0 2 0.00000 0.00000 50
<module> 0.01717 0.01717 5

alculate_... 37.56412 37.56412 I

<abs> 51414419 514 14419 12.13122 0.00000 1.

<range> 3.97788 0.00002 3

<module> 1 1 0.00464 0.00464 0

<module> 1 1 0.00081 0.00081 0

<module> 1 1 0.00434 0.00434 0

<module> 1 1 0.00071 0.00071 0

<module> 1 1 0.01306 0.01306 0

<numpy.c... 1 0.06056 0.00466 0

<apply> 2 & 0.00009 0.00002 0

how 1 1 0.00001 0.00001 0

show 1 1 0.00001 0.00001 0

showxv 1 1 0.00244 0.00244 0

how 1 1 0.00003 0.00003 0

how 1 1 0.00001 0.00001 04 ’

hmw image 1 - 0.00005 0.00005 Y o 07 || Callees | AllCallees Callers Al Callers Source Code |
calc_pure_python@pure_python.py.28 [54.318s) y

However - which lines are causing our code to run slow? This 1s the more nteresting question and cProfile can’t
answer It.

Let’s look at the 1 ine_profer module. First we have to decorate our chosen function with @crofile:

Aprafile

cdef calculate_z serial_pureovihon (g, maxitear, =7):

Next we’ll run kernprof .py and ask 1t to do line-by-line profiling and to give us a visual oulput, then we tell it
whal to profile. Note that we're running a much smaller problem as line-by-line profiling takes ages:

»» kernprof.py 1 v ours_pyvthon.oy 300 100

pip install line_profiler

Excursion into Decorators:

http://thecodeship.com/patterns/guide-to-python-function-
decorators/

Total sum of elements (for validation): 75014
Wrote profile results to pure_python.py. lprof
Timer unit: 1le-06 s

Total time: 0.806372 s
File: pure_python.py
Function: calculate_z_serial_purepython at line 9

Line # Hits Time Per Hit % Time Line Contents
9 @profile
10 def calculate_z_serial_purepython(q, maxiter,
11 """Pure python with complex datatype, ite
12 1 128 128.0 0.0 output = [@] x len(q)
13 22501 9281 0.4 1.2 for i in range(len(q)):
14 22500 0853 0.4 1.2 if 1 % 1000 == 0:
15 # print out some progress info si
16 23 403 17.5 0.0 print "%0.2f%% complete" % (1.0/1
17 560314 220829 0.4 27.4 for iteration in range(maxiter):
18 555686 293387 0.5 36.4 z[i] = z[il*z[i] + qlil
19 555686 255247 0.5 31.7 if abs(z[i]) > 2.0:
20 17872 7377 0.4 0.9 output[i] = iteration
21 17872 0866 0.6 1.2 break
22 1 1 1.0 0.0 return output

>>> import pure python ¥

18

z[i] =

TmoorLe ouvr
-

z[il*z[i] + q[i]
if abs(z[i]) > 2.0:

sclver

into Pytnon

>>> dis.dis (pure_python.calculate_z_sericl purepython)

18

105

17
115
116

119

[A
L.._'l IS 'Y

0N MY

I
(]

LOAD FAST
LOAD FAST
BINARY SUBSCR
LOAD_FAST
LOAD_FAST
BINARY SUBRSCR
BRTNARY MUTLTT>TY
LOAD_FAST

LOAND FAST
BINARY SUBSCR
BINARY ADD
LOAD_FAST
LOAD_FAST
STORE_SUBSCR

TOAD GTLOBAT,

TOAND _FAST

LOAND FAST

BTNARY SURSCR
CALL FUNCTION
LOAD_CONST
COMPARE_OP
POP_JUMP_IF_=ALS=E

—

()

Mo

ST

e N

N

L N

= oy

- [\1

— —
bl
S S

(z)
(1)

()
(1)

(z)
(1)

(abs)
(7)
(1)

(Z2.0)
(>)

+= HF= HF H HEHEE K EFEEHEHFE =

+H= H= HF= H EE ==

loac

L

YA
loaa i
value in z[1]
lcad =z
lcad 1
get wvalue in z[1]
z[1]
lcac z

lcad 1

get

z[1]

get o[i]
add gl[i] o
lcad z
lcad 1
cstore result in z[i]
locad abks fancticn
loaag =z

loaa i

7 [i]

call aks

lcad 2.0

get

cocmoare result of abs
jume dewvending cn result

last multiply

with

2.0

def calculate_z_serial_purcpytheniq, maxiter, 2):
"WPgre pytkon with complex datatype, iterating cve- list of q ard z'""
outpat = [@] = leniq)
for i in rorge(leniq)):
if 1 % 1600 == 9:
print out some prcgress info since it 1s so slow...
prirt "%3.2f%% compleze" % (1.6/1len(q) + i + 1060)
for iteration in reng=(maxiter!:
z[1) = z[i]=z[1] + cli]
if abs(zli]) > 2.2:
output il = iteratior
break
return output

pure python code

output

def calculate_z_serial_purepythoniq, mexiter, z):
"""Pure python witk complex datatype, iterating over list of q and 2"""
autput = 9] 4 L=n(q!
for L in rangeilzn(qgl):

—— - zi = zli]
qi = qlil
1f 1 % 1Q80 == 0:
print out some progress info cince it is so slow...
peint "%9.Z2%%% complete" % (1.8/lenlq] * i = lge)
for iteratzon in range(max-tar):
L. fzli) = zli)+»zli] + ql:)

z2i =25 %21 + al

#1f abs(z[1)) > 2.

it absizi) >~ 2.6:
outputli]l = iteration
break

return output

f:

def calculate_z_serial_purepython(q, maxiter, z):
“"""Pure python with complex datatype, iterating over list of q and z"""

[0] * len(q)

for i in range(len(q)):
if 1 % 1000 == 0:
print out some progress info since it is so slow...

print "%0.2f%% complete"

(1.0/1len(q) * i x 100)

°
6
r

for iteration in range(maxiter):

z[i]

z[i]*z[i] + qlil

if abs(z[i]) > 2.0:

iteration

output[i]
break

return output

pure python code
improved

output
for i 1
Z1
gi
if

for

n

i

def calculate_z_serial_purepython(q, maxiter, z):
"""Pure python with complex datatype, iterating over list of q and z

[0] * len(q)

range(len(q)):
z[1i]

qlil

% 1000 == 0:

print out some progress info since it is so slow...
print "%0.2f%% complete" % (1.0/len(q) * i x 100)
iteration in range(maxiter):
#z[1i] z[ilxz[i] + qlil
zi = z1i *x zi + qi
#if abs(z[i]) > 2.0:
if abs(zi) > 2.0:
output[il] iteration
break

return output

Total time: 0.804272 s
File: pure_python_2.py

Function: calculate_z_serial_purepython at line 10

Time

Per Hit

% Time

Line Contents

22501
22500
22500
22500

23
560314

555686

555686
17872
17872

1

437
231067

257318

258388
7872
10429
1

=
S O

S
o

RPOoOOOS
SO~ U

SrRrEFEN

N -

S

SO WO R

@profile

def calculate_z_serial_purepython(q, maxit
"""Pure python with complex datatype, 1

output

for i1 1
Z1
gl
1f

for

n

-1

[0] * len(q)
range(len(q)):
z[1i]
qlil
% 1000 == 0O:
print out some progress info
print "%0.2f%% complete" % (1.0/
iteration in range(maxiter):
#z[i]l = z[ilxzI[i] + qlil
zi = z1i % zi + qi
#if abs(zI[i]) > 2.0:
if abs(zi) > 2.0:
output[i] = iteration
break

return output

20 for iteration in range(maxiter)
21

>>

22

24

#z[1] =

z[i]*z[i] + qli]

zl = z1 % z1 + qi

#1f abs(z[1]) > 2.0:

if abs(zi) > 2.0:
output[i] = iteration
break

123
126

129
132
135
136
139
140

143
146
149
152
155
158

FOR ITER
STORE FAST

LOAD FAST

LOAD FAST
BINARY MULTIPLY
LOAD FAST
BINARY ADD
STORE FAST

LOAD GLOBAL
LOAD FAST
CALL FUNCTION
LOAD CONST
COMPARE OP

POP JUMP IF FALSE

52

(O

W s O 0N

(to 178)
(iteration)

(z1)
(z1)

(gi)
(z1)

(abs)
(z1)

(2.0)
(>)

def calculate_z_numpy(q, maxiter, z):
"""use vector operations to update all zs and qs to create new output array"""

output = np.resize(np.array(0,), q.shape)
for iteration in range(maxiter):

z = 7%z + (Q

done = np.greater(abs(z), 2.0)

q = np.where(done,0+0j, q)

z = np.where(done,0+0j, z)

output = np.where(done, iteration, output)
return output

numpy's strength is that it simplifies running the same operation on a vector (or matrix) of numbers rather than on
mdividual 1tems ina 1137 one al a tme.

If your problem normally involves using nested “or loops to iterate over individual items in a 1 57 then consider
whether numpey could do the same job for you in a simpler (and probably faster) fashion.

If the above code looks odd to you, read 1t as:

» zxz does a pairwise multiplication, think of itas z[0] = =[0] ~ =z[0]; =z[1] = z[1] + =[1];
ee.; Z2[n-1] = z2z[n-1] * z[n-1].

» 7_result | gdoesaparwise addition, just ke the line above but adding the result

* 7 — ... assigns the new array back to =

» np.oreater (condition, item_if_True, item_if_False) calculates the condition for each
item 1n abs (z), for the nth value 1if the result1s True 1tuses the 2zem_if txrue value (in this case 01079)
else it uses the other value (in this case g [nth) - each item in ¢ either resets to 0+ 0 7 or stays at the value it
was before

The same thing happens for z

cutput’s items are setto iteraticon if done[nth] == True else they stay at the value they were at

previously.

>>>python numpy_vector.py 1000 1000

x and y have length: 500 500

Total elements: 250000

Main took 0:00:02.927419

Total sum of elements (for validation): 1148485

>>>python numpy_vector_2.py 1000 1000

x and y have length: 500 500

Total elements: 250000

STEP_SIZE 20000

Main took 0:00:02.488578

Total sum of elements (for validation): 1148485

def calculate_z_numpy(q, maxiter, z): def calculate_z_numpy(q_full, maxiter, z_full):
"n"yse vector operations to update all zs and g output = np.resize(np.array(0,), gq_full.shape)
output = np_resize(np_array(@’), q.shape) #STEP_SIZE = len(q_full) # 54s for 250,@00
for iteration in range(maxiter): #STEP_SIZE = 90000 # 52
Z = zxz + Q #STEP_SIZE = 50000 # 45s
done = np_greater(abs(z)’ 2.0) #STEP_SIZE = 45000 # 45s . .
q = np.where(done,0+0j, q) STEP_SIZE = 20000 # 42s # roughly this looks optimal on Mz
7z = np_where(done’@+@j’ z) #STEP_SIZE = 10000 # 43s
output = np.where(done, iteration, output) #STEP_SIZE = 5000 # 45s
return output #STEP_SIZE = 1000 # 1min@2
#STEP_SIZE = 100 # 3mins

print "STEP_SIZE", STEP_SIZE
for step in range(@ len(q_full), STEP_SIZE):
z = z_full[step:step+STEP_ SIZE]
q = g_fulllstep:step+STEP_SIZE]
for iteration in range(maxiter):
z = zxz +
done = np.greater(abs(z), 2.0)
q = np.where(done,0+0j, q)
z = np.where(done,0+0j, z)
output[step:step+STEP_SIZE] = np.where(done, itera
return output

MULTIPROCESSING

The multiprocesssine module lets us send work units out as new Python processes on our local machine (it won’t
send jobs over a network). For jobs that require little or no interprocess communication it is ideal.

We need (o split our 1npul lists into shorter work lists which can be sent (o the new processes, we’ll then need to
combine the results back into a single output list.

We have to split our o and z lists into shorter chunks. we’ll make one sub-list per CPU. On my MacBook I have
two cores so we’'ll split the 250,000 items into two 125,000 item lists. If you only have one CPU you can hard-code

nbr_chunks toe.g. 2 or 4 to see the eftect.

create a Pool which will create Python processes

p = multiprocessing.Pool()

start_time = datetime.datetime.now()

send out the work chunks to the Pool

po 1s a multiprocessing.pool.MapResult

po = p.map_async(calculate_z_serial_purepython, chunks)
we get a list of lists back, one per chunk, so we have to
flatten them back together

po.get() will block until results are ready and then
return a list of lists of results

results = po.get() # [[ints...], [ints...], []]

nagal:parallelpython_pure_python>python parallelpython_pure_python.py 1000 1000
Total elements: 250000

31250 8 31250

Starting pp with 8 local CPU workers

Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250
Submitting job with len(q) 31250, len(z) 31250

Job execution statistics:
job count | % of all jobs | job time sum | time per job | job server
8 | 100.00 | 14.2874 | 1.785928 | local
Time elapsed since server creation 3.75450515747
@ active tasks, 8 cores

None
Main took 0:00:04.008474
Total sum of elements (for validation): 1148485

Parallel Python

import pp

tuple of all parallel python servers to connect with
ppservers = () # use this machine

I can't get autodiscover to work at home
#ppservers=("x",) # autodiscover on network

job_server = pp.Server(ppservers=ppservers)
it'll autodiscover the nbr of cpus it can use if first arg not specified

print "Starting pp with", job_server.get_ncpus(), "local CPU workers"

output = []

jobs = []

for chunk in chunks:
print "Submitting job with len(q) {}, len(z) {}".format(len(chunk[0]), len(chunk[2])
job = job_server.submit(calculate_z serial_purepython, (chunk,), (), ())
jobs.append(job)

for job in jobs:
output_job = job()
output += output_job

print statistics about the run

print job_server.print_stats()

Use the best algorithms and fastest tools

Membership testing with sets and dictionaries is much faster, O(1), than searching sequences, O(n). When
testing "a in b", b should be a set or dictionary instead of a list or tuple.

String concatenation is best done with ' ' . join (seq) which is an O(n) process. In contrast, using the '+’
or '+=' operators can result in an O(n**2) process because new strings may be built for each
intermediate step. The CPython 2.4 interpreter mitigates this issue somewhat; however,
''.join(seq) remains the best practice.

Many tools come in both list form and iterator form (range and xrange, map and itertools.imap, list
comprehensions and generator expressions, dict.items and dict.iteritems). In general, the iterator
forms are more memory friendly and more scalable. They are preferred whenever a real list is not
required.

Many core building blocks are coded in optimized C. Applications that take advantage of them can make
substantial performance gains. The building blocks include all of the builtin datatypes (lists, tuples,
sets, and dictionaries) and extension modules like array, itertools, and collections.deque.

Likewise, the builtin functions run faster than hand-built equivalents. For example, map(operator.add, v1,
v2) is faster than map(lambda x,y: x+y, v1, v2).

Lists perform well as either fixed length arrays or variable length stacks. However, for queue applications
using pop(0) or insert(0,v)), collections.deque() offers superior O(1) performance because it avoids the
O(n) step of rebuilding a full list for each insertion or deletion.

Custom sort ordering is best performed with Py2.4's key= option or with the traditional decorate-sort-
undecorate technique. Both approaches call the key function just once per element. In contrast, sort's
cmp= option is called many times per element during a sort. For example, sort(key=str.lower) is faster
than sort(cmp=lambda a,b: cmp(a.lower(), b.lower())). See also TimeComplexity.

https://wiki.python.org/moin/TimeComplexity

Take advantage of interpreter optimizations

In functions, local variables are accessed more quickly than global variables, builtins, and attribute
lookups. So, it is sometimes worth localizing variable access in inner-loops. For example, the code for
random.shuffle() localizes access with the line, random=self.random. That saves the shuffling loop
from having to repeatedly lookup self.random. Outside of loops, the gain is minimal and rarely worth it.

The previous recommendation is a generalization of the rule to factor constant expressions out of
loops. Likewise, constant folding needs to be done manually. Inside loops, write "x=3" instead of
"X=1+2"_

Function call overhead is large compared to other instructions. Accordingly, it is sometimes worth in-
lining code inside time-critical loops.

List comprehensions run a bit faster than equivalent for-loops (unless you're just going to throw away
the result).

Starting with Py2.3, the interpreter optimizes "while 1" to just a single jump. In contrast "while True"
takes several more steps. While the latter is preferred for clarity, time-critical code should use the first
form.

Multiple assignment is slower than individual assignment. For example "x,y=a,b" is slower than "x=a;
y=b". However, multiple assignment is faster for variable swaps. For example, "x,y=y,x" is faster than
"t=x; x=y; y=t".

Chained comparisons are faster than using the "and" operator. Write "x <y < z"instead of "x <y and y
< Z"_

A few fast approaches should be considered hacks and reserved for only the most demanding
applications. For example, "not not x" is faster than "bool(x)".

