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An Interview vith Bernie Alder  
Bernie Alder 1997, from NERSC , part of the Stories of the Development of Large Scale Scientific Computing 
at Lawrence Livermore National Laboratory series. 
 
It is little known that THE algorithm was independently discovered by Bernie Alder, Stan Frankel and Victor 
Lewinson. Quoting Alder: 
 
..we started out with a configuration, a solid like order configuration, and then jiggled the particles according to 
the pulse rate distribution. And that is, in fact, known now as the Monte Carlo Method—it was presumably 
independently developed at Los Alamos by Teller, Metropolis, and Rosenbluth. They actually got all the credit. 
My guess is we did it first at Cal Tech. It's not that difficult to come up with that algorithm, which, by the way, I 
think is one of, if not THE, most powerful algorithms 
 
Actually, In a footnote of the original paper by Metropolis et al. they credited Alder, Frankel and Lewinson on 
this, but this fact has been almost forgotten over the years. Furthermore Alder et al. did not give a general 
formulation for the algorithm but only a specialized version for hard spheres."

Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid  
B. J. Alder, S. P. Frankel and V. A. Lewinson 1955  
The Journal of Chemical Physics, 23, 417 (1955) 
The paper mentioned above. Quoting Alder: 
 
I was still working on my Ph.D. thesis. He (Frankel) was really well known in computing circles. He actually put 
the Monte Carlo Method on the FERRANTI Computer and ran it all summer. I think it was before Los Alamos 
had electronic computers available. Anyway, we ran it and he came back. The thing that happens, Kirkwood did 
not believe in my boss, my thesis supervisor, he didn't believe in him at the college and, of course, he had 
communication with Los Alamos. The fact is, we never published—you can't publish something your boss 
doesn't believe in! In the meantime, Teller, Rosenbluth and Metropolis independently published. There may 
have been some collusion or communication of ideas that I couldn't recall, but they had the machines, so they 
published and we published only years later. There is, in fact, a footnote in the Metropolis paper giving us credit 
of having independently developed it. http://scienze-como.uninsubria.it/bressanini/montecarlo-history/

http://scienze-como.uninsubria.it/bressanini/montecarlo-history/Alder.html
http://www.nersc.gov/~deboni/Computer.history/Page1.dir/pages/Alder.html
http://scienze-como.uninsubria.it/bressanini/montecarlo-history/alder-1955.pdf
http://scienze-como.uninsubria.it/bressanini/montecarlo-history/




A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

Before the revolution

Metropolis et al., 1953

Motivating problem

Computation of integrals of the form

I =

R
F (p, q) exp{�E(p, q)/kT}dpdqR

exp{�E(p, q)/kT}dpdq
,

with energy E defined as

E(p, q) =

1

2

NX

i=1

NX

j=1
j 6=i

V (dij),

and N number of particles, V a potential function and dij the
distance between particles i and j.
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A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

Before the revolution

Metropolis et al., 1953

Boltzmann distribution

Boltzmann distribution exp{�E(p, q)/kT} parameterised by
temperature T , k being the Boltzmann constant, with a
normalisation factor

Z(T ) =

Z
exp{�E(p, q)/kT}dpdq

not available in closed form.
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A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

Before the revolution

Metropolis et al., 1953

Computational challenge

Since p and q are 2N -dimensional vectors, numerical integration is
impossible

Plus, standard Monte Carlo techniques fail to correctly
approximate I: exp{�E(p, q)/kT} is very small for most
realizations of random configurations (p, q) of the particle system.
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A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

Before the revolution

Metropolis et al., 1953

Metropolis algorithm

Consider a random walk modification of the N particles: for each
1  i  N , values

x

0
i = xi + ↵⇠1i and y

0
i = yi + ↵⇠2i

are proposed, where both ⇠1i and ⇠2i are uniform U(�1, 1). The
energy di↵erence between new and previous configurations is �E

and the new configuration is accepted with probability

1 ^ exp{��E/kT} ,

and otherwise the previous configuration is replicated⇤

⇤
counting one more time in the average of the F (pt, pt)’s over the ⌧ moves

of the random walk.
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A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data

Before the revolution

Metropolis et al., 1953

Convergence

Validity of the algorithm established by proving

1. irreducibility

2. ergodicity, that is convergence to the stationary distribution.

Second part obtained via discretization of the space: Metropolis et
al. note that the proposal is reversible, then establish that
exp{�E/kT} is invariant.
Application to the specific problem of the rigid-sphere collision
model. The number of iterations of the Metropolis algorithm
seems to be limited: 16 steps for burn-in and 48 to 64 subsequent
iterations (that still required four to five hours on the Los Alamos
MANIAC).
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# mcmc driver function                                                                                           
def mcmc(n=1000, delta=[0.1,0.1], domain=[[-30,100],[-30,100]],startval = [0.0,0.0]): 
    oldx = np.array(startval) 
    accept = [] 
    record = [] 
   for ni in range(n): 
        newx = proposal(oldx,delta,domain) # (1) 
        a,b = metropolis_accept(newx,oldx) # (2) 
        accept.append(a) 
        record.append(b)                   # (3) 
        oldx = b 
   aa = Counter(accept) 
    return [aa[True]/float(n),record] 

# acceptance rejection step (2)                                                                    
def metropolis_accept(newx,oldx): 
    #print newx,oldx                                                                             
    nom = f(newx) 
    denom = f(oldx) 
    #print "nom,denom",nom,denom                                                                 
    r = random.uniform(0.0,1.0) 
    if r < nom/denom: 
        return [True,newx] 
    else: 
        return [False,oldx] 

# proposal function (1)                                                                              
def proposal(x,delta,domain): 
    x2=[] 
    for xi,di,doi in zip(x,delta,domain): 
        dx = di * random.uniform(-0.5,0.5) 
        while not( doi[0] < xi+dx < doi[1]): 
            dx = di * random.uniform(-0.5,0.5) 
        x2.append(xi + dx) 
    return np.array(x2) 

(1)    Propose a a new state  !

(2)    Accept or Reject new state!

(3)    Record the state








