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A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results [or the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These resuits are compared
to the free volume equation of state and to a four-term virial coellicient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule 1s assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated,

* Now at the Radiation Laboratory of the University of Cah-
fornia, Livermore, California,

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaref con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N partlicles in the same configuration. Thus we
define d, 5, the minimum distance between particles A
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances 4B which
can make a substantial contribution; hence we need
consider only the minimum distance d4 5.

T We will use the two-dimensional nomenclature here since it
1s easier to visualize. The extension to three dimensions is obvious.



An Interview vith Bernie Alder
Bernie Alder 1997, from NERSC , part of the Stories of the Development of Large Scale Scientific Computing
at Lawrence Livermore National Laboratory series.

It is little known that THE algorithm was independently discovered by Bernie Alder, Stan Frankel and Victor
Lewinson. Quoting Alder:

..we started out with a configuration, a solid like order configuration, and then jiggled the particles according to
the pulse rate distribution. And that is, in fact, known now as the Monte Carlo Method—it was presumably
independently developed at Los Alamos by Teller, Metropolis, and Rosenbluth. They actually got all the credit.
My guess is we did it first at Cal Tech. It's not that difficult to come up with that algorithm, which, by the way, |
think is one of, if not THE, most powerful algorithms

Actually, In a footnote of the original paper by Metropolis et al. they credited Alder, Frankel and Lewinson on
this, but this fact has been almost forgotten over the years. Furthermore Alder et al. did not give a general
formulation for the algorithm but only a specialized version for hard spheres.

Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid
B. J. Alder, S. P. Frankel and V. A. Lewinson 1955

The Journal of Chemical Physics, 23, 417 (1955)

The paper mentioned above. Quoting Alder:

| was still working on my Ph.D. thesis. He (Frankel) was really well known in computing circles. He actually put
the Monte Carlo Method on the FERRANTI Computer and ran it all summer. | think it was before Los Alamos
had electronic computers available. Anyway, we ran it and he came back. The thing that happens, Kirkwood did
not believe in my boss, my thesis supervisor, he didn't believe in him at the college and, of course, he had
communication with Los Alamos. The fact is, we never published—you can't publish something your boss
doesn't believe in! In the meantime, Teller, Rosenbluth and Metropolis independently published. There may
have been some collusion or communication of ideas that | couldn't recall, but they had the machines, so they
published and we published only years later. There is, in fact, a footnote in the Metropolis paper giving us credit
of having independently deve/Oped it. http://scienze-como.uninsubria.it/bressanini/montecarlo-history/



http://scienze-como.uninsubria.it/bressanini/montecarlo-history/Alder.html
http://www.nersc.gov/~deboni/Computer.history/Page1.dir/pages/Alder.html
http://scienze-como.uninsubria.it/bressanini/montecarlo-history/alder-1955.pdf
http://scienze-como.uninsubria.it/bressanini/montecarlo-history/
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Our method in this respect is similar to the cell
method except that our cells contain several hundred
particles instead of one. One would think that such a
sample would be quite adequate for describing any one-
phase system. We do find, however, that in two-phase
systems the surface between the phases makes quite a
perturbation. Also, statistical fluctuations may be
sizable,

If we know the positions of the N particles in the
square, we can easily calculate, for example, the poten-
tial energy of the system,

N N
E=} ¥ ¥ Vidi). )
iml] jmi
¥
(Here V is the potential hetween molecules, and d;; is
the minimum distance between particles ¢ and j as
delined above,)
In order to caleulate the properties of our system we
use the canonical ensemble. So, to caleulate the equi-
librium value of any quantity of interest F,

P [ff- Exp{—E,.-"kT}u‘*-""pd“”q] /

[ f a.xp{—f_-!f.’:i"}ct"-"pd“"q]. (2)

where {#*pd*g) is a volume element in the $V-dimen-
sipnal phase space. Morcover, since forces between
particles are velocity-independent, the momentum in-
tegrals may be separated off, and we need perform only
the integration over the 2V-dimensional configuration
space. It is evidently impractical to earry out a several
hundred-dimensgional integral by the vsual numerical
methods, so we resort to the Monte Carlo method.]
The Monte Carlo method for many-dimensional in-
tegrals consists simply of integrating over a random
sampling of points instead of over a regular array of
points.

Thus the most naive method of carrying out the
integration would be to put each of the .V particles at a
random pesition in the square (this defines a random
point in the 2V-dimensional configuration space), then
calculate the energy of the system according to Eq. (1),
and give this configuration a weight exp(—E/kT).
This method, however, is not practical for close-packed
configurations, since with high probability we choose a
configuration where exp(—£/kT) is very small; hence
a configuration of very low weight. S0 the method we
employ s actually a modified Monte Carlo scheme,
where, instead of choosing configurations randomly,
then weighting them with exp(—E/kT), we choose

1 Thiz method has bheen propesed independently by 1. E Maver
and by 5. Ulum. Mayer suggested the method as a tool to deal
with Lﬁe problem of the liquid state, while Ulam propesed il as o
procedure of general uselulness, B, Alder, J. Kirkwood, 5, Franke],
and V. Lewinson discussed an application very similar to ours,
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configurations with a probability exp(—E/kT} and
weight them evenly,

This we do as follows: We place the ¥ particles in any
configuration, for example, in a regular lattice, Then
we mave each of the particles in suceession according
to the following prescription:

N=XN+takb

V— ¥+ ats, @

where @ is the maximum allowed displacement, which
for the sake of this arpument is arbitrary, and & and £
are random numbers§ between (—1) and 1. Then, after
we move a particle, it is equally likely to be anywhere
within a square of side 2a centered about its original
position. {In aceord with the periodicity assumption,
if the indicated move would put the particle outside the
square, this only means that it re-enters the square from
the opposite side.)

We then calculate the change in energy of the system
AFE, which is caused by the move, 1f AE<CQ, ie, if
the move would bring the system to a state of lower
energy, we allow the move and put the particle in its
new position. If AE>0, we allow the move with
probability exp(—AE/ET); i.e, we take a random
number & between 0 and 1, and if &<exp(—AE/ET),
we move the particle to its nmew pesition. If &
S>exp(—AE/RT), we return it to its old position,
Then, whether the move has been allowed or not, ie.,
whether we are in a different configuration or in the
original configuration, we consider that we are in a new
configuration for the purpose of taking our averages. So

P=(1/M) £ F;, )

=l

where F; is the value of the property F of the system
after the fth move is carried out according to the com-
plete prescription ahove. Having attempted to move a
particle we proceed similarly with the next one.

We now prove that the methed outlined above does
choose configurations with a probability exp(=E/&T).
Since a particle is allowed to move to any point within
a square of side 2a with a finite probability, it is clear
that a large enough number of moves will enable it to
reach any point in the complete square.|| Since this is
true of all particles, we may reach any point in com-
fipuration space, Hence, the methed is ergodic.

Next consider a very large ensemble of systems, Sup-
pose for simplicity that there are only a finite number of
statesq of the system, and that ¥, is the number of

§ Tt might Le mentioned that the mndom numbers that we
useel were penersted by the middle square process. That is, if &
is an g dipit random number, then & new rum!uul_ numbier Enyt
is ;i;iw,rn s the middle mdigils of the complete 2ue digit sgunre of £

[| In practice it is, of course, Dol necessary Lo make enough
maves te allow a particle Lo diffuse evenly throwghout the system
since configuration spece is symmetric with respect to interchange
of Lmrii:h::i. ; ;

1 A stiate here means @ given point ip confguration spage,

CALCULATION OF STATE BY FAST MACHINES

systems of the ensemble in state r. What we must
prove is that after many moves the ensemble tends to a
distribution ;

v, < exp(—E,/kT).

Now let us make a move in all the systems of our
ensemble. Let the a priori probability that the move
will carry a system in state 7 to state s be P,,. [By the
a priori probability we mean the probability before
discriminating on exp(—AFL/kT). ] First, it is clear that
P.,= P,,, since according to the way our game is played
a particle is equally likely to be moved anywhere within
a square of side 2a centered about its original position.
Thus, if states r and s differ from each other only by the
position of the particle moved and if these positions
are within each other's squares, the transition prob-
abilities are equal; otherwise they are zero. Assume
E,.> E,. Then the number of systems moving from state
r to state s will be simply ».P.,, since all moves to a
state of lower energy are allowed. The number moving
from s to r will be v.P, exp(— (E,—E,)/kT), since
here we must weigh by the exponential factor, Thus the
net number of systems moving from s to r is

Pra(vs exp(—(Er—E)/kT)—v,). (5)
So we see that between any two states r and s, if

(#+/v2)> [exp(— E,/kT)/exp(— E./kT)], (6)
on the average more systems move from state r to
state s. We have seen already that the method is ergodic;
i.e.,, that any state can be reached from any other,
albeit in several moves. These two [acts mean that our
enseimble must approach the canonical distribution. It
is, incidentally, clear from the above derivation that
after a forbidden move we must count again the initial
configuration. Not to do this would correspond in the
above case to removing from the ensemble those sys-
tems which tried to move from s to » and were forbidden.
This would unjustifiably reduce the number in state s
relative to r.

The above argument does not, of course, specify how
rapidly the canonical distribution is approached. It may
be mentioned in this connection that the maximum dis-
placement & must be chosen with some care; if too large,
most moves will be forbidden, and if too small, the con-
figuration will not change enough. In either case it will
then take longer to come to equilibrium.

I'or the rigid-sphere case, the game of chance on
exp(—AE/ET) is, of course, not necessary since AE is
either zero or infinity. The particles are moved, one at
a time, according to Eq. (3). If a sphere, after such a
move, happens to*overlap another sphere, we return it
to its original position.

III. SPECIALIZATION TO RIGID SPHERES
IN TWO DIMENSIONS

A. The Equation of State

The virial theorem of Clausius can be used to give
an equation of state in terms of 7, the average den-
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sity of other particles at the surface of a particle.
Let X, and X"V represent the total and the internal
force, respectively, acting on particle 7, at a position
r;. Then the virial theorem can be written

(Z x,-("’“ & l','}m= ZPA + (Z X{iint} b r.‘).lr= 2Ekin' (?)

Here P is the pressure, A the area, and Exi, the total
kinetic energy,

Epin= Nmﬁ%/?

of the system of V particles.

Consider the collisions of the spheres for convenience
as represented by those of a particle of radius do, twice
the radius of the actual spheres, surrounded by 7 point
particles per unit area. Those surrounding particles in
an area of 2wdg cospAl, traveling with velocity v at
an angle ¢ with the radius vector, collide with the cen-
tral particle provided |¢ | <w/2. (See Fig. 1.) Assuming
elastic recoil, they each exert an average force during
the time Af on the central particle of

2mu cosp/ Al,

One can see that all ¢'s are equally probable, since for
any velocity-independent potential between particles
the velocity distribution will just be Maxwellian,
hence isotropic. The total force acting on the central
particle, averaged over ¢, over time, and over velocity, is

Fi=miPrdoi. ' (8)
The sum

(X Xm0,

]
is
—3 2{X ruil'i),
i J
[E
with F;; the magnitude of the force between two par-
ticles and r;; the distance between them. We see that



Motivating problem

Computation of integrals of the form

| F(p,q) exp{—E(p,q)/kT }dpdq
[ exp{—E(p,q)/kT }dpdq

with energy F defined as

T =

)= 3> Vi)

1=

j_
J71
and N number of particles, V' a potential function and d;; the
distance between particles 7 and ;.

Robert and Casella (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data.
Talk archived on http://www.slideshare.net/xianblog/a-short-history-of-mcmc;

Paper:http://arxiv.org/pdf/0808.2902.pdf



http://www.slideshare.net/xianblog/a-short-history-of-mcmc
http://arxiv.org/pdf/0808.2902.pdf

Boltzmann distribution

Boltzmann distribution exp{—FE(p,q)/kT} parameterised by
temperature 1', k being the Boltzmann constant, with a
normalisation factor

3(T) = / exp{—FE(p, q)/kT }dpdq

not available in closed form.

Robert and Casella (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data.
Talk archived on http://www.slideshare.net/xianblog/a-short-history-of-mcmc;

Paper:http://arxiv.org/pdf/0808.2902.pdf



http://www.slideshare.net/xianblog/a-short-history-of-mcmc
http://arxiv.org/pdf/0808.2902.pdf

Computational challenge

Since p and g are 2N-dimensional vectors, numerical integration is
Impossible

Plus, standard Monte Carlo techniques fail to correctly
approximate J: exp{—F(p,q)/kT} is very small for most
realizations of random configurations (p, q) of the particle system.

Robert and Casella (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data.
Talk archived on http://www.slideshare.net/xianblog/a-short-history-of-mcmc;

Paper:http://arxiv.org/pdf/0808.2902.pdf



http://www.slideshare.net/xianblog/a-short-history-of-mcmc
http://arxiv.org/pdf/0808.2902.pdf

Metropolis algorithm

Consider a random walk modification of the N particles: for each
1 <¢ < N, values

T, = x; +afy; and y; = y; + aloy

are proposed, where both &;; and &y; are uniform U(—1,1). The
energy difference between new and previous configurations is AFE
and the new configuration is accepted with probability

1 Nexp{—AFE/KT},

and otherwise the previous configuration is replicated”

“counting one more time in the average of the F'(p:, pt)'s over the 7 moves
of the random walk.

Robert and Casella (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data.
Talk archived on http://www.slideshare.net/xianblog/a-short-history-of-mcmc;

Paper:http://arxiv.org/pdf/0808.2902.pdf
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Convergence

Validity of the algorithm established by proving
1. irreducibility

2. ergodicity, that is convergence to the stationary distribution.

Second part obtained via discretization of the space: Metropolis et
al. note that the proposal is reversible, then establish that
exp{—F/kT} is invariant.

Application to the specific problem of the rigid-sphere collision
model. The number of iterations of the Metropolis algorithm
seems to be limited: 16 steps for burn-in and 48 to 64 subsequent

iterations (that still required four to five hours on the Los Alamos
MANIAC).

Robert and Casella (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data.
Talk archived on http://www.slideshare.net/xianblog/a-short-history-of-mcmc;

Paper:http://arxiv.org/pdf/0808.2902.pdf
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# mcmc driver function
def mcmc(n=1000, delta=[0.1,0.1], domain=[[-30,100],[-30,100]],startval = [0.0,0.0]):
oldx = np.array(startval)
accept = []
record = []
for ni in range(n): (1) Propose a a new state
newx = proposal(oldx,delta,domain) # (1)
a,b = metropolis_accept(newx,oldx) # (2)
accept.append(a)
record.append(b) # (3)
oldx = b (3)
aa = Counter(accept)
return [aalTrue]/float(n),record]

(2) Accept or Reject new state

Record the state

# acceptance rejection step (2) # proposal function (1)
def metropolis_accept(newx,oldx): def proposal(x,delta,domain):
#print newx,oldx x2=[]
nom = f(newx) for xi,di,doi in zip(x,delta,domain):
denom = f(oldx) dx = di * random.uniform(-0.5,0.5)
#print “nom,denom", nom,denom while not( doi[@] < xi+dx < doi[l]):
r = random.uniform(0.0,1.0) dx = di * random.uniform(-0.5,0.5)
if r < nom/denom: x2.append(xi + dx)
. return [True, newx] return np.array(x2)
else:

return [False,oldx]
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