
ISC4221-1 Algorithms II Fall 2013

Lab 5: Random Processes

Due date: Wednesday October 2nd

Goals: We want to see how we can use Monte Carlo to solve a difficult problem in scientific
computing, locating the global extrema of a function. We will only consider functions of one inde-
pendent variable.

Using Monte Carlo for Optimization

We consider the 1D optimization problem of finding a point x in a given domain D ⊂ R1 where
the function f(x) attains its global minimum. If we can solve this problem, then we can also find
its global maximum by finding the global minimum of −f(x). The difficulty with optimization is that
the function may have several local minima. Most minimization algorithms can be “trapped by a
local minimum. We are going to see how we can develop an algorithm which uses Monte Carlo
sampling to estimate the location of the global minimum.
It would be fair to ask why we bother randomizing this algorithm. Why not just divide up the region
into say 500 equally spaced points; then you will guarantee that you sample all the space just as
well (even better, because you know there cant be any large gaps). There are several reasons
to use pseudorandom sequences to sample the domain. One of the reasons is that in two or
three dimensions we may have a very complicated geometry. Another reason is that when we go
to higher dimensions, i.e., a function of several variables, then our 500 points in one dimension
becomes 500d in d dimensions. It should be noted that there are much better sampling methods
than Monte Carlo and those should be used in practice. Assume that we want to find the global
minimum of f(x) on [a, b]. We want to do this in as few function evaluations (i.e., evaluation of f
at a point) as possible. Our first strategy will be to sample [a, b] with n points {x0i }ni=1 using Monte
Carlo and evaluate the function at each of those points. As we sample each point we keep track of
which x value has the smallest function value. From all the sampling points we choose the location
where f(x) takes on its minimum value and that will be our answer. This algorithm will converge
as n → ∞.We will consider modifications to this algorithm in the exercises. We consider three
functions, each more difficult than the previous for locating its minimum.

f1(x) = | cos Πx| on [0, 1]

f2(x) = cos(x) + 5 cos(1.6x) + 2 cos(2.0x) + 5 cos(4.5x) + 7 cos(9.0x) on [2, 7]

f3(x) = −
[
sech2(10.0(x− 0.2)) + sech2(100.0(x− 0.4)) + sech2(1000.0(x− 0.6))

]
on [0, 1]

To compare codes, please use a seed of 56789 for easier grading.

1. Plot the three functions fi(x), i = 1, 3 on their domains. From the graphs estimate the
location of the global minimum and all local minimum of the functions.

2. Write a code to implement our sampling algorithm for locating a global minimum of a function.
Your code should have the following structure:

• Input: n the number of sampling points

• xl, xr the endpoints of the interval where the function is defined (so you can map the
random point to that interval)
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• Output: the location and value of the minimum that the algorithm found.

Make sure your code is working properly by finding the local minimum of our “easy func-
tion f1(x). For f1(x) we know the exact location of its global minimum. Make a table
of n and the error in the location of the minimum as n increases. For example, n =
25, 50, 100, 200, 400, 800, 1600.

3. If we have a good approximation to the location of the global minimum, it probably doesn’t
make sense to keep sampling in the entire domain; you saw in #2 that sometimes doubling
the number of points didnt improve the accuracy. A better strategy might be that once we
have an approximation then we only sample around that approximation to zoom in on a
more accurate approximation to the location of the minimum. Of course, if we have too few
random points in our initial sweep and have an erroneous location, then zooming in is not
going to help us; that is why this approach is not guaranteed to converge unlike the brute
force approach in #2. After we have located our approximation, say x∗1 to the local minimum
by generating n random points, then we will sample in the interval [x∗1 − δ, x∗1 + δ] using say
n1 = n/2 points (of course you can change this) to get points {x∗1}

n1
i=1 and we can determine

our second approximation to the global minimum x by evaluating f(x) at each of these
random points. The procedure can be repeated. At the last step, we choose the location
where f(x) takes on its smallest value; this is our approximation to x∗.Remember that the
algorithm is not guaranteed to converge to a global minimum but if our initial sampling is
good enough, we should be able to capture the minimum for most functions. Modify your
code to input nzoom, the number of zooms we will use; if nzoom= 0 you should have the
algorithm from #2. We want to run the code for f2, f3 and compare the number of function
evaluations required as a function of nzoom to find the global minimum and its location to a
desired accuracy. You should choose the calculations which best support your conclusion.

4. (Optional, extra credit) Can you think of a way to modify the algorithm (besides taking n
larger) to ensure a better chance of your initial sweep capturing the location of the global
minimum? If so, discuss this and implement and compare, if time allows. If you dont have
time for this now, you could choose it as a final project (and expand it a bit using other
sampling methods).
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