

Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:

>>> while True print(Hello world')
File "<stdin>", line 1
while True print('Hello world')

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at
the earliest point in the line where the error was detected. The error is
caused by (or at least detected at) the token preceding the arrow: in the
example, the error is detected at the function print (), since a colon (':")
is missing before it. File name and line number are printed so you know
where to look in case the input came from a script.

https://docs.python.org/3/tutorial/errors.html

https://docs.python.org/3/library/functions.html#print

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during execution
are called exceptions and are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:
>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'spam’' 1s not defined
>>> '2' + 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
The last line of the error message indicates what happened. Exceptions come
in different types, and the type is printed as part of the message: the types in
the example are ZeroDivisionError, NameError and TypeError. The string
printed as the exception type is the name of the built-in exception that
occurred.

https://docs.python.org/3/library/exceptions.html#ZeroDivisionError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#TypeError

Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or whatever
the operating system supports); note that a user-generated interruption is signalled
by raising the KeyboardInterrupt exception.

>>> while True:

e o try:

.« e X = 1nt(input("Please enter a number: "))

S break

S except ValueError:

c o print("Oops! That was no valid number. Try again...')

The try statement works as follows.

« First, the try clause (the statement(s) between the try and except keywords) is
executed.

« If no exception occurs, the except clause is skipped and execution of the try
statement is finished.

 If an exception occurs during execution of the try clause, the rest of the clause is
skipped. Then if its type matches the exception named after the except keyword,
the except clause is executed, and then execution continues after the try
statement.

 If an exception occurs which does not match the exception named in the except
clause, it is passed on to outer try statements; if no handler is found, it is an
unhandled exception and execution stops with a message as shown above.

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#try

A try statement may have more than one except clause, to specify hanc
different exceptions. At most one handler will be executed. Handlers on

lers for
vy handle

exceptions that occur in the corresponding try clause, not in other hand

ers of the

same try statement. An except clause may name multiple exceptions as a

parenthesized tuple, for example:
except (RuntimeError, TypeError, NameError):
pass

import sys

try:
f = open('myfile.txt')
s = f.readline()
1 = int(s.strip())
except OSError as err:
print("0OS error: {0}".format(err))
except ValueError:
print("Could not convert data to an integer.")
except:
print ("Unexpected error:", sys.exc info()[0])
raise

https://docs.python.org/3/reference/compound_stmts.html#try

The try ... except statement has an optional else clause, which, when present,

must follow all except clauses. It is useful for code that must be executed if the try
clause does not raise an exception. For example:

for arg in sys.argv[l:]:
try:
f = open(arg, 'r')
except OSError:

print('cannot open', argqg)
else:

print(arg, 'has’', len(f.readlines()), 'lines')
f.close()

The use of the else clause is better than adding additional code to the try clause

because it avoids accidentally catching an exception that wasn’t raised by the code
being protected by the try ... except statement.

https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try

Raising Exceptions
The raise statement allows the programmer to force a specified exception to
occur. For example:
>>> raise NameError(HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: HiThere
The sole argument to raise indicates the exception to be raised. This must be
either an exception instance or an exception class (a class that derives from
Exception). If an exception class is passed, it will be implicitly instantiated by

calling its constructor with no arguments:
raise ValueError # shorthand for 'raise ValueError()'

Defining Clean-up Actions]
The try statement has another optional clause which is intended to define clean-
up actions that must be executed under all circumstances. For example:

>>> try:

c o raise KeyboardInterrupt
... finally:

c e print('Goodbye, world! ')

Goodbye, world!

KeyboardInterrupt

Traceback (most recent call last):
File "<stdin>", line 2, in <module>"

https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/reference/compound_stmts.html#try

lterators, lterables s = leat

for si in s:

An ITERABLE is: print si
+ anything that can be looped over c

a

(i.e. you can loop over a string or
file)
- anything that can appear on the

S. getitem

right-side of a for—Ioop: FER— <method-wrapper ' getitem ' of str object at 0x10
in iterable: ... n=[1,4,16,32]
- anything you can call with .
itZr‘()thve It return an fo;r;.l:tlzi?z
ITERATOR: iter(obj) 1416 32
- an object that defines __iter iter(n)

that returns a fresh |TERATOR, <listiterator at 0xl0deebcd0>
or it may havea getitem

method suitable for indexed
lookup.

n. iter

<method-wrapper ' iter ' of list object at 0x10d47

AttributeError Traceback
nt call last)

for k in {"x":

N

1, "Y": 2}=
print Kk

for line in open("/Users/beerli/a.txt"):

print line

The quick fox jumps of the lazy dog

The red fox is running away

>>> ", ", join(["a", "b", "c"])
atac

>>> " " join({"x": 1, "y": 2})
'y, X'

>>> list("python")

[lpi, lyi, lt' lh' loi lnij
>>> List({"x": 1, "y": 2})
L'y", "x']

Many functions consume iterables

An ITERATOR is:
« an object with state that

remembers where it is during ,
>> X = 1ter([1, 2, 3])

iteration
» an object with a __next__ 7>z X |
method (Python 3; next) before <listiterator object at 0x1004ca850>
that- >>> X.next()
 returns the next value in the !
teration >>> X.nhext()
* updates the state to point at -
the next value >>> X.next()
- signals when it is done by 3
raising StopIteration >>> X.next()
- an object that is self-iterable Traceback (most recent call last):
(meaning that it has an File "<stdin>", line 1, 1n <module>

__iter method that returns StopIteration
self).

Raymond Hettinger

niter = iter(n)

for ni in niter:
print ni

16
32

(Generators

facilitate the construction of iterators

def zrange(n):

i=20

while 1 < n:
vield 1
1 +=1

http://anandology.com/python-practice-book/iterators.html

z = zrange(3)

Z

<generator object zrange at 0x10def4500>

z.next ()

0

z.next ()

z.next ()

z.next ()

StopIteration Traceback (most recent call last)
<ipython-input-34-6c49e4clla56> in <module>()
—===> 1 z.next()

StopIteration:

So a generator 1s also an 1terator. You don’t have to worry about the iterator protocol.

The word “generator” 1s confusingly used to mean both the function that generates and
what it generates.

We will use the word “generator” to mean the generated object and “generator function™
to mean the function that generates it.

Can you think about how it 1s working internally?

When a generator function is called, it returns a generator object without even beginning
execution of the function. When next method 1s called for the first time, the function
starts executing until it reaches y1€e1d statement. The yielded value is returned by the

next call.
The following example demonstrates the interplay between y1eld and call to next
method on generator object.

http://anandology.com/python-practice-book/iterators.html

>>> def foo():
print "begin"
for i in range(3):
print "before yield", i
yield 1
print "after yield", 1
print "end"

>>> f = foo()

>>> f.next()

begin

before yield 0

0

>>> f.next()

after yield 0

before yield 1

1

>>> f.next()

after yield 1

before yield 2

2

>>> f.next()

after yield 2

end

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

StopIteration

>>>
http://anandology.com/python-practice-book/iterators.html

def integers():
"""Infinite sequence of integers."""

i=0

while True:
vield i
i=1i+1

def squares():
for i in integers():

vield i * i

def take(n, seq):
Returns first n values from the given sequence."""

seq = iter(seq)
result = []
try:
for i in range(n):
result.append(seq.next())
except StoplIteration:

pass
return result

print take(5, squares())

def take(n, seq):

"""Returns first n values from the given sequence.
seq = iter(seq)
result = []
try:

for i in range(n):

result.append(seq.next())

except StoplIteration:

pass
return result

def fibonacchi():
last = 1
secondlast = 0
vield 1
for 1 in integers():
yield (secondlast + last)
secondlast, last = last, secondlast + last

print take(20,fibonacchi())

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,

610,

987,

1597,

2584,

4181,

6765]

5.3. Generator Expressions

Generator Expressions are generator version of list comprehensions. They look like list
comprehensions, but returns a generator back instead of a list.

>> a = (x*x for x in range(10))

>>> a

<generator object <genexpr> at 0x401f08>
>>> sum(a)

285

We can use the generator expressions as arguments to various functions that consume iterators.

>>> sum(((x*x for x in range(10)))
285

When there is only one argument to the calling function, the parenthesis around generator
expression can be omitted.

http://anandology.com/python-practice-book/iterators.html

Another example:
Lets say we want to find first 10 (or any n) pythagorian triplets.
A triplet (X, Y, Zz) is called pythagorian triplet if X*X + y*y == z*z.

It 1s easy to solve this problem if we know till what value of z to test for.
But we want to find first n pythagorian triplets.

pyt = ((x, y, 2) for z in integers() for y in xrange(l, z) for x in range(l, y) if x*x + y*y == z*2)

take (10, pyt)

[(3, 4, 5),
(6, 8, 10),
(5, 12, 13),
(9, 12, 15),
(8, 15, 17),
(12, 16, 20),
(15, 20, 25),
(7, 24, 25),
(10, 24, 26),
(20, 21, 29)]

http://anandology.com/python-practice-book/iterators.html

5.3.1. Example: Reading multiple files

Lets say we want to write a program that takes a list of filenames as arguments and prints contents of
all those files, like cat command in unix.

The traditional way to implement it is:

def cat(filenames):
for f in filenames:
for 1line in open(f):
print line,

Now, lets say we want to print only the line which has a particular substring, like grep command in

unix.

def grep(pattern, filenames):
for f in filenames:
for line in open(f):
if pattern in line:
print line,

Both these programs have lot of code in common. It is hard to move the common part to a function.
But with generators makes it possible to do it.

http://anandology.com/python-practice-book/iterators.html

def readfiles(filenames):
for f in filenames:
for line in open(f):
yield line

def grep(pattern, lines):
return (line for line in lines if pattern in lines)

def printlines(lines):
for line in lines:
print line,

def main(pattern, filenames):
lines = readfiles(filenames)
lines = grep(pattern, lines)
printlines(lines)

The code is much simpler now with each function doing one small thing. We can move all these
functions into a separate module and reuse it in other programs.

http://anandology.com/python-practice-book/iterators.html

5.4. Itertools

The itertools module in the standard library provides lot of intersting tools to work with iterators.
Lets look at some of the interesting functions.

chain - chains multiple iterators together.

>>> 1tl = iter([1, 2, 3])

>>> 1t2 = iter([4, 5, 6])

>>> itertools.chain(itl, it2)
[1, 2, 3, 4, 5, 6]

izip - iterable version of zip

>>> for x, y in itertools.izip(["a", "b", "c"], [1, 2, 31):
print x, y

Nn T O
W N =

http://anandology.com/python-practice-book/iterators.html

import itertools

dir(itertools)

[' doc ',

' file ',
' name ',
' _package ',
‘chain’',
'combinations’,
'combinations with replacement'’,
'compress’',
'count’',
‘cycle’,
'dropwhile’,
'groupby ',
"‘ifilter’,
'ifilterfalse',
"imap’',
'islice',

to scroll output; double click to hide

.~ 'izip longest',
'permutations’,
'product’,
'repeat’,
'starmap’,
'takewhile’,
'tee']

help(itertools)

Help on module itertools:

NAME logy.com/python-practice-book/iterators.htmi
itertools - Functional tools for creating and using iterators.

Problem 2: Write a program that takes one or more filenames as arguments and prints all the lines
which are longer than 40 characters.

Problem 3: Write a function findfiles thatrecursively descends the directory tree for the

specified directory and generates paths of all the files in the tree.

Problem 4: Write a function to compute the number of python files (.py extension) in a specified
directory recursively.

Problem 5: Write a function to compute the total number of lines of code in all python files in the
specified directory recursively.

Problem 6: Write a function to compute the total number of lines of code, ignoring empty and
comment lines, in all python files in the specified directory recursively.

Problem 7: Write a program split.py , that takes aninteger n and afilename as command line

arguments and splits the file into multiple small files with each having n lines.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

