
Errors, Exceptions,

Iterators, Generators

https://docs.python.org/3/tutorial/errors.html

Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:
>>>
>>> while True print('Hello world')
 File "<stdin>", line 1
 while True print('Hello world')
 ^
SyntaxError: invalid syntax
The parser repeats the offending line and displays a little ‘arrow’ pointing at
the earliest point in the line where the error was detected. The error is
caused by (or at least detected at) the token preceding the arrow: in the
example, the error is detected at the function print(), since a colon (':')
is missing before it. File name and line number are printed so you know
where to look in case the input came from a script.

Syntax Errors

https://docs.python.org/3/library/functions.html#print

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during execution
are called exceptions and are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by
programs, however, and result in error messages as shown here:
>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
The last line of the error message indicates what happened. Exceptions come
in different types, and the type is printed as part of the message: the types in
the example are ZeroDivisionError, NameError and TypeError. The string
printed as the exception type is the name of the built-in exception that
occurred.

Exceptions

https://docs.python.org/3/library/exceptions.html#ZeroDivisionError
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/exceptions.html#TypeError

Handling Exceptions¶
It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or whatever
the operating system supports); note that a user-generated interruption is signalled
by raising the KeyboardInterrupt exception.
>>>
>>> while True:
... try:
... x = int(input("Please enter a number: "))
... break
... except ValueError:
... print("Oops! That was no valid number. Try again...")
...
The try statement works as follows.
• First, the try clause (the statement(s) between the try and except keywords) is

executed.
• If no exception occurs, the except clause is skipped and execution of the try

statement is finished.
• If an exception occurs during execution of the try clause, the rest of the clause is

skipped. Then if its type matches the exception named after the except keyword,
the except clause is executed, and then execution continues after the try
statement.

• If an exception occurs which does not match the exception named in the except
clause, it is passed on to outer try statements; if no handler is found, it is an
unhandled exception and execution stops with a message as shown above.

•

https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#try

A try statement may have more than one except clause, to specify handlers for
different exceptions. At most one handler will be executed. Handlers only handle
exceptions that occur in the corresponding try clause, not in other handlers of the
same try statement. An except clause may name multiple exceptions as a
parenthesized tuple, for example:
... except (RuntimeError, TypeError, NameError):
... pass

import sys

try:
 f = open('myfile.txt')
 s = f.readline()
 i = int(s.strip())
except OSError as err:
 print("OS error: {0}".format(err))
except ValueError:
 print("Could not convert data to an integer.")
except:
 print("Unexpected error:", sys.exc_info()[0])
 raise

https://docs.python.org/3/reference/compound_stmts.html#try

The try … except statement has an optional else clause, which, when present,
must follow all except clauses. It is useful for code that must be executed if the try
clause does not raise an exception. For example:
for arg in sys.argv[1:]:
 try:
 f = open(arg, 'r')
 except OSError:
 print('cannot open', arg)
 else:
 print(arg, 'has', len(f.readlines()), 'lines')
 f.close()
The use of the else clause is better than adding additional code to the try clause
because it avoids accidentally catching an exception that wasn’t raised by the code
being protected by the try … except statement.

https://docs.python.org/3/reference/compound_stmts.html#try
https://docs.python.org/3/reference/compound_stmts.html#except
https://docs.python.org/3/reference/compound_stmts.html#try

Raising Exceptions¶
The raise statement allows the programmer to force a specified exception to
occur. For example:
>>> raise NameError('HiThere')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: HiThere
The sole argument to raise indicates the exception to be raised. This must be
either an exception instance or an exception class (a class that derives from
Exception). If an exception class is passed, it will be implicitly instantiated by
calling its constructor with no arguments:
raise ValueError # shorthand for 'raise ValueError()'

Defining Clean-up Actions¶
The try statement has another optional clause which is intended to define clean-
up actions that must be executed under all circumstances. For example:
>>>
>>> try:
... raise KeyboardInterrupt
... finally:
... print('Goodbye, world!')
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>”

https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/reference/simple_stmts.html#raise
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/reference/compound_stmts.html#try

Iterators, Iterables
An ITERABLE is:

	 •	 anything that can be looped over

(i.e. you can loop over a string or
file)

	 •	 anything that can appear on the
right-side of a for-loop: for	x	
in	iterable:	...

	 •	 anything you can call with
iter() have it return an
ITERATOR: iter(obj)

	 •	 an object that defines __iter__
that returns a fresh ITERATOR,
or it may have a __getitem__
method suitable for indexed
lookup.

Raymond Hettinger

Many functions consume iterables

Raymond Hettinger

An ITERATOR is:

	 •	 an object with state that

remembers where it is during
iteration

	 •	 an object with a __next__
method (Python 3; next) before
that:

	 •	 returns the next value in the
iteration

	 •	 updates the state to point at
the next value

	 •	 signals when it is done by
raising StopIteration

	 •	 an object that is self-iterable
(meaning that it has an
__iter__ method that returns
self).

Generators

facilitate the construction of iterators

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

So a generator is also an iterator. You don’t have to worry about the iterator protocol.

The word “generator” is confusingly used to mean both the function that generates and
what it generates.

We will use the word “generator” to mean the generated object and “generator function”
to mean the function that generates it.

Can you think about how it is working internally?

When a generator function is called, it returns a generator object without even beginning
execution of the function. When next method is called for the first time, the function
starts executing until it reaches yield statement. The yielded value is returned by the
next call.
The following example demonstrates the interplay between yield and call to next
method on generator object.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

Another example:
Lets say we want to find first 10 (or any n) pythagorian triplets.
A triplet (x, y, z) is called pythagorian triplet if x*x + y*y == z*z.

It is easy to solve this problem if we know till what value of z to test for.
But we want to find first n pythagorian triplets.

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

http://anandology.com/python-practice-book/iterators.html

