
1

ISC-4304: Python baby steps

2

In computer science, an interpreter is a
computer program that directly executes, i.e.
performs, instructions written in a programming
or scripting language, without requiring them
previously to have been compiled into a machine
language program. An interpreter generally uses
one of the following strategies for program
execution:
• parse the source code and perform its

behavior directly;
• translate source code into some efficient

intermediate representation and immediately
execute this;

• explicitly execute stored precompiled code[1]
made by a compiler which is part of the
interpreter system.

A compiler is computer software that
transforms computer code written in one
programming language (the source language)
into another programming language (the target
language). Compilers are a type of translator
that support digital devices, primarily
computers. The name compiler is primarily
used for programs that translate source code
from a high-level programming language to a
lower level language (e.g., assembly language,
object code, or machine code) to create an
executable program.[1]

Compiler Interpreter

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computers)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Scripting_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Parse
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Translator_(computing)
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Lower_level_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Executable

3

https://www.continuum.io

4

5/7/13 8:45 AMGeneral Python FAQ — Python v2.7.4 documentation

Page 1 of 9http://docs.python.org/2/faq/general.html#what-is-python

General Python FAQ

Contents

General Python FAQ
General Information

What is Python?
What is the Python Software Foundation?
Are there copyright restrictions on the use of Python?
Why was Python created in the first place?
What is Python good for?
How does the Python version numbering scheme work?
How do I obtain a copy of the Python source?
How do I get documentation on Python?
I’ve never programmed before. Is there a Python tutorial?
Is there a newsgroup or mailing list devoted to Python?
How do I get a beta test version of Python?
How do I submit bug reports and patches for Python?
Are there any published articles about Python that I can reference?
Are there any books on Python?
Where in the world is www.python.org located?
Why is it called Python?
Do I have to like “Monty Python’s Flying Circus”?

Python in the real world
How stable is Python?
How many people are using Python?
Have any significant projects been done in Python?
What new developments are expected for Python in the future?
Is it reasonable to propose incompatible changes to Python?
Is Python Y2K (Year 2000) Compliant?
Is Python a good language for beginning programmers?

Upgrading Python
What is this bsddb185 module my application keeps complaining
about?

General Information

What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates
modules, exceptions, dynamic typing, very high level dynamic data types, and classes.
Python combines remarkable power with very clear syntax. It has interfaces to many
system calls and libraries, as well as to various window systems, and is extensible in C or
C++. It is also usable as an extension language for applications that need a programmable
interface. Finally, Python is portable: it runs on many Unix variants, on the Mac, and on
PCs under MS-DOS, Windows, Windows NT, and OS/2.

To find out more, start with The Python Tutorial. The Beginner’s Guide to Python links to
other introductory tutorials and resources for learning Python.

http://docs.python.org/2/faq/general.html#id1

http://docs.python.org/2/faq/general.html#id1

5

“The most important thing in the
programming language is the name. A
language will not succeed without a
good name. I have recently invented a
very good name and now I am looking
for a suitable language.” — Donald
Knuth

http://docs.python.org/2/faq/general.html#id1

When he began implementing Python, Guido
van Rossum was also reading the published
scripts from “Monty Python’s Flying Circus”, a
BBC comedy series from the 1970s. Van
Rossum thought he needed a name that was
short, unique, and slightly mysterious, so he
decided to call the language Python.

Why is it called Python

https://www.slideshare.net/
SidharthNadhan/learn-python-in-20-

minutes

http://docs.python.org/2/faq/general.html#id1
https://en.wikipedia.org/wiki/Monty_Python

6

Examples

bugs in a box

popvizard

7

Python baby steps: Python as a calculator

8

Python baby steps: we learn how to calculate Pi

Open two terminal windows that point to the same directory.
Use the text editor

nano or gedit (or vi or emacs [for geeks])

to edit a file in one window and in the other execute that file with something like this

python file

for python programs I often use the .py extension, for our examples use hello.py and pi.py as file names.
Again make sure that both terminal window point to the same directory (use pwd to check).

Python programming steps

Hello world

Result:

print “Hello world”

Enter in file:

9

my first program

Python programming steps

1 2

1
1

Result:

a = 1
b = 2
print(a, b)
print (“—”)
print(a)
print (b)

Enter in file:

10

printing to screen

Python programming steps

1 2 3 4 5 6 7 8 9 10

Result:

a = 0 # the # is a comment, a is assigned zero
b = 10 # b is assigned 10
while a < b: # while a is smaller than b do the following
a = a + 1 # add 1 to a and assign the result to a
print a, # print a, the ‘,’says add a blank
 # the indentation is important in python because
 # it marks that all the material belongs to the
 # while statement, a “:” marks such a statement.

Enter in file:

11

Looping

Python programming steps

1 5 14 30 55 91 140 204 285 385

Result:

a = range(10) # creates a list from 0 to 9
b = range(1,11) # creates a list from 1 to 10
loop over all b and print a running sum of the square of b[i]
sum = 0
for bi in b:
sum = sum + bi * bi
print sum,

print

Enter in file:

12

Looping

Python programming steps

1 2 3 4 25 36 49 64 81 100 done

Result:

a = 0
b = 10
c = 5
while a < b: # loop as long a is smaller than b
a = a + 1 # increase a
if a < c: # if a is smaller than c
 print a, #Python3: print(a,end=‘ ‘) # print a
else: # otherwise
 print a*a, #Python3: print(a*a,end=‘ ‘) # print square of a
 #

print “done” #Python3: print(“done”) #

Enter in file:

13

decisions

Python programming steps

a= []
b= [1, 2, 3, 4, '5']
b= [5, 2, 3, 4, 'five']
c= [5, 2, 3, 4, 'five']
b= [5, 21, 3, 4, 'five']
c= [5, 2, 3, 4, 'five']

Result:

a = [] # a is initialized as an empty list
print “a=”,a
b = [1,2,3,4,”5”] # b is a list with mixed types
print b
c = b # c is a clone of b
b[0] = 5 # changing the first element of b
b=[-1] = “five” # changing the last element of b
print “b=”,b # print b
print “c=”,c # c is just another name for b
c = b[:] # c now is a indpendent copy of b
b[1] = 21
print “b”,b
print “c=”,c

Enter in file:

14

list comprehension

Python programming steps

0
9
[2, 3]
[3, 4, 5, 6, 7]

Result:

a=[0,1,2,3,4,5,6,7,8,9]
b=a[0]
c=a[-1]
d=a[2:4]
e=a[3:-2]
print b
print c
print d
print e

Enter in file:

15

list comprehension

Python programming steps

g
 quick fox jumps over the
['t', 'h', 'e', ' ', 'q', 'u', 'i', 'c', 'k', ' ', 'f', 'o', 'x', ' ', 'j',
'u', 'm', 'p', 's', ' ', 'o', 'v', 'e', 'r', ' ', 't', 'h', 'e', ' ', 'l',
'a', 'z', 'y', ' ', 'd', 'o', 'g']
['the', 'quick', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
THE QUICK FOX JUMPS OVER THE LAZY DOG

Result:

a=”the quick fox jumps over the lazy dog”
b=a[-1]
e=a[3:-8]
f=list(a)
g = a.split()
h = a.upper()
print b
print e
print f
print g
print h

Enter in file:

16

strings are funny lists

17

google
python string upper

18

21

How to calculate p

We know that the area of a circle is

�r2

r

r

Looking only at the upper right corner
we can see a green square with side r
and we can calculate the area of the square as

As = r2

The quarter circle has the area

Ac =
�

4
r2

So we can calculate the ratio of the two areas as

Ac

As
=

r2

�
4 r

2
=

�

4

22

How to calculate p

r

r

Ac

As
=

r2

�
4 r

2
=

�

4

d

d y

x

x

y

The goal is now to estimate the ratio of the areas.
We can devise an algorithm that draws random
coordinates from the square and marks whether the
coordinate fell into the circle or not. We can calculate
the distance from the circle center using Pythagoras:

d =
p

(x2 + y2)

If d is smaller than r than we know the coordinate is in
the circle otherwise only in the square. We can now
create an algorithm for our program.

23

How to calculate p

r

r d

d y

x

x

y

Algorithm in pseudo code
Do many times:
draw x, y coordinate
calculate d from center
check whether d < r:
True: add 1 to circle
False: do nothing
add 1 to square
#
print pi: ratio cicle/square * 4

Python programming steps

#!/usr/bin/env python
from __future__ import print_function
import random
import math
#initialize variables
i = 0
n = 100000
r = 1.0
circle = 0.0
square = 0.0
Do many times:
while i < n:

i = i + 1
draw x, y coordinate
x = random.uniform(0.0,r)
y = random.uniform(0.0,r)
calculate d from center
d = math.sqrt(x**2 + y**2)
check whether d < r:
if d < r:

True: add 1 to circle
circle = circle + 1
False: do nothing

add 1 to square
square = square + 1

print pi: ratio circle/square * 4
print (“pi = “ + str(circle/square * 4.0))

Enter in file:

