Metropolis-Hastings Algorithm MCMC Seminar

Sachin Shanbhag

Department of Scientific Computing
Florida State University,
Tallahassee, FL 32306.

Fall 2014

Historical Notes

- 1970 paper generalized the original Metropolis algorithm to allow for non-symmetric proposal moves.
- From 1966 to 1971, Hastings was an Associate Professor in the Department of Mathematics at the University of Toronto.*

When I returned to the University of Toronto, after my time at Bell Labs, I focused on Monte Carlo methods and at first on methods of sampling from probability distributions with no particular area of application in mind. [University of Toronto Chemistry professor] John Valleau and his associates consulted me concerning their work. They were using Metropolis's method to estimate the mean energy of a system of particles in a defined potential field. With 6 coordinates per particle, a system of just 100 particles involved a dimension of 600 . When I learned how easy it was to generate samples from high dimensional distributions using Markov chains, I realised how important this was for Statistics, and I devoted all my time to this method and its variants which resulted in the 1970 paper.

- Wrote only 3 papers and a mentored a single graduate student.

[^0]
Detailed Balance

Given states i and j, the condition of detailed balance requires that "at equilibrium" the net traffic between the two states be equal:

$$
\begin{equation*}
\pi_{i} q_{i j} \alpha_{i j}=\pi_{j} q_{j i} \alpha_{j i} \tag{1}
\end{equation*}
$$

where,

- π_{i} is the probability of state i
- $q_{i j}$ is the probability of proposing a MC move from state i to state j (sometimes written as $q(j \mid i)$ or $q(i \rightarrow j)$).
- $\alpha_{i j}$ is the probability of accepting such a move.

The equation above implies:

$$
\begin{equation*}
\frac{\alpha_{i j}}{\alpha_{j i}}=\frac{\pi_{j} q_{j i}}{\pi_{i} q_{i j}}=r_{H} \tag{2}
\end{equation*}
$$

Metropolis

Proposals are symmetric:

$$
q_{i j}=q_{j i}
$$

Thus,

$$
\begin{equation*}
\frac{\alpha_{i j}}{\alpha_{j i}}=\frac{\pi_{j}}{\pi_{i}} \tag{3}
\end{equation*}
$$

There are many different ways in which can specify a form for $\alpha_{i j}$ so that it satisfies the equation above.
Metropolis and company suggested:

$$
\alpha_{i j}= \begin{cases}\frac{\pi_{j}}{\pi_{i}} & \text { if } \frac{\pi_{j}}{\pi_{i}}<1 \tag{4}\\ 1 & \text { otherwise }\end{cases}
$$

Let us check if this indeed satisfies eqn. 5.

Metropolis

Suppose $\pi_{j} / \pi_{i}<1$. Then, $\alpha_{i j}=\pi_{j} / \pi_{i}$ from eqn. 6. Since, $\pi_{i} / \pi_{j}>1, \alpha_{j i}=1$, again, according to eqn. 6. Hence,

$$
\begin{equation*}
\frac{\alpha_{i j}}{\alpha_{j i}}=\frac{\pi_{j} / \pi_{i}}{1} \tag{5}
\end{equation*}
$$

Checks out!

Metropolis

Suppose $\pi_{j} / \pi_{i}<1$. Then, $\alpha_{i j}=\pi_{j} / \pi_{i}$ from eqn. 6. Since, $\pi_{i} / \pi_{j}>1, \alpha_{j i}=1$, again, according to eqn. 6.

Hence,

$$
\begin{equation*}
\frac{\alpha_{i j}}{\alpha_{j i}}=\frac{\pi_{j} / \pi_{i}}{1} \tag{5}
\end{equation*}
$$

Checks out!
Hastings suggested what seems like a not so big change. He suggested, for $q_{i j} \neq q_{j i}$:

$$
\alpha_{i j}= \begin{cases}\frac{\pi_{j} q_{j i}}{\pi_{i} q_{i j}} & \text { if } \frac{\pi_{j} q_{j i}}{\pi_{i} q_{i j}}<1 \tag{6}\\ 1 & \text { otherwise }\end{cases}
$$

We can see that it satisfies eqn. 2, as required.

Example of Asymmetric Proposal

Suppose we want to sample a wide and asymmetric probability distribution like a log-normal distribution:

$$
\begin{equation*}
\pi(x ; \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{-\frac{(\ln x-\mu)^{2}}{2 \sigma^{2}}}, \quad x>0 \tag{7}
\end{equation*}
$$

Suppose, we set $\mu=2.0$, and $\sigma=0.75$.

[^0]: *http://probability.ca/hastings/

