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Some background on the program Geneland
Alexa R. Warwick and Peter Beerli

Abstract—A short overview of the theory used in the program
Geneland. This program uses a Bayesian model implemented
in a Markov chain Monte Carlo scheme and colored Poisson-
Voronoi tessellation to detect and locate genetic discontinuities
in a spatially explicit framework.

Index Terms—Voronoi tessellation, Spatial dependence,
Bayesian inference, Markov chain Monte Carlo, Landscape
genetics, Population structure

I. BACKGROUND

Although methods are available to investigate genetic di-
vergence, they often do not consider the spatial location for
each sample. To address this deficiency, the program Geneland
[Guillot et al., 2005] uses multi-locus, geo-referenced geno-
type data to investigate the spatial modeling of genetic discon-
tinuities. Specifically, the method (1) estimates the number
of populations within the geographical area of interest, (2)
maps borders between populations, (3) assigns individuals to
populations, and (4) detects possible migrants. Furthermore, it
can be used to analyze phenotypic and genotypic data under
a consistent framework and address how well divergence in
neutral loci predicts phenotypic trait divergence [see example
in Guillot et al., 2012].

II. OVERALL MODEL

Geneland is based on a statistical model, not an explicit evo-
lutionary model. The basic model assumes Hardy-Weinberg
equilibrium within populations and linkage equilibrium be-
tween loci within populations. It also assumes that clusters are
genotypic/phenotypic homogeneous. These similarities within
clusters are the result of shared history, which is inferred from
the allele frequencies (or means and variances of phenotypic
traits, but we focus on genetic data in this overview).

III. VORONOI TESSELLATION

Within a geographical region of interest (∆), each sam-
pled individual (total = n diploid individuals) has a two-
dimensional spatial location ti = {x, y} (vector of coordinates,
t = (tij)i=1...n) and some genetic marker data (vector of all
genotypes, z = (zij)i=1...n), where L indicates the genotype
for each locus (l = 1, ..., L).

Across the region of interest, we consider K different pop-
ulations present, and each population occupies a subdomain
∆1... ∆K . By splitting up space into these subdomains, the
program co-estimates the value of K and allele frequencies. It
assumes that each subdomain can be approximated by a union
of convex polygons. Because we do not know where these
non-overlapping polygons should be placed, the model uses
a random number of points (m) that are scattered across the
landscape under a uniform distribution. Each of these random

points (u1, ..., um) is then the nucleus for the non-overlapping
convex polygon. Sampling points that are located within a
particular polygon belong to that particular nucleus. If we
assume that each polygon (Ai) contains individuals from a
single population we can then label the polygons with a value
between 1 and K.

The process of generating polygons via a random number
and placement of points (nuclei) is Poisson-Voronoi tessella-
tion (Poisson process generates the random number of nuclei
ui). For any point, x, in the geographical region of interest
(∆), c(x) is the population of its closest nucleus. As a
result, the domain is colored by population and the model is
therefore often called colored Voronoi tiling. If we assume all
populations have equal probability a priori, then each tile in
∆ has a 1/K probability of belonging to a certain population.
Because the amount of spatial dependence is contingent on
the fragmentation of the subdomains, the model includes a
parameter λ for the rate of the Poisson process which controls
the number of nuclei and therefore the number of polygons.
Low values of λ have fewer fragments and greater spatial
dependence; high values have more fragments and weaker
spatial dependence (see Figure 1).
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At very high λ, with many points m, each tile would only
have a single sampled individual and is simply a non-spatial
cluster model [independent identically distributed mixture
model like the program Structure; Pritchard et al., 2000].

IV. FREQUENCIES MODEL

For each new configuration of polygons, the allele frequen-
cies need to be recalculated. If allele frequencies follow an
independent Dirichlet distribution then it is called the D-model
(or spatial D-model):

Fkl ∼ Dirichlet(α, ..., α), k = 1, ...,K, l = 1, ..., L

where f denotes the vector containing the allele frequencies of
each allele at locus l in population k. This model is biological
realistic under the neutral theory of mutations, but it does
not take into account that different allele frequencies of the
populations tend to be alike. In contrast, the F-model [Falush
et al., 2003] takes into account both the present population
and a hypothetical ancestral population when determining
allele frequencies. The F-model also includes a parameter
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for divergence of the present population (from the ancestral
population) as the result of genetic drift (d1 ... dK), as shown
here:

fkl ∼ Dirichlet(fAl1
1− dk
dk

, fAl2
1− dk
dk

, ..., fAlJl
1− dk
dk

),

k = 1, ...,K, l = 1, ..., L (1)

for each allele 1, 2, ..., Jl in every locus.

V. BAYESIAN INFERENCE

For the Bayesian model, we now have a set of observ-
ables (genotypes z; coordinates t) and non-observables, which
random variables with a distribution, for which we need to
definepriors. These unknown parameters are denoted by the
following vector (θ):

θ = (K,λ,m, u, c, d, f, fA, s)

with

• Spatial parameters: λ, m, u, c
• Genetic parameters: f, fA, d
• Phenotypic parameters: µ, σ, β (not shown in full model

here)

Each of these spatial and genetic parameters and their prior
distributions are defined here:

• K = number of population (sampled from a uniform
distribution from Kmin, Kmax)

• λ = rate of Poisson process generating m nuclei; since
we do not really know λ we define a hyper prior drawn
from a uniform (0, λ max)

• u = events/points/nuclei of the Poisson process
• c = color of the tiles (membership of the partitioned

subdomains; sampled from a uniform distribution)
• f = current population frequency of an allele at a locus

in a particular cluster
• fA = ancestral population frequency of an allele at locus

in a particular cluster
• d = drift constant
• s = true individual location (ti = si + εi, using a normal

distribution for the error ε)

To infer the unknown parameters θ a Markov chain Monte
Carlo method is used. Guillot et al. [2005] calculates the
likelihood of the observed values (t, z) as

P (t, z|Θ) = P (t|Θ)P (z|t,Θ) (2)

= P (t|Θ)

n∏
i

L∏
l

P (zil|Θ), (3)

P (zil|Θ) = P (zil = (α, β)|Θ)

{
2fklαfklβ if α 6= β

f2klα if α ≡ β.
(4)

where fkl. is the population allele frequency of the alleles α
and β at locus l seen in the sampled individuals.

VI. OTHER ASSUMPTIONS

The sampling of individuals across the region of interest is
likely problematic when tightly clustered rather than dispersed.
Also, the model assumes no repeat sampling (repeated indi-
viduals over multiple coordiantes because of non-stationarity
over time). Each individual must belong to one K cluster.
The current version of Geneland also does not make use of
the heterozygote information.
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VII. DISCLAIMER

This text was written by Alexa R. Warwick and Pe-
ter Beerli, Florida State University for a course on prac-
tical population genetics inference, Fall 2015. These notes
are licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter
to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.


