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Some background on the program ∂a∂i
Desiree Harpel and Peter Beerli

The program ∂a∂i estimates complex population models
using the allele frequency spectrum (AFS) of a sample of
individuals from one or several location. The methods needs a
large amount of data. It is based on an diffusion approximation
of the population genetic model.

I. ALLELE FREQUENCY SPECTRUM

Lets assume we have this data (Table I, left panel). We can
calculate the site frequency spectrum for the whole population
(1-D spectrum) or we can calculate the joint frequency spec-
trum (2-D, Table I, right panel), with n populations this will
be come more and more cumbersome because we will need
to fill in values into an n-dimensional hypercube.

Without many markers the site frequency spectrum is rather
empty and non-informative, but with with large contiguous
genomic data the method becomes powerful. The site fre-
quency spectrum needs to be oriented, if we have an ancestral
sequence or an outgroup then we can know the ancestral alleles
at each locus, then the site frequency spectrum records the
frequency of the derived allele. Often we do not know the
ancestral allele, in these cases ∂a∂i allows to use the folded
AFS where it is assumed that the rare allele at a particular
locus is the derived allele.

II. MARKOV PROCESS

We can think of a process fj(t) that generates the expected
number of loci at which a derived allele is found on chro-
mosome j at time t where we have 1 ≤ j ≤ 2N where N
is the number if diploid individuals. We expect that with a
mutation process and with a propagation of genetic material
through offspring that the state will eventuall change, this can
be expressed in a recurrence equation

fj(t+ 1) =

2N∑
i=1

P (j|i)fi(t) + µj(t) with 1 ≤ j ≤ 2N

(1)

then explains the change of the states through time, we assume
that µ is the mutation process. When we assume that the
populations behaves like a Wright-Fisher population then
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This process does not have any memory; it only remembers the
last state and uses that to generate a new state; such processes
form Markov chains. These recurrence equations are often
simplified using a diffusion approximation.

III. DIFFUSION APPROXIMATION

A common theme is to take the recurrence equation and
assume that the change is independent of the t and that
the change is drawn from a Normal distribution with some
standard deviation, we can then write

X(t+ ∆t) = X(t) + ∆X (3)
∆X ∼M(X, t) (4)

with variance σ(X, t)

X(t+ ∆t) = X(t) +M(X, t)∆t+ σ(X, t)ε
√

∆t (5)

with ε as the error of a standard normal; this leads to a new
expression of ∆X , if we make this very small it becomes the
differential

dXa = M(X, t)dt+

K∑
σab(X, t)dW b (6)

which leads to

dXa

dt
= M(X, t) +

K∑
σab(X, t)

dW b

dt
(7)

Applying now this recipe to our population genetics frame-
work we get the master formula ∂a∂i uses:
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(8)

where φ is the AFS augmented by the time φ(x1, x2, ..., xP , t).

This partial derivate equation can be solved numerically for
a particular population model. The Formula 8 shows parame-
ters for the effective population size vi = Ni/Nref, selection
coefficient γi = si/Nref, and migration Mi←j = Nrefmi←j .
The python module dadi has functions to handle population
growth, immigration, population size and selection. Thus one
can assemble bottleneck models with growth with divergence
and migration: very complex models indeed.

The PDE is solved by finite differences method, this is
considered a crude method by scientific computing standards
but usually works well. The key for the analysis is not solving
the PDE but comparing the expected site frequency spectrum
given the population model with the observed site frequency
spectrum.
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Table I
An example single nucleotide polymorphism data set and the site frequency spectra. Left: raw data. Middle: 1-D site frequency spectrum. Right:
2-D Joint frequency spectrumThe Occurrences record how often a particular site pattern was seen in the data. The Pattern reflects a particular
pattern, such as 1 means 1 chromosome is different at a particular sites from all others, 2 means that two are different. The numbers reflect the

derived allele if an outgroup is available, otherwise it is the rarer allele.

Individual name SNPs

0-1 ATAGACG
0-2 ACGGACG
0-3 ACAGAAG
0-4 GCGGACC
1-1 GCATTCC
1-2 GTATTCC
1-3 GCATACC
1-4 ACATACC

Patterns Occurences

0 0
1 1
2 3
3 1
4 2
5 0
6 0
7 0
8 0

Patterns in Population 2
Patterns in Pop 1 0 1 2 3 4 5 6 7 0

0 1 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0

IV. LIKELIHOOD CALCULATION

To simplify the analysis Gutenkunst et al. [2009] assumes
that all loci in the spectrum are independent, this allows to
calculate a likelihood where we assume that every entry in the
AFS represents a success. This allows to phrase the likelihoods
in terms of Poisson variables. So for example the probability

of seeing 5 successes with a mean success of 3 is

P (x;µ) =
e−µµx

x!
=
e−33−5

5!
= 0.100819 (9)

replacing x with the observed site frequency spectrum
S(d1, ..., dP ) and also replacing µ with the expected frequency
spectrum using the population model M we can write the
likelihood for each part and the total likelihood P (S|Θ)

P (S(d1, ..., dP );M(d1, ..., dP )) =
e−M(d1,...,dP )M(d1, ..., dP )S(d1,...dP )

S(d1, ...dP )!
(10)

P (S|Θ) =

P∏
i=1

ni∏
di=0

P (S(d1, ...dP )|M(d1, ..., dP )) (11)

This leaves now to explain M(d1, ..., dP ) which is simply
taking the average of all AFS values calculated by the PDE for
a particular set of parameters Θ, M is calculated as the integral
over all entries in the site frequency spectrum [details see in
Gutenkunst et al., 2009]. This P (S|Θ) (or equivalently written
L(Θ|S)) is a ‘Composite’ likelihood because we assume inde-
pendence between loci despite knowing that this is not correct.
We treat each SNP as locus this allows to simply multiply the
probabilities of all the sites without considering the covariance
structure among the loci. This pretends that each locus has full
information whereas linkage disequilibrium will force loci to
covary: two loci that are completely linked have the same
information as one. Usually composite likelihoods are much
faster and easier to calculate than the correct likelihood, but
still deliver the same or similar maximum of the function
to optimize. Composite likelihood falls short to describe the
confidence interval correctly and delivers commonly to narrow
confidence limits.

V. CONFIDENCE INTERVALS

Confidence intervals can be calculated in three different
ways with ∂a∂i. The Fisher information (using the second
derivative) assumes that all loci are independent. Use of
the Godambe matrix that can take into account correlations,
and parametric boostrap. The parametric bootstrap uses the
simulation program MS [Hudson, 2002] to generate samples

using the population model parameters Θ. ∂a∂i has functions
that can run many of these simulations and convert the results
into site frequency spectra that than can be used to generate
a Null distribution, the observed distribution should be in the
center and not the tails of this distribution to suggest that the
parameters represent a good interpretation of the data.
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VI. DISCLAIMER

This text was written by Desiree Harpel and Peter
Beerli, Florida State University for a course on practi-
cal population genetics inference, Fall 2015. These notes
are licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter
to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.


