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Accidental Algorithms

Brian Hayes

Why are some computational 
problems so hard and others 

easy? This may sound like a childish, 
whining question, to be dismissed with 
a shrug or a wisecrack, but if you dress 
it up in the fancy jargon of computation-
al complexity theory, it becomes quite 
a serious and grownup question: Is P 
equal to NP? An answer—accompanied 
by a proof—will get you a million bucks 
from the Clay Mathematics Institute.

I’ll return in a moment to P and NP, 
but first an example, which offers a 
glimpse of the mystery lurking beneath 
the surface of hard and easy problems. 
Consider a mathematical graph, a col-
lection of vertices (represented by dots) 
and edges (lines that connect the dots). 
Here’s a nicely symmetrical example:

Is it possible to construct a path that 
traverses each edge exactly once and 
returns to the starting point? For any 
graph with a finite number of edges, 
we could answer such a question by 
brute force: Simply list all possible 
paths and check to see whether any of 
them meet the stated conditions. But 
there’s a better way. In 1736 Leonhard 
Euler proved that the desired path 
(now called an Eulerian circuit) exists 
if and only if every vertex is the end 
point of an even number of edges. We 
can check whether a graph has this 
property without any laborious enu-
meration of pathways.

Now take the same graph and ask 
a slightly different question: Is there a 
circuit that passes through every vertex 

exactly once? This problem was posed 
in 1858 by William Rowan Hamilton, 
and the path is called a Hamiltonian 
circuit. Again we can get the answer 
by brute force. But in this case there is 
no trick like Euler’s; no one knows any 
method that gives the correct answer 
for all graphs and does so substantially 
quicker than exhaustive search. Super-
ficially, the two problems look almost 
identical, but Hamilton’s version is far 
harder. Why? Is it because no shortcut 
solution exists, or have we not yet been 
clever enough to find one?

Most computer scientists and math-
ematicians believe that Hamilton’s 
problem really is harder, and no short-
cut algorithm will ever be found—but 
that’s just a conjecture, supported by 
experience and intuition but not by 
proof. Contrarians argue that we’ve 
hardly begun to explore the space of 
all possible algorithms, and new prob-
lem-solving techniques could turn up 
at any time. Before 1736, the Eulerian-
circuit problem also looked hard.

What prompts me to write on this 
theme is a new and wholly unexpected 
family of algorithms that provide ef-
ficient methods for several problems 
that previously had only brute-force 
solutions. The algorithms were invent-
ed by Leslie G. Valiant of Harvard Uni-
versity, with extensive further contri-
butions by Jin-Yi Cai of the University 
of Wisconsin. Valiant named the meth-
ods “holographic algorithms,” but he 

also refers to them as “accidental algo-
rithms,” emphasizing their capricious, 
rabbit-from-the-hat quality; they seem 
to pluck answers from a tangle of un-
likely coincidences and cancellations. 
I am reminded of the famous Sidney 
Harris cartoon in which a long series 
of equations on a blackboard hinges on 
the notation “Then a miracle occurs.”

The Coffee-Break Criterion
For most of us, the boundary between 
fast and slow computations is clearly 
marked: A computation is slow if it’s 
not finished when you come back 
from a coffee break. Computer science 
formalizes this definition in terms of 
polynomial-time and exponential-time 
algorithms.

Suppose you are running a comput-
er program whose input is a list of n 
numbers. The program might be sort-
ing the numbers, or finding their great-
est common divisor, or generating per-
mutations of them. No matter what the 
task, the running time of the program 
will likely depend in some way on n, 
the length of the list (or, more precisely, 
on the total number of bits needed to 
represent the numbers). Perhaps the 
time needed to process n items grows 
as n2. Thus as n increases from 10 to 20 
to 30, the running time rises from 100 
to 400 to 900. Now consider a program 
whose running time is equal to 2n. In 
this case, as the size of the input grows 
from 10 to 20 to 30, the running time 
leaps from a thousand to a million to 
a billion. You’re going to be drinking a 
lot of coffee.

The function n2 is an example of a 
polynomial; 2n denotes an exponential. 
The distinction between these catego-
ries of functions marks the great divide 
of computational complexity theory. 
Roughly speaking, polynomial algo-
rithms are fast and efficient; exponen-
tial algorithms are too slow to bother 
with. To speak a little less roughly: 
When n becomes large enough, any 
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polynomial-time program is faster 
than any exponential-time program.

So much for the classification of al-
gorithms. What about classifying the 
problems that the algorithms are sup-
posed to solve? For any given prob-
lem, there might be many different al-
gorithms, some faster than others. The 
custom is to rate a problem according 
to the worst-case performance of the 
best algorithm. The class known as P 
includes all problems that have at least 

one polynomial-time algorithm. The 
algorithm has to give the right answer 
and has to run in polynomial time on 
every instance of the problem.

Classifying problems for which we 
don’t know a polynomial-time algo-
rithm is where it gets tricky. In the first 
place, there are some problems that 
require exponential running time for 
reasons that aren’t very interesting. 
Think about a program to generate all 
subsets of a set of n items; the compu-
tation is easy, but because there are 2n 
subsets, just writing down the answer 
will take an exponential amount of 
time. To avoid such issues, complex-
ity theory focuses on problems with 
short answers. Decision problems ask 
a yes-or-no question (“Does the graph 
have a Hamiltonian circuit?”). There 
are also counting problems (“How 
many Hamiltonian circuits does the 
graph have?”). Problems of these 
kinds might conceivably have a poly-
nomial-time solution, and we know 
that some of them do. The big question 
is whether all of them do. If not, what 
distinguishes the easy problems from 
the hard ones?

Conscientious Cheating
The letters NP might well be translated 
“notorious problems,” but the abbrevi-
ation actually stands for “nondetermin-
istic polynomial.” The term refers to a 
hypothetical computing machine that 
can solve problems through systematic 
guesswork. For the problems in NP, 
you may or may not be able to com-

pute an answer in polynomial time, but 
if you happen to guess the answer, or if 
someone whispers it in your ear, then 
you can quickly verify its correctness. 
NP is the complexity class for conscien-
tious cheaters—students who don’t do 
their own homework but who at least 
check their cribbed answers before they 
turn them in.

Detecting a Hamiltonian circuit is 
one example of a problem in NP. Even 
though I don’t know how to solve the 
problem efficiently for all graphs, if 
you show me a purported Hamiltoni-
an circuit, I can readily check whether 
it passes through every vertex once:

(Note that this verification scheme 
works only when the answer to the 
decision problem is “yes.” If you claim 
that a graph doesn’t have a Hamilto-
nian circuit, the only way to prove it is 
to enumerate all possible paths.)

 Within the class NP dwells the 
elite group of problems labeled NP-
 complete. They have an extraordinary 
property: If any one of these problems 
has a polynomial-time solution, then 
that method can be adapted to quick-
ly solve all problems in NP (both the 
complete ones and the rest). In other 
words, such an algorithm would es-
tablish that P = NP. The two categories 
would merge.

The very concept of NP-complete-
ness has a whiff of the miraculous 
about it. How can you possibly be sure 
that a solution to one problem will 
work for every other problem in NP as 
well? After all, you can’t even know in 
advance what all those problems are. 
The answer is so curious and improb-
able that it’s worth a brief digression. 

The first proof of NP-completeness, 
published in 1971 by Stephen A. Cook 
of the University of Toronto, concerns 
a problem called satisfiability. You are 
given a formula in Boolean logic, con-
structed from a set of variables, each 
of which can take on the values true or 
false, and the logical connectives and, 
or and not. The decision problem 
asks: Is there a way of assigning true 
and false values to the variables that 
makes the entire formula true? With n 
variables there are 2n possible assign-
ments, so the brute-force approach is 
exponential and unappealing. But a 

The perfect-matching problem pairs up the vertices of a mathematical graph. The number of 
possible matchings grows exponentially with the size of the graph; nevertheless, the match-
ings can be counted in polynomial time on a planar graph (one without crossed edges). The 
problem was first studied on graphs with a periodic structure, such as the rectilinear grid at 
left, but the algorithm also works on less-regular planar graphs, such as the one in the middle. 
The graph at right is nonplanar, and its perfect matchings cannot be counted quickly. 

Polynomial and exponential functions define 
the poles of computational efficiency. The 
running time of an algorithm is measured as 
a function of the size of the input, n. If the 
function is a polynomial one, such as n or 
n2, the algorithm is considered efficient; an 
exponential growth rate, such as 2n, makes 
the algorithm impractically slow. 
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lucky guess is easily verified, so the 
problem qualifies as a member of NP.

Cook’s proof of NP-completeness is 
beautiful in its conception and a sham-
bling Rube Goldberg contraption in its 
details. The key insight is that Bool-
ean formulas can describe the circuits 
and operations of a computer. Cook 
showed how to write an intricate for-
mula that encodes the entire operation 
of a computer executing a program 
to guess a solution and check its cor-
rectness. If and only if the Boolean 
formula has a satisfying assignment, 
the simulated computer program suc-
ceeds. Thus if you could determine in 
polynomial time whether or not any 
Boolean formula is satisfiable, you 
could also solve the encoded decision 
problem. The proof doesn’t depend 
on the details of that problem, only on 
the fact that it has a polynomial-time 
checking procedure.

Thousands of problems are now 
known to be NP-complete. They form 
a vast fabric of interdependent compu-
tations. Either all of them are hard, or 
everything in NP is easy.

The Match Game
To understand the new holographic 
algorithms, we need one more ingredi-
ent from graph theory: the idea of a 
perfect matching.

Consider the double-feature festi-
val. You want to show movies in pairs, 
with the proviso that any two films 
scheduled together should have a per-
former in common; also, no film can 
be screened more than once. These 
constraints lead to a graph where the 
vertices are film titles, and two titles 
are connected by an edge if the films 
share an actor. The task is to identify 
a set of edges linking each vertex to 
exactly one other vertex. The brute-
force method of trying all possible 
matchings is exponential, but if you 
are given a candidate solution, you can 
efficiently verify its correctness: 

Thus the perfect-matching problem 
lies in NP.

In the 1960s Jack Edmonds, now of 
the University of Waterloo, devised an 
efficient algorithm that finds a perfect 
matching if there is one. The Edmonds 
algorithm works in polynomial time, 

which means the decision problem for 
perfect matching is in P. (Indeed, Ed-
monds’s 1965 paper includes the first 
published discussion of the distinction 
between polynomial and exponential 
algorithms.) 

Another success story among match-
ing methods applies only to planar 
graphs—those that can be drawn with-
out crossed edges. On a planar graph 
you can efficiently solve not only the 
decision problem for perfect matching 
but also the counting problem—that is, 
you can learn how many different sub-
sets of edges yield a perfect matching. 
In general, counting problems seem 
more difficult than decision problems, 
since the solution conveys more infor-
mation. The main complexity class for 
counting problems is called #P (pro-
nounced “sharp P”); it includes NP 
as a subset, so #P problems must be at 
least as hard as NP.

The problem of counting planar per-
fect matchings has its roots in phys-
ics and chemistry, where the original 
question was: If diatomic molecules 
are adsorbed on a surface, forming a 
single layer, how many ways can they 
be arranged? Another version asks 
how many ways dominos (2-by-1 rect-
angles) can be placed on a chessboard 
without gaps or overlaps. The answers 
exhibit clear signs of exponential 
growth; when you arrange dominos 
on square boards of size 2, 4, 6 and 8, 
the number of distinct tilings is 2, 36, 
6,728 and 12,988,816. Given this rapid 
proliferation, it seems quite remark-
able that a polynomial-time algorithm 
can count the configurations. The in-
genious method was developed in the 
early 1960s by Pieter W. Kasteleyn and, 
independently, Michael E. Fisher and 
H. N. V. Temperley. It has come to be 
known as the FKT algorithm. 

The mathematics behind the FKT al-
gorithm takes some explaining. In out-
line, the idea is to encode the structure 
of an n-vertex graph in an n-by-n ma-
trix; then the number of perfect match-
ings is given by an easily computed 
property of the matrix. The illustration 
on this page shows how the graph is 
represented in matrix form.

The computation performed on the 
matrix is essentially the evaluation of a 
determinant. By definition, a determi-
nant is a sum of n! terms, where each 
term is a product of n elements chosen 
from the matrix. The symbol n! denotes 
the factorial of n, or in other words 
n×(n–1)× . . .×3×2×1. The trouble is, 

n! is not a polynomial function of n; it 
qualifies as an exponential. Thus, un-
der the rules of complexity theory, the 
whole scheme is really no better than 
the brute-force enumeration of all per-
fect matchings. But this is where the 
rabbit comes out of the hat. There are 
alternative algorithms for computing 
determinants that do achieve polyno-
mial performance; the best-known ex-
ample is the technique called Gaussian 
elimination. With these methods, all 
but a polynomial number of terms in 
that giant summation magically cancel 
out. We never have to compute them, 
or even look at them.

(The answer sought in the perfect-
matching problem is actually not the 
determinant but a related quantity 
called the Pfaffian. However, the Pfaf-
fian is equal to the square root of the 
determinant, and so the computational 
procedure is essentially the same.)

The existence of a shortcut for evalu-
ating determinants and Pfaffians is like 
a loophole in the tax code—a windfall 
for those who can take advantage of it, 
but you can only get away with such 
special privileges if you meet very 
stringent conditions. 

 Closely related to the determinant 
is another quantity associated with 

The fast algorithm for counting planar per-
fect matchings works by translating the 
problem into the language of matrices and 
linear algebra. The pattern of connections 
within the graph is encoded in an adjacency 
matrix—an array of numbers with rows and 
columns labeled by the vertices of the graph. 
If two vertices are joined by an edge, the cor-
responding element of the matrix is either +1 
or –1; otherwise the element is 0. Elements of 
the matrix are combined in a sum of products 
called the Pfaffian, which yields the number 
of perfect matchings. For the simple graph 
shown here there are two perfect matchings.
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matrices called the permanent. It’s 
another sum of n! products, but even 
simpler. For the determinant, a compli-
cated rule assigns positive and nega-
tive signs to the various terms of the 
summation. For the permanent, there’s 
no need to bother keeping track of the 
signs; they’re all positive. But the al-
ternation of signs is necessary for the 
cancellations that allow fast computa-
tion of determinants. As a result, the 
polynomial loophole doesn’t work for 
permanents. In 1979 Valiant showed 
that the calculation of permanents is 

#P-complete. (It was in this work that 
the class #P was first defined.)

At a higher level, too, the conspiracy 
of circumstances that allows perfect 
matchings to be counted in polynomial 
time seems rather delicate and sensi-
tive to details. The algorithm works 
only for planar graphs; attempts to ex-
tend it to larger families of graphs have 
failed. Even for planar graphs, it works 
only for perfect matchings; counting 
the total number of matchings is a #P-
complete task.

Algorithmic Holography
The engine that drives the FKT algo-
rithm is the linear-algebra shortcut for 
evaluating determinants (or Pfaffians) 
in polynomial time. This prime mover 
is harnessed to solve a counting prob-
lem in another area of mathematics, 
namely graph theory. Such translations, 
or “reductions,” from one problem to 
another are standard fare in complex-
ity theory. Holographic algorithms also 
rely on reductions, and indeed they 
ultimately translate problems into the 
language of determinants. But the na-
ture of the reductions is novel.

A typical non-holographic reduc-
tion is a one-to-one mapping between 
problems in two domains. If you can 
reduce problem A to problem B, and 
then find a solution to an instance of 
B, you know that the corresponding 
instance of A also has a solution. De-
vising transformations that set up this 
one-to-one linkage between problems 
is a demanding art form. Holographic 
reductions exploit a broader class of 
transformations that don’t necessarily 
link individual problem instances, but 
the reductions do preserve the number 
of solutions or the sum of the solu-

tions. For certain counting problems, 
that’s enough.

A problem with the cryptic name 
#PL-3-NAE-ICE supplies an example 
of the holographic process. The prob-
lem concerns a planar graph of maxi-
mum degree three; that is to say, no 
vertex has more than three edges. Each 
edge is to be assigned a direction, sub-
ject to the constraint that no vertex of 
degree two or three can have all of its 
edges directed either inward or out-
ward. Graphs of this general kind have 
been studied as models of the structure 
of ice; the vertices represent molecules 
and the directed edges are chemical 
bonds. The decision version of the 
problem asks whether the edges can be 
assigned directions so that the not-all-
equal constraint is obeyed everywhere. 
Here we are interested in the counting 
version, which asks how many ways 
the constraints can be satisfied.

The strategy is to build a new pla-
nar graph called a matchgrid, which 
encodes both the structure of the ice 
graph and the not-all-equal constraints 
that have to be satisfied at each vertex. 
Then we calculate a weighted sum of 
the perfect matchings in the match-
grid, using the efficient FKT algorithm. 
Although there may be no one-to-one 
mapping between individual match-
ings in the matchgrid and valid as-
signments of bond directions in the ice 
graph, the weighted sum of the perfect 
matchings is equal to the number of 
valid assignments.

The matchgrid is constructed from 
components called matchgates, which 
are planar graph fragments that act 
much like the logic gates of Boolean 
circuits. To understand how this com-
puter built of graphs works, it helps to 
consider first an idealized and simpli-
fied version, in which we can manu-
facture matchgates to meet any speci-
fications we please. 

Given such an unlimited stock of 
gates, we can assemble a model of PL-
3-NAE-ICE as follows. A degree-three 
vertex in the ice graph is represented 
by a “recognizer” matchgate with three 
inputs. The recognizer has a “signa-
ture” that implements the not-all-equal 
function: the gate is designed so that 
its contribution to the sum of the per-
fect matchings is 0 if the three inputs 
are 000 or 111, but the contribution is 1 
for any of the other six possible input 
patterns (001, 010, 011, 100, 101, 110). 

Each edge of the ice graph is repre-
sented in the matchgrid by a “genera-

Counting the configurations of a structure 
called three-ice is an example of a problem 
solved in polynomial time by a holograph-
ic algorithm. Three-ice is a directed graph 
(each edge has an arrow attached), and no 
more than three edges can meet at any vertex. 
Where two or three edges come together, the 
arrows must not all be either converging or 
diverging. One valid configuration is shown 
here; the algorithm computes the number of 
ways the arrows can be placed while satisfy-
ing the not-all-equal constraint.

Matchgates are graph-theory devices analogous to the logic gates of digital circuitry. The gate 
shown here implements the not-all-equal function for two inputs. It is a chain of five vertices 
connected by four edges; the orange exterior vertices accept the inputs. An input pattern is 
presented to the gate by removing an orange vertex for each 1 in the input, then checking the 
remaining graph to see if it accommodates a perfect matching. A 00 input removes neither or-
ange vertex; the resulting graph cannot have a perfect matching because it has an odd number 
of vertices. The inputs 01 and 10 each remove one vertex and thus do allow a perfect matching; 
the 11 input again leaves an odd number of vertices. Although the two-input not-all-equal gate 
is fairly simple, many other functions—including the analogous gate for three inputs—cannot 
be realized in this direct way.
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tor” matchgate that has two outputs, 
corresponding to the two ends of the 
edge. To capture the idea that an edge 
has a direction—pointing toward one 
end and away from the other—the 
generator contributes 1 to the weight-
ed sum when the outputs are either 
01 or 10, but the contribution is 0 for 
outputs 00 and 11.

In this scheme, the concept of per-
fect matching becomes a computa-
tional mechanism. If a graph fragment, 
packaged up as a matchgate, allows 
a perfect matching, then the gate out-
puts a logical 1, or true. If no perfect 
matching is possible, the output is 0, 
or false. This is a novel and interesting 
way to build a computer, but there’s a 
catch. Many of the needed matchgates 
cannot be implemented in the direct 
manner described above. In particu-
lar, the three-input not-all-equal gate 
cannot be implemented. The reason 
is easy to demonstrate. Perfect match-
ing is all about parity; a graph can-
not possibly have a perfect matching 
unless the number of vertices is even. 
The three-input not-all-equal gate is 
required to respond in the same way 
to the inputs 000 and 111. But these 
patterns have opposite parity; one is 
even and the other is odd. 

The remedy for this impediment is 
yet more linear algebra. Although no 
simple matchgate can directly imple-
ment the three-input not-all-equal 
function, the desired behavior can be 
generated as a linear superposition 
of other functions. Finding an appro-
priate set of equations to create such 
superpositions is the most essential 
and also the most difficult aspect of ap-
plying the holographic method. It has 
mostly been a hit-or-miss proposition, 
requiring both inspiration and expert 
use of computer-algebra systems. Cai 
and Pinyan Lu of Tsinghua University 
have recently made progress on sys-
tematizing the search process. 

So far about a dozen counting prob-
lems have been solved by the holo-
graphic method, none of them having 
any immediate practical use or conse-
quences for the further development 
of complexity theory. Indeed, they are 
an odd lot—apart from the ice prob-
lem they are mostly specialized and 
restricted versions of satisfiability and 
matching. One particularly curious re-
sult gives a fast algorithm for counting 
a certain set of solutions modulo 7, but 
counting the same set modulo 2 is at 
least as hard as NP-complete.

Why are the methods called holo-
graphic algorithms? Valiant explains 
that their computational power comes 
from the mutual cancellation of many 
contributions to a sum, as in the optical 
interference pattern that creates a ho-
logram. This sounds vaguely like the 
superposition principle in quantum 
computing, and that is not entirely a 
coincidence. Valiant’s first publication 
on the topic, in 2002, was titled “Quan-
tum circuits that can be simulated clas-
sically in polynomial time.”

P or NP, That Is the Question
Do holographic algorithms reveal any-
thing we didn’t already know about 
the P = NP question? Lest there be any 
misunderstanding, one point bears 
emphasizing: Although some of the 
problems solved by holographic meth-
ods were not previously known to be 
in P, none of them were NP-complete 
or #P-complete. Thus, so far, the bar-
rier between P and NP remains intact.

Suggesting that P might be equal 
to NP is deeply unfashionable. A few 
years ago William Gasarch of the Uni-
versity of Maryland took a poll on the 
question. Of 100 respondents, only nine 
stood on the side of P = NP, and Gas-
arch reported that some of them took 
the position “just to be contrary.” The 
idea that all NP problems have easy 
solutions seems too good to be true, an 
exercise in wishful thinking; it would 
be miraculous if we lived in a universe 
where computing is so effortless. But 
the miracle argument cuts both ways: 
For NP to remain aloof from P, we have 
to believe that not even one out of all 
those thousands of NP-complete prob-
lems has an efficient solution.

Valiant suggests a comparison with 
the Goldbach conjecture, which holds 
that every even number greater than 
2 is the sum of two primes. Nearly ev-
eryone believes it to be true, but in the 
absence of a proof, we don’t know why 
it should be true. We can’t rule out the 
possibility that exceptions exist but are 
so rare we haven’t stumbled on one 
yet. Likewise with the P and NP ques-
tion: A polynomial algorithm for just 
one NP-complete problem would for-
ever alter the landscape. 

The work on holographic algorithms 
doesn’t have to be seen as some sort 
of wildcat drilling expedition, hoping 
to strike a P = NP gusher. It would be 
worthwhile just to have a finer survey 
of the boundaries between complexity 
classes, showing more clearly what can 

and can’t be accomplished with polyno-
mial resources. Valiant writes that “any 
proof of P ≠ NP will need to explain, 
and not only to imply, the unsolvability 
of our polynomial systems.”

Finally, there’s the challenge of un-
derstanding the algorithms themselves 
at a deeper level. To call them “acci-
dental”—or “exotic,” or “freak,” which 
are other terms that turn up in the lit-
erature—suggests that they are sports 
of nature, like weird creatures found 
under a rock and put on exhibit. But 
one could also argue, on the contrary, 
that these algorithms are not at all ac-
cidental; they are highly engineered 
constructions. The elaborate systems 
of polynomials needed to create sets of 
matchgates are not something found 
in the primordial ooze of mathematics. 
Someone had to invent them.
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