

http://cs.brown.edu/~jak/proglang/cpp/stltut/tut.html

Templates — or why do we need them

20 float add(float a, float b) {

21 return a + b;

2

2t double add(double a, double b) {
25 return a + b;

26}

28 int add(int a, int b) {
29 return a + b;

}

« Every time I want to add two variables of a new type, I must write a new
add function

« This gets complicated very fast

class Stack {

public: more examples
float f[100];

int ptr;
Stack() { ptr = 0; }
void push(float g) { flptr] = g; ptr++; }
float pop() { ptr——; return flptrl; }
};

class Stack {
public:
int f[100];
int ptr;
Stack() { ptr = 0; }
void push(int g) { flptr] = g; ptr++; }
int pop() { ptr——; return flptrl; }

One can have stacks of things

These things can be ints, floats, doubles, strings, or other stacks.
How to handle all different types at the same time?

Use templates!

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

template <class T>T add(T a, T b)

{

in

{

return a + b;

t main()
printf("add(3,4)= %d\n", add(3,4));
printf("add(3.,4.)= %f\n", add(3.,4.));
printf("add(3.f,4.f)= %f\n", add(3.f,4.f));
//printf("add(3,4.)= %f\n", add(3,4.));
// NOT FOUND
//printf("add(3,4.)= %f\n", add(3,4.f));
// NOT FOUND
return 0;

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

template <class T>T add(T a, T b)

{
return a + b;
}
[/ = e e e e e e e e e e e e e e e e e e
int main()
{
printf("add(3,4)= %d\n", add(3,4));
printf("add(3.,4.)= %f\n", add(3.,4.));
printf("add(3.f,4.f)= %f\n", add(3.f,4.T));
//printf("add(3,4.)= %f\n", add(3,4.));
// NOT FOUND
//printf("add(3,4.)= %f\n", add(3,4.f));
// NOT FOUND
return 0;
}
[[=== e e e e e e e e e e e e e e e

nagal:programs>etl
add(3,4)= 7
add(3.,4.)= 7.000000
add(3.f,4.f)= 7.000000

#include <stdio.h>

template <class T>T add(T a, T b)
{

return a + b;

int main()

{
printf("add(3,4)= %d\n", add(3,4));
printf("add(3.,4.)= %f\n", add(3.,4.));
printf("add(3.f,4.f)= %f\n", add(3.f,4.f));
printf("add(3,4.)= %f\n", add(3,4.));
// NOT FOUND
printf("add(3,4.)= %f\n", add(3,4.f));
// NOT FOUND
return 0;

nagal:programs>g++ example_T1l.cpp -oetl
example_T1l.cpp:14:29: error: no matching function for call to 'add'
printf("add(3,4.)= %f\n", add(3,4.));
example_T1l.cpp:3:21: note: candidate template ignored: deduced conflicting types for
parameter 'T'
('int' vs. 'double')
template <class T>T add(T a, T b)

example_T1l.cpp:16:29: error: no matching function for call to 'add'
printf("add(3,4.)= %f\n", add(3,4.f));
example_T1l.cpp:3:21: note: candidate template ignored: deduced conflicting types for
parameter 'T'
('int' vs. 'float')
template <class T>T add(T a, T b)

2 errors generated. 6

In the previous code, the following functions were generated:

e add(int, int)
add(float, float)

add(double, double) Remedy
* but these were not! « template <class S, class T>
add(int, float) is not found Tadd(Sa, T b){....}
add(int, double) is not found . What type should function
add(double, float) is not found return?
 Not a good function,
although it will now handle
add(5, 5.) which it could
not previously
#include <stdio.h> nagal:programs>etl
add(3,4)= 7
template <class S, class T>T add(S a, T b) z3dd(3.,4.)= 7.000000
{ ’
add(3.f,4.f)= 7.00000
t b; d
y oA add(3,4.)= 7.000000
add(3,4.)= 7.000000

o NO U & WiN =

W NN NKNNNNNNNR R B e e e e e
©O OV O NO WV &S WNRPEPFOOUVODNO VI SO WNREOWY

#include <stdlib.h>
#include <iostream.h>

// a and b point to integers. c¢mp returns -1 if a is less than b,

// @ if they are equal, and 1 if a is greater than b.
inline int cmp (const void *a, const void xb)
{
int aa = x(int x)a;
int bb = x(int x)b;
return (aa < bb) ? -1 : (aa > bb) 2 1 : 0;
+

// Read a list of integers from stdin
// Sort (c library qgsort)
// Print the list

main (int argc, char xargv[])

{
const int size = 1000; // array of 1000 integers
int array [sizel;
int n = 0;
// read an integer into the n+l1l th element of array
while (cin >> array[n++]);
n——; // it got incremented once too many times

gsort (array, n, sizeof(int), cmp);

for (int 1 = 0; 1 < n; i++)
cout << array[i] << "\n";

Version 2: containers, iterators, algorithms

STL provides a number of container types, representing objects that
contain other objects. One of these containers is a class called vector that
behaves like an array, but can grow itself as necessary. One of the
operations on vector is push_back, which pushes an element onto the end
of the vector (growing it by one).

A vector contains a block of contiguous initialized elements -- if element
Index k has been initialized, then so have all the ones with indices less
than k.

A vector can be presized, supplying the size at construction, and you can
ask a vector how many elements it has with size. This is the logical
number of elements -- the number of elements up to the highest-indexed
one you have used. There is a also a notion of capacity -- the number of
elements the vector can hold before reallocating.

Let's read the elements and push them onto the end of a vector. This
removes the arbitrary limit on the number of elements that can be read.
Also, instead of using qsort, we will use the STL sort routine, one of the
many algorithms provided by STL. The sort routine is generic, in that it will
work on many different types of containers. The way this is done is by
having algorithms deal not with contairiers directly, but with

O OV O NOVUVT T W IN =

#import <vector>
#import <iostream> Take 2

int main ()
{
std::vector<int> v; // create an empty vector of integers
int input;
while (std::cin >> input) // while not end of file
v.push_back (input); // append to vector

sort(v.begin(), v.end()); //see slides about iterator]
int n = v.size():
for (int 1 = 0; i < n; i++)

std::cout << v[i] << "\n";
return 0;

11

lterators

Remember in Python:
An ITERABLE is:

e anything that can be looped over (i.e. you can loop over a string or file)

e anything that can appear on the right-side of a for-loop: for x in iterable: ...

e anything you can call with iter() have it return an ITERATOR: iter(obj)

e an object that defines __iter__ that returns a fresh ITERATOR, or it may havea _ getitem _
method suitable for indexed lookup.

An ITERATOR is:

e an object with state that remembers where it is during iteration

e anobject witha _ next_ method (Python 3; next before) that:
e returns the next value in the iteration

e updates the state to point at the next value
e signals when it is done by raising StopIteration

e an object that is self-iterable (meaning that it has an __iter_ method that returns self).

12

lterators provide a way of specifying a position in a container.

An iterator can be incremented or dereferenced, and two iterators can
be compared.

There is a special iterator value called "past-the-end".

You can ask a vector for an iterator that points to the first element with
the message begin. You can get a past-the-end iterator with the
message end. The code

vector<int> v;

// add some integers to v

vector::iterator il = v.begin();
= v.end();

vector::iterator i2

will create two iterators like this:

Operations like sort take two iterators to specify the source range. To get the
source elements, they increment and dereference the first iterator until it is equal
to the second iterator. Note that this is a semi-open range: it includes the start
but not the end.

Two vector iterators compare equal if they refer to the same element of the

same vector.

Incidentally, this is much faster than gsort; at least a factor of 20 on the
examples | tried. This is presumably due to the fact that comparisons are done
inline.

14

O NO v & W N -

e e T e o e e e
SN N O T UWUN = OV

#import <string>
#import <vector>
#import <algorithm>
#import <iostream>

int main ()

{

std::vector<int> v;

std::istream_iterator<int> start (std::cin);

std::istream_iterator<int> end;

std::back_insert_iterator<std::vector<int> > dest (v);

std::copy (start, end, dest);
std::sort(v.begin(), v.end());

std::copy (v.begin(), v.end(), std::ostream_iterator<int>(std::cout, "\n"));

return 0;

15

Take 3

In addition to iterating through containers, iterators can iterate over streams, either to
read elements or to write them.

An input stream like cin has the right functionality for an input iterator: it provides
access to a sequence of elements. The trouble is, it has the wrong interface for an
iterator: operations that use iterators expect to be able to increment them and
dereference them.

STL provides adaptors, types that transform the interface of other types. This is very
much how electrical adaptors work. One very useful adaptor is istream_iterator. This is
a template type (of course!); you parameterize it by the type of object you want to read
from the stream. In this case we want integers, so we would use an
istream_iterator<int>. Istream iterators are initialized by giving them a stream, and
thereafter, dereferencing the iterator reads an element from the stream, and
incrementing the iterator has no effect. An istream iterator that is created with the
default constructor has the past-the-end value, as does an iterator whose stream has
reached the end of file.

std::istream_iterator<int> start (std::cin);

iter = istream_iterator<ant> (cin)

~Ccin > Vv

ter++

{ . - |
Algonthm]' tor iter cin ul stdin
' |

T~ retunv

16

Aldl UL UUGUA VU AGVIG VLY VAVAIL1AAG/AAUVU 11140V VLAY VY LUL AL UVUldll Uil O Lllyub, YV & VV A4l ©HIUNG VA4IANG/ WJ A A d Vvtl_l

algorithm; this takes three iterators. The first two specify the source range, and the third specifies the
destination.

The names can get pretty messy, so make good use of typedefs. Iterators are actually parameterized
on two types; the second is a distance type, which I believe 1s really of use only on operating
systems with multiple memory models. Here 1s a typedef for an iterator that will read from a stream
of integers:

typedef istream iterator<int> istream iterator int;

So to copy from standard input into a vector, we can do this:

copy (lstream iterator int (cin), istream iterator int (),v.begin());

The first iterator will be incremented and read from until it 1s equal to the second iterator. The second
iterator 1s just created with the default constructor; this gives it the past-the-end value. The first
iterator will also have this value when the end of the stream is reached. Therefore the range specified
by these two iterators 1s from the current position in the input stream to the end of the stream.

There 1s a bit of a problem with the third iterator, though: if v does not have enough space to hold all
the elements, the iterator will run off the end, and we will dereference a past-the-end iterator (which
will cause a segfault).

17

What we really want is an iterator that will do insertion rather than overwriting. There is
an adaptor to do this, called back_insert_iterator. This type is parameterized by the
container type you want to insert into.

iter = back_inseri_iterator(v)

Iter++

ignored
Algorithm iter (0)
*iter = x v

So input 1s done like this:

typedef istream iterator<int> istream iterator int;

vector<int> v;

lstream iterator int start (cin);

lstream iterator int end;

back insert iterator<vector<int> > dest (v);

copy (start, end, dest);

18

ostream iterator is another adaptor; it provides output iterator functionality: assigning
to the dereferenced iterator will write the data out. The ostream iterator constructor takes
two arguments: the stream to use and the separator. It prints the separator between elements.

iter = ostream_iterator<int>(cout, "\n")

lter++

Algorithm iter
g "iter = X cout stdout

q cout << X << *\n"
v

#import <string>
#import <vector>
#import <algorithm>
#import <iostream>

int main ()

{
std::vector<int> v;
std::istream_iterator<int> start (std::cin);

O OO NO v & WIN =

el el el el el el e
NNV S WN RO

std::istream_iterator<int> end;
std::back_insert_iterator<std::vector<int> > dest (v);

std::copy (start, end, dest);
std::sort(v.begin(), v.end());
std::copy (v.begin(), v.end(), std::ostream_iterator<int>(std::cout, "\n"));

return 0;

19

Containers are objects that conceptually contain other objects. They use certain basic
properties of the objects (ability to copy, etc.) but otherwise do not depend on the type
of object they contain.

STL containers may contain pointers to objects, though in this case you will need to do
a little extra work.

vectors, lists, deques, sets, multisets, maps, multimaps, queues, stacks, and priority
queues, did | miss any? are all provided.

Perhaps more importantly, built-in containers (C arrays) and user-defined containers
can also be used as STL containers; this is generally useful when applying operations
to the containers, e.g., sorting a container. Using user-defined types as STL containers
can be accomplished by satisfying the requirements listed in the STL container
requirements definition.

I this is not feasible, you can define an adaptor class that changes the interface to
satisfy the requirements.

All the types are "templated", of course, so you can have a vector of ints or Windows or
a vector of vector of sets of multimaps of strings to Students. Sweat, compiler-writers,
sweat!

To give you a brief idea of the containers that are available, here is the hierarchy:

20

STL containers

container

Bgn
N\
‘ vector \ list | deque \ set map

]

21

Sequences
Contiguous blocks of objects; you can insert elements at any point in the sequence, but the
performance will depend on the type of sequence and where you are inserting.

Vectors
Fast insertion at end, and allow random access.

Lists
Fast insertion anywhere, but provide only sequential access.

Deques
Fast insertion at either end, and allow random access. Restricted types, such as stack and queue,
are built from these using adaptors.

Stacks and queues
Provide restricted versions of these types, in which some operations are not allowed.

22

o o N & W

10
11
12
13
14
15
16

Examples using containers
Here 1s a program that generates a random permutation of the first n integers, where n is
specified on the command line.

Wimport <string>
#import <vector>
#import <algorithm>
#import <iostream>

int main (int argc, char xargvl[])

{

int n = atoi (argv[1]); // argument checking removed for clarity

std::vector<int> v;

for (int 1 = 0; i < n; i++) // append integers @ to n-1 to v
v.push_back (1i);

std:: random_shuffle (v.begin(), v.end()); // shuffle
std::copy (v.begin(), v.end(), std::ostream_iterator<int> (std::cout, "\n")); // print

This program creates an empty vector and fills it with the integers from O to n. It then shuffles
the vector and prints it out.

23

Generators

Algorithms like generate walk through a range, calling a function object at each step, and
assigning the result of the function to the current element.

For example, here 1s a function that always returns 0O:
int zero() { return 0; }

To fill a vector with zeroes, one could use the algorithm generate with the function object
ZEro:

vector<int> v (100);
generate (v.begin(), v.end(), zero);

24

Predicates

The second type of function object is used to test things; the parenthesis operator will be defined
to return something that can be tested for truth.

find 1if uses afunction object to test each element of a range, returning an iterator pointing to
the first element that satisfies the test. In this case, the function object takes an argument, the
element of the range, and returns a boolean:

bool greaterThanZero (int 1) return 1 > 0;
This could be used to move to the first strictly positive element of a range:

typedef vector<int>::iterator iterator;
typedef vector<int> vector;
typedef ostream iterator<int> output;
vector v;
iterator iter = find if (v.begin(), v.end(), greaterThanZero);
i1f (iter == v.end())
cout << "no elements greater than zero" << endl;
else
{
cout << "elements starting from first greater than zero: ";
copy (iter, v.end(), output (cout, " "));

25

Again, 1t 1s often useful to be able to provide state in the predicate object. Here 1s a predicate that
tests true if the element 1s within a specified range:
class InRange
{
const T& low;
const T& high;
public:
InRange (const T& 1, const T& h) : low (1), high (h) { }
bool operator()(const T& t) { return ! (t < 1) && t < h; }
}i
Here we find, and print, all the elements of a vector that fall within a particular range:
typedef vector<int>::iterator iterator;
typedef vector<int> vector;
typedef ostream iterator<int> output;

vector v (100);
generate (v.begin(), v.end(), rand);

iterator iter (v);

while (iter != v.end())

{
iter = find (v.begin(), v.end(), InRange (0, 10000));
cout << *jiter << endl;

} 26

Iterators:
begin
end
rbegin
rend

cbegin

cend

crbegin <

crend
Capacity:

size

max_size

resize

capacity

empty

reserve

shrink_to_fit <

For example functions in VECTOR class

Return iterator to beginning (public member function)

Return iterator to end (public member function)

Return reverse iterator to reverse beginning (public member function)
Return reverse iterator to reverse end (public member function)

Return const_iterator to beginning (public member function)

Return const_iterator to end (public member function)

Return const_reverse_iterator to reverse beginning (public member function)

Return const_reverse_iterator to reverse end (public member function)

Return size (public member function)

Return maximum size (public member function)

Change size (public member function)

Return size of allocated storage capacity (public member function)

Test whether vector is empty (public member function)
Element access:

Request a change in capacity (p
Shrink to fit (public member func

operator|[]
at

front

back

data <

Modifiers:

assign
push_back
pop_back

insert

erase

swap

clear

emplace ¢
emplace_back

Access element (public member function)
Access element (public member function)
Access first element (public member function)
Access last element (public member function)
Access data (public member function)

Assign vector content (public member function)

Add element at the end (public member function)
Delete last element (public member function)

Insert elements (public member function)

Erase elements (public member function)

Swap content (public member function)

Clear content (public member function)

Construct and insert element (public member function)

Construct and insert element at the end (public member function)

<algorithm> <algor

Standard Template Library: Algorithms

The header <algorithm> defines a collection of functions especially designed to be used on ranges of elements.

A range is any sequence of objects that can be accessed through iterators or pointers, such as an array or an inst
of some of the STL containers. Notice though, that algorithms operate through iterators directly on the values, no
affecting in any way the structure of any possible container (it never affects the size or storage allocation of the
container).

Functions in <algorithm>
Non-modifying sequence operations:

all_of <
any_of
none_of ¢
for_each

find

find_if
find_if _not ¢
find_end
find_first_of
adjacent_find
count
count_if

Test condition on all elements in range (function template)

Test if any element in range fulfills condition (function template)

Test if no elements fulfill condition (function template)

Apply function to range (function template)

Find value in range (function template)

Find element in range (function template)

Find element in range (negative condition) (function template)

Find last subsequence in range (function template)

Find element from set in range (function template)

Find equal adjacent elements in range (function template)

Count appearances of value in range (function template)

Return number of elements in range satisfying condition (function template)
28 o

