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Stochastic Relaxation, Gibbs Distributions, and 
the Bayesian Restoration of Images 

STUART GEMAN AND DONALD GEMAN 

Abstract-We make an analogy between images and statistical me­
chanics systems. Pixel gray levels and the presence and orientation of 
edges are viewed as states of atoms or molecules in a lattice-like phys­
ical system. The assignment of an energy function in the physical sys­
tem determines its Gibbs distribution. Because of the Gibbs distribu­
tion, Markov random field (MRF) equivalence, this assignment also 
determines an MRF image model. The energy function is a more conve­
nient and natural mechanism for embodying picture attributes than are 
the local characteristics of the MRF. For a range of degradation mecha­
nisms, including blurring, nonlinear deformations, and multiplicative or 
additive noise, the posterior distribution is an MRF with a structure 
akin to the image model. By the analogy, the posterior distribution de­
fines another (imaginary) physical system. Gradual temperature reduc­
tion in the physical system isolates low energy states ("annealing"), or 
what is the same thing, the most probable states under the Gibbs dis­
tribution. The analogous operation under the posterior distribution 
yields the maximum a posteriori (MAP) estimate of the image given the 
degraded observations. The result is a highly parallel "relaxation" algo­
rithm for MAP estimation. We establish convergence properties of the 
algorithm and we experiment with some simple pictures, for which 
good restorations are obtained at low signal-to-noise ratios. 

Index Terms-Annealing, Gibbs distribution, image restoration, line 
process, MAP estimate, Markov random field, relaxation, scene model­
ing, spatial degradation. 

I. INTRODUCTION 

THE restoration of degraded images is a branch of digital 
picture processing, closely related to image segmentation 

and boundary finding, and extensively studied for its evident 
practical importance as well as theoretical interest. An analy­
sis of the major applications and procedures (model-based and 
otherwise) through approximately 1980 may be found in 
[47]. There are numerous existing models (see [34]) and 
algorithms and the field is currently very active. Here we 
adopt a Bayesian approach, and introduce a "hierarchical," 
stochastic model for the original image, based on the Gibbs 
distribution, and a new restoration algorithm, based on sto­
chastic relaxation and annealing, for computing the maximum 
a posteriori (MAP) estimate of the original image given the de­
graded image. This algorithm is highly parallel and exploits 
the equivalence between Gibbs distributions and Markov ran­
dom fields (MRF). 
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The essence of our approach to restoration is a stochastic 
relaxation algorithm which generates a sequence of images that 
converges in an appropriate sense to the MAP estimate. This 
sequence evolves by local (and potentially parallel) changes in 
pixel gray levels and in locations and orientations of boundary 
elements. Deterministic, iterative-improvement methods gen­
erate a sequence of images that monotonically increase the 
posterior distribution (our "objective function"). In contrast, 
stochastic relaxation permits changes that decrease the pos­
terior distribution as well. These are made on a random basis, 
the effect of which is to avoid convergence to local maxima. 
This should not be confused with "probabilistic relaxation" 
("relaxation labeling"), which is deterministic; see Section X. 

The stochastic relaxation algorithm can be informally de­
scribed as follows. 

1) A local change is made in the image based upon the cur­
rent values of pixels and boundary elements in the immediate 
"neighborhood." This change is random, and is generated by 
sampling from a local conditional probability distribution. 

2) The local conditional distributions are dependent on a 
global control parameter T called "temperature." At low tem­
peratures the local conditional distributions concentrate on 
states that increase the objective function, whereas at high 
temperatures the distribution is essentially uniform. The limit­
ing cases, T = 0 and T = 00 , correspond respectively to greedy 
algorithms (such as gradient ascent) and undirected (i.e., 
"purely random") changes. (High temperatures induce a loose 
coupling between neighboring pixels and a chaotic appearance 
to the image. At low temperatures the coupling is tighter and 
the images appear more regular.) 

3) Our image restorations avoid local maxima by beginning 
at high temperatures where many of the stochastic changes 
will actually decrease the objective function. As the relaxation 
proceeds, temperature is gradually lowered and the process 
behaves increasingly like iterative improvement. (This gradual 
reduction of temperature simulates "annealing," a procedure 
by which certain chemical systems can be driven to their low 
energy, highly regular, states.) 

Our "annealing theorem" prescribes a schedule for lowering 
temperature which guarantees convergence to the global max­
ima of the posterior distribution. In practice, this schedule 
may be too slow for application, and we use it only as a guide 
in choosing the functional form of the temperature-time de­
pendence. Readers familiar with Monte Carlo methods in sta­
tistical physics will recognize our stochastic relaxation algo­
rithm as a "heat bath" version of the Metropolis algorithm 
[42]. The idea of introducing temperature and simulating an-
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nealing is due to (:erny [8] and Kirkpatrick et al. [40], both 
of whom used it for combinatorial optimization, including the 
traveling salesman problem. Kirkpatrick also applied it to 
computer design. 

Since our approach is Bayesian it is model-based, with the 
"model" captured by the prior distribution. Our models are 
"hierarchical," by which we mean layered processes reflecting 
the type and degree of a priori knowledge about the class of 
images under study. Jn this paper, we regard the original 
image as a pair X = (F, J .) where F is the matrix of observable 
pixel intensities and L denotes a (dual) matrix of unobservable 
edge elements. Thus the usual gray levels are considered a 
marginal process. We refer to F as the intensity process and L 
as the line process. In future work we shall expand this model 
by adjoining other, mainly geometric, attribute processes. 

The degradation model allows for noise, blurring, and some 
nonlinearities, and hence is characteristic of most photochemi­
cal and photoelectric systems. More specifically, the degraded 
image G is of the form </>(H(F))O '\l, where His the blurring 
matrix, <jJ is a possibly nonlinear (memoryless) transformation, 
''I is an independent noise field, and 0 denotes any suitably in­
vertible operation, such as addition or multiplication. Surpris­
ingly, these nonlinearities do not affect the computational 
burden. 

To pin things down, let us briefly discuss the Markovian 
nature of the intensity process; similar remarks apply to the 
line process, the pair ( F, L ), and the distribution of (F, t) 
conditional on the "data" (~. Of course, all of this will be dis­
cussed in detail in the main body of the paper. 

Let Zrn = {(i, j): 1 <: i, j <: m} denote them X m integer lat­
tice; then F = {Fi,j}, (i, j) E Zm, denotes the gray levels of 
the original, digitized image. Lowercase letters will denote the 
values assumed by these (random) variables; thus, for example, 
{F = f} stands for {Fi,j =Ii,;, (i, i) EZm}. We regard Fas a 
sample realization of a random field, usually isotropic and 
homogeneous, and with significant correlations well beyond 
nearest neighbors. Specifically, we model F as an MRF, or, 
what is the same (see Section IV), we assume that the prob­
ability law of F is a Gibbs distribution. Given a neighborhood 
system :f = {:f i,j, (i, f) EZm}, where 1i,j S:.Zm denotes the 
neighbors of (i, j), an MRF over (Zm, 1) is a stochastic process 
indexed by Zm for which, for every (i, j) and every f, 

P(Fi,j =Ji,; !Fk, 1=fk,1, (k, l) of (i,j)) 

=P(F;,j = f;,j IFk, I= fk, [, (k, l) E ji,j). (1.1) 

The MRF-Gibbs equivalence provides an explicit formula for 
the joint probability distribution P(F = f) in terms of an en­
ergy function, the choice of which, together with 1, supplies 
a powerful mechanism fo1 modeling spatial continuity and 
oth· r scene features. 

The relaxation algorithm is designed to maximize the condi­
tional probability distribution of ( F, L) given the data G = g, 
i.e., find the mode of the posterior distribution P(X = x! G = 

g). This form of Bayesian estimation is known as maximum 
a posteriori or MAP estimation, or sometimes as penalized 
maximum likelihood because one seeks to maximize log P(G = 

gl \ =x) +log P(X =x) as a function of x; the second term is 

the "penalty term." MAP estimation has been successfully 
employed in special settings (see, e.g., Hunt [31] and Hansen 
and Elliott [25]) and we share the opinion of many that the 
MAP formulation (and a Bayesian approach in general; see also 
[24], [43], [45]) is well-suited to restoration, particularly for 
handling general forms of spatial degradation. Moreover, the 
distribution of G itself need not be known, which is fortunate 
due to its usual complexity. On the other hand, MAP estima­
tion clearly presents a formidable computational problem. 

2 
The number of possible intensity images is L m , where L de-
notes the number of allowable gray levels, which rules out any 
direct search, even for small (m = 64), binary (L = 2) scenes. 
Consequently, one is usually obliged to make simplifying 
assumptions about the image and degradation models as well 
as compromises at the computational stage. Here, the com­
putational problem is overcome by exploiting the pivotal ob­
servation that the posterior distribution is again Gibbsian with 
approximately the same neighborhood system as the origi­
nal image, together with a sampling method which we call 
the Gibbs Sampler. Indeed, our principal theoretical con­
tribution is a general, practical, and mathematically coherent 
approach for investigating MRF's by sampling (Theorem A), 
and by computing modes (Theorem B) and expectations 
(Theorem C). 

The Gibbs Sampler generates realizations from a given MRF 
by a "relaxation" technique akin to site-replacement algo­
rithms in statistical physics, such as "spin-flip" and "exchange" 
systems. The prototype is due to Metropolis et al. [42]; see 
also [7], [18], and Section X. Cross and Jain [12] use one of 
these algorithms invented for studying binary alloys. ("Re­
laxation labeling" in the sense of [13], [30], [46], [47] is 
different; see Section X.) The Markov property (1.1) permits 
parallel updating of the line and pixel sites, each of which is 
"refreshed" according to a simple recipe determined by the 
governing distribution. Thus, both parts of the MRF-Gibbs 
equivalence are exploited, for computing and modeling, re­
spectively. Moreover, minimum mean-square error (MMSE) 
estimation is also feasible by using the (temporal) ergodicity of 
the relaxation chain to compute means w.r.t. the posterior dis­
tribution. However, we shall not pursue this approach. 

We have used a comparatively slow, raster scan-serial version 
of the Gibbs Sampler to generate images and restorations (see 
Section XIII). But the algorithm is parallel; it could be exe­
cuted in essentially one-half the time with two processors run­
ning simultaneously, or in one-third the time with three, and 
so on. The full parallel potential is realized by assigning one 
(simple) processor to each site of the intensity process and to 
each site of the line process. Whatever the number of pro­
cessors, parallel implementation is made feasible by a small 
communications requirement among processors. The commu­
nications burden is related to the neighborhood size of the 
graph associated with the image model, and herein lies much 
of the power of the hierarchical structure: although the field 
model X = (f, l) has a local graph structure, the marginal 
distribution on the observable intensity process F has a com­
pletely connected graph. The introduction of a hierarchy 
dramatically expands the richness of the model of the ob­
served process while only moderately adding to the computa-
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tional burden. We shall return to these points in Sections IV 
and XI. 

The MAP algorithm depends on an annealing schedule, 
which refers to the (sufficiently) slow decrease of a ("con­
trol") parameter T that corresponds to temperature in a physi­
cal system. As T decreases, samples from the posterior distri­
bution are forced towards the minimal energy configurations; 
these correspond to the mode(s) of the distribution. Theorem 
B makes this precise, and is, to our knowledge, the first theo­
retical result of this nature. Roughly speaking, it says that if 
the temperature T(k) employed in executing the kth site re­
placement (i.e., the kth image in the iteration scheme) satisfies 
the bound 

T(k)~ c 
""log (1 + k) 

for every k, where c is a constant independent of k, then with 
probability converging to one (as k-+ 00 ), the configurations 
generated by the algorithm will be those of minimal energy. 
Put another way, the algorithm generates a Markov chain 
which converges in distribution to the uniform measure over 
the minimal energy configurations. (It should be emphasized 
that pointwise convergence, i.e., convergence with probability 
one, is in general not possible.) These issues are discussed in 
Section XII, and the algorithm is demonstrated in Section XIII 
on a variety of degraded images. We also discuss the nature of 
the constant c in regard to practical convergence rates. Basi­
cally, we believe that the logarithmic rate is best possible. 
However, the best (i.e., smallest) value of c that we have ob­
tained to date (see the Appendix) is far too large for compu­
tational value and our restorations are actually performed with 
small values of c. As yet, we do not know how to bring the 
theory in line with experimental results in this regard. 

The role of the Gibbs (or Boltzmann) distribution, and other 
notions from statistical physics, in the construction of "expert 
systems" is expanding. To begin with, we refer the reader 
to [21] for the original formulation of our computational 
method and of a general approach to expert systems based on 
maximum entropy extensions. As previously mentioned, 
Cerny [8) and Kirkpatrick et al. [40) introduced annealing 
into combinatorial optimization. Other examples include the 
work of Cheeseman [9] on maximum entropy and diagnosis 
and of Hinton and Sejnowski [29) on neural modeling of in­
ference and learning. 

This paper is organized as follows. The degradation model is 
described in the next section, and the undegraded image mod­
els are presented in Section IV after preliminary material on 
graphs and neighborhood systems in Section Ill. In particular, 
Section IV contains the definitions of MRF's, Gibbs distribu­
tions, and the equivalence theorem. Due to the plethora of 
Markovian models in the literature, we pause in Section V to 
compare ours to others, and in Section VI to explain some 
connections with maximum entropy methods. In Section VII 
we raise the issues of parameter estimation and model selec­
tion, and indicate why we are avoiding the former for the time 
being. The posterior distribution is computed in Section VIII 
and the corresponding optimization problem is addressed in 
Section IX. The concept of stochastic relaxation is reviewed 

in Section X, including its origins in physics. Sections XI and 
XII are devoted to the Gibbs Sampler, dealing, respectively, 
with its mechanical and mathematical workings. Our experi­
mental results appear in Section XIII, followed by concluding 
remarks. 

II. DEGRADED IMAGE MODEL 

We follow the standard modeling of the (intensity) image 
formation and recording processes, and refer the reader to 
[31] or [ 4 7) for better accounts of the physical mechanisms. 

Let H denote the "blurring matrix" corresponding to a shift­
invariant point-spread function. The formation of F gives rise 
to a blurred image H(F) which is recorded by a sensor. The 
latter often involves a nonlinear transformation of H( IF), 
denoted here by </>, in addition to random sensor noise N = 
{T/i,j}, which we assume to consist of independent, and for 
definiteness, Gaussian variables with mean µ and standard de­
viation a. 

Our methods apply to essentially arbitrary noise processes 
N = foi,j}, discrete or continuous. However, computational 
feasibility requires that the description of N as an MRF (this 
can always be done; see Section IV) has an associated graph 
structure that is approximately "local"; the same requirement 
is applied to the image process X = (F, L). For clarity, we 
forgo full generality and focus on the traditional Gaussian 
white noise case. Extension to a general noise process is 
mostly a matter of notation. 

The degraded image is then a function of </>(H(F)) and N, say 
l/J(</>(H(F)), N), for example, addition or multiplication. (To 
compute the posterior distribution, we only need to assume 
that b-+ l/J(a, b) is invertible for each a.) For notational ease, 
we will write 

G = </>(H(F))GN. 

At the pixel level, for each (i, j) E Zm, 

Gi,j=<t>(L H(i-k,j-l)Fk,1)G11i,i· 
(k, l) 

(2.1) 

(2.2) 

The mathematical results require an additional assumption, 
namely, that F and I\ be independent as stochastic processes 
(and likewise for L and N) and we assume this henceforth. 
This is customary, although we recognize the limitation in cer­
tain contexts, e.g., for nuclear scan pictures. 

For computational purposes, the degree of locality of F 
should be approximately preserved by (2.1 ), so that the neigh­
borhood systems for the prior and posterior distributions on 
(F, L) are comparable. This is achieved when His a simple 
convolution over a small window. For instance, take 

H(k, l) = (~' 
16' 

k = 0, l = 0 

!kl, Jzl ~ 1, (k, l) * (0, 0) 
(2.3) 

so that the intensity at (i, j) is weighted equally with the aver­
age of the eight nearest neighbors. The function </> is unre­
stricted, bearing in mind that the true noise level depends on 
</>, G, and a. Typically, </> is logarithmic (film) or algebraic 
(TV). 

An important special case, which occurs in two-dimensional 
(2-D) signal theory, is the segmentation of noisy images into 
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coherent regions. The usual model is 

G=F+N (2.4) 

where N is white noise and the number of intensity levels is 
small. This is the model entertained by Hansen and Elliott 
[25] for simple, binary MRF's IF, and by many other workers 
with varying assumptions about IF; see [14], [16], [17]. In 
this case, namely (2.4), we can extract simple images under ex­
tremely low signal-to-noise ratios. 

The full degraded image is ( G, L ); that is, the "line process" 
is not transformed. 

III. GRAPHS AND NEIGHBORHOODS 

Here and in Section IV we present the general theory of 
MRF's on graphs, focusing on the aspects and examples which 
figure in the experimental restorations. The level of abstrac­
tion is warranted by the variety of MRF's, graphs, and prob­
ability distributions simultaneously under discussion. 

Let S= {s1 , s2 , • • • ,sN} be a set of sites and let§= {§s, 
s ES} be a neighborhood system for S, meaning any collec­
tion of subsets of S for which 1) s $.§sand 2) s E §r <=> r E 
§ 8 • Obviously, §s is the set of neighbors of s and the pair 
{S, §}is a graph in the usual way. A subset cr:;;;,,s is a clique 
if every pair of distinct sites in care neighbors; e denotes the 
set of cliques. 

The special cases below are especially relevant. 
Case 1: S = Zm. This is the set of pixel sites for the intensity 

process IF; {s1 , s2 , • • • , sN}, N = m 2 , is any ordering of the 
lattice points. We are interested in homogeneous neighbor­
hood systems of the form 

§ = '.fc= {'.fi,j,(i,j)EZm}; '.fi,j 

= {(k, l) EZm :0 < (k - i)2 + (l - j)2 ..;; c}. 

Notice that sites at or near the boundary have fewer neighbors 
than interior ones; this is the so-called "free boundary" and is 
more natural for picture processing than torodial lattices and 
other periodic boundaries. Fig. l(a), (b), (c) shows the (in­
terior) neighborhood configurations for c = 1, 2, 8; c = 1 is the 
first-order or nearest-neighbor system common in physics, in 
which '.f i,; = {(i, j - 1 ), (i, j + 1 ), (i - 1, j), (i + 1, j)}, with ad­
justments at the boundaries. In each case, (i, j) is at the cen­
ter, and the symbol o stands for a neighboring pixel. The 
cliques for c = 1 are all subsets of Z m of the form {(i, j)}, 
{(i, j), (i, j + 1 )} or {(i, j), (i + 1, j)}, shown in Fig. 1 (d). For 
c = 2, we have the cliques in Fig. 1 ( d) as well as those in Fig. 
l(e). Obviously, the number of clique types grows rapidly 
with c. However, only small cliques appear in the model for 
IF actually employed in this paper; indeed, the degree of prog­
ress with only pair interactions is somewhat surprising. None­
thel"ss, more complex images will likely necessitate more com­
plex energies. Our experiments (see Section XIII) suggest that 
much of this additional complexity can be accommodated 
while maintaining modest neighborhood sizes by further de­
veloping the hierarchy. 

Case 2: S = Dm, the "dual" m X m lattice. Think of these 
sites as placed midway between each vertical or horizontal pair 
of pixels, and as representing the possible locations of "edge 
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Fig. 1. 

elements." Shown in Fig. l(f) are six pixel sites together with 
seven line sites denoted by an X. The six surrounding X's are 
the neighbors of the middle X for the neighborhood system we 
denote by 2. = {2.d, d E Dm}. Fig. 1 (g) is a segment of a real­
ization of a binary line process for which, at each line site, 
there may or may not be an edge element. We also consider 
line processes with more than two levels, corresponding to 
edge elements with varying orientations. 

Case 3: S = Zm U Dm. This is the setup for the field (F, L). 
Zm has neighborhood system '.f1 (nearest-neighbor lattice) and 
Dm has the above-described system. The pixel neighbors of 
sites in Dm are the two pixels on each side, and hence each 
(interior) pixel has four line site neighbors. 

IV. MARKOV RANDOM FIELDS AND 
GIBBS DISTRIBUTIONS 

We now describe a class of stochastic processes that includes 
both the prior and posterior distribution on the original image. 
In general, this class of processes (namely, MRF's) is neither 
homogeneous nor isotropic, assuming the index set S has 
enough geometric structure to even define a suitable family of 
translations and rotations. However, the particular models we 
choose for prior distributions on the original image are in fact 
both homogeneous and isotropic in an appropriate sense. 
(This is not the case for the posterior distribution.) We refer 
the reader to Section XIII for a precise description of the prior 
models employed in our experiments, and in particular for spe­
cific examples of the role of the line elements. 

As in Section III, {S, G} denotes an arbitrary graph. Let 
X = {Xs, s ES} denote any family of random variables in­
dexed by S. For simplicity, we can assume a common state 
space, say A= {O, 1, 2, · · · ,L -1}, so that XsEA for alls; 
the extension to site-dependent state spaces, appropriate when 
S consists of both line and pixel sites, is entirely straightfor­
ward (although not merely a notational matter due to the 
"positivity condition" below). Let il be the. set of all possible 
configurations: 

n = {w = (xsl' ... ,XsN):xSi EA, 1..;; ;..;;N}. 
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{
As usua}l, the event {Xs1 = Xsl' . .. 'XSN = XsN} is abbreviated ily { v c, c Ee} is called a potential. z is the normalizing 

X = w . constant: 

X is an MRF with respect to § if 

P(X = w) > 0 for all w ED.; (4.1) 

P(Xs = XslXr = Xri r =F s) = P(Xs = xslXr = Xr, r E §s) 

(4.2) 

for every sES and (xs1, · · · ,Xs )ED.. Technically, what is 
meant here is that the pair { X, P} satisfies ( 4.1) and ( 4.2) rela­
tive to some probability measure on n. The collection of 
functions on the left-hand side of (4.2) is called the local char­
acteristics of the MRF and it turns out that the Goint) prob­
ability distribution P(X = w) of any process satisfying ( 4.1) is 
uniquely determined by these conditional probabilities; see, 
e.g., [6, p. 195]. 

The concept of an MRF is essentially due to Dobrushin [15] 
and is one way of extending Markovian dependence from 1-D 
to a general setting; there are, of course, many others, some of 
which will be reviewed in Section V. · 

Notice that any X satisfying ( 4.1) is an MRF if the neighbor­
hoods are large enough to encompass the dependencies. The 
utility of the concept, at least in regard to image modeling, is 
that priors are available with neighborhoods that are small 
enough to ensure feasible computational loads and yet still 
rich enough to model and restore interesting classes of images 
(and textures: [12]). 

Ordinary 1-D Markov chains are MRF's relative to the 
nearest-neighbor system on S = {1, 2, · · · ,N} (i.e., § 1 = {2}, 
§i= {i-1, i+ 1} 2~i~N- 1, §N = {N- 1}) if we assume 
all positive transitions and the chain is started in equilibrium. 
In other words, the "one-sided" Markov property 

P(Xk =xkjxi =xi,j~k- l)=P(Xk =xklXk-i =xk_ 1) 

and the "two-sided" Markov property 

P(Xk = xk 1xj = Xj, j * k) = P(Xk = xk jxj = Xj> j E §k) 

are equivalent. Similarly for an rth order Markov process on 
the line with respect to the r nearest neighbors on one side and 
on both sides. (This appears to be doubted in [I] but follows, 
eventually, from straightforward calculations or immediately 
from the Gibbs connection.) 

Gibbs models were introduced into image modeling by 
Hassner and Sklansky [28], although the treatment there is 
mostly expository and limited to the binary case. 

A Gibbs distribution relative to {S, §}is a probability mea­
sure 7r on n with the following representation: 

1 -rr(w) = z e U(w)/T (4.3) 

where Zand Tare constants and U, called the energy function, 
is of the form 

U(w) = L Vc(w). (4.4) 
CEe 

Recall that e denotes the set of cliques for §. Each V c is a 
function on n with the property that v c( w) depends only 
on those coordinates Xs of w for which s EC. Such a fam-

z = L e-U(w)/T (4.5) 
w 

and is called the partition function. Finally, T stands for 
"temperature"; for our purposes, T controls the degree of 
"peaking" in the "density" rr. Choosing T "small" exaggerates 
the mode(s), making them easier to find by sampling; this is 
the principle of annealing, and will be applied to the posterior 
distribution rr(f, /) = P(F = f, L = l I G = g) in order to find the 
MAP estimate. Of course, we will show that rr(f, /) is Gibbsian 
and identify the energy and neighborhood system in terms of 
those for the priors. The choice of the prior distributions, i.e., 
of the particular functions V c for the image model rr( w) = 
P(X = w), will be discussed later on; see Section VII for some 
general remarks and Section XIII for the particular models em­
ployed in our experiments. 

The terminology obviously comes from statistical physics, 
wherein such measures are "equilibrium states" for physical 
systems, such as ferromagnets, ideal gases, and binary alloys. 
The V c functions represent contributions to the total energy 
from external fields (singleton cliques), pair interactions 
(doubletons), and so forth. Most of the interest there, and in 
the mathematical literature, centers on the case in which S is 
an infinite, 2-D or 3-D lattice; singularities in Z may then 
occur at certain ("critical") temperatures and are associated 
with "phase transitions." 

Typically, several free parameters are involved in the specifi­
cation of U, and Z is then a function of those parameters­
notoriously intractable. For more information see [3], [5], 
[6], [23], [32], and [39]. 

The best-known of these lattice systems is the Ising model, 
invented in 1925 by E. Ising [33] to help explain ferromag­
netism. Here, S = Zm and §='.I' 1 , the nearest-neighbor system. 

The most general form of U is then 

U(w)= LV{i,i}(xi,j)+ LVfo,j),(i+i,i)}(xi,i,xi+i,i) 

+ LVfo,j), (i,j+1)}(Xj,j,Xi,j+1) (4.6) 

where the sums extend over all (i, j) E Z m for which the indi­
cated cliques make sense. The Ising model is the special case 
of (4.6) in which Xis binary (L = 2), homogeneous(= strictly 
stationary), and isotropic(= rotationally invarient): 

U(w) =ex Lxi,j + (3 (Lxi,jXi+i,j + Lxi,jxi,j+i) (4.7) 

for some parameters ex and (3, which measure, respectively, the 
external field and bonding strengths. 

Returning to the general formulation, recall that the local 
characteristics 

sES,wED. 

uniquely determine rr for any probability measure rr on n, 
rr(w) > 0 for all w. The difficulty with the MRF formulation 
by itself is that 

i) the joint distribution of the Xs is not apparent; 
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ii) it is extremely difficult to spot local characteristics, i.e., 
to determine when a given set of functions iJ;(x8 I Xy, r of= 

s ), s ES, (X 81 , · • • , X 8N) E Q, are conditional probabili­

ties for some (necessarily unique) distribution on Q. 

For example, Chellappa and Kashyap [IO] allude to i) as a 
disadvantage of the "conditional Markov" models. See also 
the discussion in [6]. In fact, these apparent limitations to 
the MRF formulation have been noted by a number of authors, 
many of whom were obviously not aware of the following 
theorem. 

Theorem: Let § be a neighborhood system. Then X is an 
MRF with respect to § if and only if 1T( w) = P( X = w) is a 
Gibbs distribution with respect to §. 

Among other benefits, this equivalence provides us with a 
simple, practical way of specifying MRF's, namely by specify­
ing potentials, which is easy, instead of local characteristics, 
which is nearly impossible. In fact, with some experience, one 
can choose U's in accordance with the desired local behavior, 
at least at the intensity level. In short, the modeling and con­
sistency problems of i) and ii) are eliminated. 

Proofs may be found in many places now; see, e.g., [39] and 
the references therein, or the approach via the Hammersley­
Clifford expansion in [ 6] . An influential discussion of this 
correspondence appears in Spitzer's work, e.g., [ 48] . Explicit 
formulas exist for obtaining U from the local characteristics. 
Conversely, the local characteristics of 1T are obtained in a 
straightforward way from the potentials: use the defining 
ratios and make the allowable cancellations. Fix s ES, w = 
(xsl' · · · ,x8N)EQ, and let wx denote the configuration 
which is x at sites and agrees with w everywhere else. Then if 
1T(w) = P(X = w) is Gibbsian, 

P(X8 =xslXr=xr,ri=s)=Z; 1 exp- T L Vc(w) 
C:sEC 

(4.8) 

(4.9) 

Notice that the right-hand side of ( 4.8) only depends on x s 

and on Xr, r E §8 , since any site in a clique containing s must 
be a neighbor of s. These formulas will be used repeatedly to 
program the Gibbs Sampler for local site replacements. 

For the Ising model, the conditional probability that Xi,i = 
xi,j' given the states at S\{i, j}, or equivalently, just the four 
nearest neighbors, reduces to 

e -xij(°' + !1vi, i) 

1 + e-(cx+11vi,j) 

where vi,i=xi,j-i +xi-i,j+Xi,i+I +x;+i,j· This is also 
known as the autologistic model and has been used for texture 
modeling in [ 12] . More generally, if the local characteristics 
are given by an exponential family and if V c( w) = 0 for I c\ > 
2, then the pair potentials always "factor" into a product of 
two like terms; see [6]. 

We conclude with some further discussion of a remark made 
in Section I: that the hierarchical structure introduced with 

the line process L expands the graph structure of the marginal 
distribution of the intensity process F. Consider first an arbi­
trary MRF X with respect to a graph {S, §}. Fix r ES and let 
X = {X8 , s ES, s of= r}. The marginal distribution P of X is de­
rived from the distribution P of \ by summing over the range 
of Xr. Use the Gibbs representation for P and perform this 
summation: the resulting expression for P can be put in the 
Gibbs form, and from this the neighborhood system on S == 
S\{r} can be inferred. The conclusion of this exercise is that 
s1 , s2 ES are, in general, neighbors if either i) they were 
neighbors in S under § or ii) each is a neighbor of r ES under 
§. Now let X =(IF, L ), with neighborhood system defined at 
the end of Section III. Successive summations of the distribu­
tion of X over the ranges of the elements of L yields the margi­
nal distribution of the observable intensity process F. Each 
summation leaves a graph structure associated with the margi­
nal distribution of the remaining variables, and this can be re­
lated to the original neighborhood system by following the 
preceding discussion of the general case. It is easily seen that 
when all of the summations are performed, the remaining 
graph is completely connected; under the marginal distribution 
of F, all sites are neighbors. This calculation suggests that sig­
nificant long-range interactions can be introduced through the 
development of hierarchical structures without sacrificing the 
computational advantages of local neighborhood systems. 

V. RELATED MARKOV IMAGE MODELS 

The use of neighborhoods is, of course, pervasive in the lit­
erature: they offer a geometric framework for the clustering of 
pixel intensities and for many types of statistical models. In 
particular, the Markov property is a natural way to formalize 
these notions. The result is a somewhat bewildering array of 
Markov-type image models and it seems worthwhile to puase 
to relate these to MRF's. The process under consideration 
is F = {F;,;, (i, j)EZrn}, the gray levels, or really any pixel 
attribute. 

An early work in this direction is Abend, Harley and Kanai 
[1] about pattern classification. Among many novel ideas, 
there is the notion of a Markov mesh (MM) process, in which 
the Markovian dependence is causal: generally, one assumes 
that, for all (i, j) and f, 

P(Fi,f = fi,J\Fk, 1=fk.1, (k, l) EAi,f) 

= P(Fi,f = fi,i\ Fk, 1=fk,1, (k, !) E Bi,/) (5.1) 

v;llere Bi,j ~Ai,j ~ {(k, /) :k < i or l <j}. A common exam­
ple is Bi,j = {(i - 1, j), (i - 1, j - 1), (i, j - 1)}. Besag [6], 
Kanal [37], and Pickard [44] also discuss such "unilateral" 
processes, which are usually a subclass of MRF's, although the 
resulting (bilateral) neighborhoods can be irregular. Anyway, 
for MM models the emphasis is on the causal, iterative aspects, 
including a recursive representation for the joint probabilities. 
Incidentally, a Gibbs type description of rth order Markov 
chains is given in [I] ; of course, the full Gibbs-MRF equiva­
lence is not perceived and was not for about five years. Derin 
et al. [14] model F as an MM process and use recursive Bayes 
smoothing to recover F from a noisy version F + N; the algo­
rithms exploit the causality to maximize the univariate poste· 
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rior distribution at each pixel based on the data over a strip 
containing it, and are very effective at low S/N ratios for some 
simple images, 

Motivated by a paper of Levy [41), Woods [51) defined 
"P-Markov" processes for the resolution of wavenumber spec­
tra. The definition involves two spatial regions separated by a 
"boundary" of width P, and correspond to the past, future, 
and present in 1-D. Woods also considers a family of "wide­
sense" Markov fields of the form 

Fi,j= L fh,1Fi-k,j-1+Ui,j (5.2) 
(k,l)EWp 

where WP= {(k, 1):0<k2 +1 2 ~P}, fh, 1 are the MMSE co­
efficients for projecting Fi, i on { F k, 1, (k, l) E (i, j) + WP}, 
and { Ui, i} is the error, generally nonwhite. The main theo­
retical result is that if {Ui,j} is homogeneous, Gaussian, and 
satisfies a few other assumptions, then F is Gaussian, P-Markov 
and vice-versa. In general, there are consistency problems 
and the P-Markov property is hard to verify. In the nearest­
neighbor case, one gets a Gaussian MRF. 

Other "wide-sense" Markov processes appear in Jain and 
Angel [35) and Stuller and Kurz [49). The assumptions 
in [35) are a nearest-neighbor system, white noise, and no 
blur; restoration is achieved by recursively filtering the rows 
{Fi, i }j!, 1 , which form a vector-valued, second-order Markov 
chain, to find the optimal interpolator of each row. In [49), 
causality is introduced and earlier work is generalized by con­
sidering an arbitrary "scanning pattern." 

The "spatial interaction models" in Chellappa and Kashyap 
[10), [38) satisfy (5.2) for general coefficients and W's. The 
model is causal if W lies in the third quadrant. The authors 
consider "simultaneous autoregressive" (SAR) models, wherein 
the noise is white, and "conditional Markov" (CM) models, 
wherein the "bilateral" Markov property holds (i.e., (1.1) with 
'Ji, i = (i, j) + W) in addition to (5 .2), and the noise is non­
white. Thus, the CM models are MRF's, although in [10), 
[38) the boundary of Zm is periodic, and hence boundary 
conditions must be adjoined to (5.2). Given any (homoge­
neous) SAR process there exists a unique CM process with the 
same spectral density, although different neighborhood struc­
ture. The converse holds in the Gaussian case but is generally 
false (see the discussion in Besag [6]). MMSE restoration of 
blurred images with additive Gaussian noise is discussed in 
[10); the original image is SAR or CM, usually Gaussian. 

Finally, Hansen and Elliott [25) and Elliott et al. [17) de­
sign MAP algorithms for the segmentation of remotely sensed 
data with high levels of additive noise. The image model is a 
nearest-neighbor, binary MRF. However, the autologistic form 
of the joint distribution is not recognized due to the lack of 
the Gibbs formulation. The conditional probabilities are ap­
proximated by the product of four 1-D transitions, and seg­
mentation is performed by dynamic programming, first for 
each row and then for the entire images. More recent work in 
Elliott et al. [16] is along the same lines, namely MAP esti­
mation, via dynamic programming, of very noisy but simple 
images; the major differences are the use of the Gibbs formula­
tion and improvements in the algorithms. Similar work, ap­
plied to boundary finding, can be found in Cooper and Sung 

[11] , who use a Markov boundary model and a deterministic 
relaxation scheme. 

VI. MAXIMUM ENTROPY RESTORATION 

There are several contact points. The Gibbs distribution can 
be derived (directly from physical principles in statistical me­
chanics) by maximizing entropy: basically, it has maximal en­
tropy among all probability measures (equilibrium states) on 
n with the same average energy. Thus it is no accident that, 
like maximum entropy (ME) methods, ours are well-suited to 
nonlinear problems; see [50]. Moreover, based on the success 
of ME restoration (along. the lines suggested by Jaynes [36]) 
for recovering randomly pulsed objects (cf. Frieden [19)), we 
intend in the future to analyze such data (e.g., starfield photo­
graphs) by our methods. 

We should also like to mention the interesting observation of 
Trussell [50] that conventional ME restoration is a special case 
of MAP estimation in which the prior distribution on F is 

P(F = f) =exp (-{3 L hi logfi,j)/(normalizing constant). 

By "conventional ME," we refer to maximizing the entropy 
"£Ii,; log Ii,; subject to "£ 117, i = constant ( 17 i,; is here again 
the noise process); see [2]. Other ME methods (e.g., [19]) do 
not appear to be MAP-related. 

VII. MODEL SELECTION AND PARAMETER ESTIMATION 

The quality of the restoration will clearly depend on choices 
made at the modeling stage, in our case about specific energy 
types, attribute processes, and parameters. Cross and Jain 
[12] use maximum likelihood estimation in the context of 
Besag's [6] "coding scheme," as well as standard goodness-of­
fit tests, for matching realizations of autobinomial MRF's to 
real textures. Kashyap and Chellappa [38] introduce some 
new methods for parameter estimation and the choice of 
neighborhoods for the SAR and CM models, mostly in the 
Gaussian case. These are but two examples. 

For uncorrupted, simple MRF's, the coding methods do 
finesse the problem of the partition function. However, for 
more complex models and for corrupted data, we feel that the 
coding methods are ultimately inadequate due to the complex­
ity of the distribution of G. This view seems to be shared by 
other authors, although in different contexts. Of course, for 
MRF's, the obstacles facing conventional statistical inference 
due to Z have often been noted. Even for the Ising model, 
analytical results are rare; a famous exception is Onsager's 
work on the correlational structure. 

At any rate, we have developed a new method [20] for esti­
mating clique parameters from the "noisy" data, and this will 
be implemented in a forthcoming paper. For now, we are 
obliged to choose the parameters on an ad hoc basis (which is 
common), but hasten to add that the quality of restoration 
does not seem to have been adversely affected, probably due 
to the relative simplicity of the MRF's we actually use for the 
line and intensity processes; see Section XIII. 

One should also address the general choice of 1T and §. This 
is really quite different than parameter estimation and some­
what related to "image understanding": how does one incor­
porate "real-world knowledge" into the modeling process? In 
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image interpretation systems, various semantical and hierarchi­
cal models have been proposed (see, e.g., [26) ). We have 
begun our study of hierarchical Gibbs models in this paper. A 
general theory of interactive, self-adjusting models that is prac­
tical and mathematically coherent may lie far ahead. 

vm. POSTERIOR DISTRIBUTION 

We now turn to the posterior distribution P( F = f, L = l I G = 
g) of the original image given the "data" g. In this section we 
take S = Zm U Dm, the collection of pixel and line sites, with 
some neighborhood system § = {£:ls, s ES}; an example of 
such a "mixed" graph was given in Section III. The configura­
tion space is the set of all pairs w = (f, I) where the compo­
nents of f assume values among the allowable gray levels and 
those of I among the (coded) line states. 

We assume that \ is an MRF relative to {S, §} with corre­
sponding energy function U and potentials { V c}: 

P(F = f, L =I)= e-U(f, l)fT;z 

U(f, /) = L v c(f, /). 
c 

For convenience, take T = 1 

Recall that L = </>(H(F)) 0 ['-;, where l\ is white Gaussian 
noise with mean µ and variance a2 and is independent of\ . 

We emphasize that what follows is easily extended to pro­
cesses I\ that are more general MRF's, although we still require 
that !\ be independent of X. The operation 0 is assumed in­
vertible and we will write N = <P(C, </>(H{F))) = {<Ps, s EZm} 
to indicate this inverse. 

Let J{ s' s E Z m, denote the pixels which affect the blurred 
image HO) at s. For instance, for theHin (2.3), Hs is the 3 X 
3 square centered at s. Observe that <Ps, s EZm, depends only 
on gs and {ft, t E Hs}. By the shift-invariance of H, Hr+s = 
s + Hr where J{ r CZ m, s + r E Z m, and s + Hr is understood to 
be intersected with Zm, if necessary. In addition, we will as­
sume that {Hs} is "symmetric" in that r E H 0 ~ -r E Ho. 
Then the collection {J{s\{s}, s EZm} is a neighborhood sys­
tem over Zm. Let J{2 denote the second-order system, i.e., 

Hi = u Hr, s E Zm. 
r E .fis 

Then it is not hard to see that { H; \ { s}, s E Z m} is also a neigh­
borhood system. Finally, set §P = HJ.f, s ES} where 

§P= §s, sEDm 

s §suH}\{s}, sEZm. 
(8.1) 

The "P" stands for "posterior"; some thought shows that § P 

is a neighborhood system on S. 
Let µEH M (M = N 2 ) have all components = µ and let II · 11 

denote the usual norm in }\ M: 11V)I2 = I:f1 V;2. 
Theorem: For each g fixed, P(\ = w IC = g) is a Gibbs dis­

tribution over {S, §P} with energy function 

(8.2) 

Proof· Using standard results about "regular conditional 
expectations," we can and do assume that 

. , P(G=gl\=w)P(\=w) 
P(X=w):(,=g)= P(!:=g) (8.3) 

for all w = (f, /),for each g. 
Since P(1.: =g) is a constant andP(\=w)=e-U(w)/Z, the 

key term is 

P((. =gl\ =w)=P(</>(H(V))0!\ =g!J•' =f, I.=/) 

= P(i\ = cl>(g, </>(H(f)))I F = f, [, = /) 

= P(~ = <P(g, </>(H(f)))) 

(since I\ is independent of F and L) 

== (2na2rM/2 exp - C~2) JIµ -<PIJ2. 

We will write cl> for cJ>(g, </>(H(f))). Collecting constants we 
have, from (8.3), 

p 
P(\ = wl i; = g) = e-u (w);zP 

for uP as in (8.2); zP is the usual normalizing constant (which 
will depend on g). It remains to determine the neighborhood 
structure. 

Intuitively, the line sites should have the same neighbors 
whereas the neighbors §sofa pixel sites EZm should be aug­
mented in accordance with the blurring mechanism. 

Take s E Dm. The local characteristics at s for the posterior 
distribution are, by (8.2), 

P(Ls = lsJLr =Ir, r i= s, r E Dm, F = f, (, = g) 

e-uP(f,l) e-u(f,l) 

L e-uP(f, l) L e-U(f, l) 

ls ls 

where the sum extends over all possible values of Ls. Hence 
§f = §s. 

For s E Z m , the term in (8 .2) involving <P does not cancel 
out. Now <P(g, </>(H(f))) = {cl>s, s EZm} and let us denote the 
dependencies in cl>s by writing <Ps = <Ps(gs;ft, t E J<s). Then 

P(Fs = fsJFr =fr, r i= s, r EZm, L =I, (, = g) 
p 

e-u (f, l) 
---- . Up(f /) L e-uP(f, l) ' , 

fs 

= U(f, I)+ L (<Pr - µ) 2 /2a 2 • 

rEZm 

Decompose uP as follows: 

uP (f, I) = :L v cU, I) 
C:sEC 

+ (2a2r 1 L (<Pr(gr;ft, t E J<r)- µ) 2 

r:sEHr 

+ L Vc(f,I) 
C:st/:C 

+(2a2 )- 1 L (<Pr(grJt,tEJ<r)-µ) 2 • 

r:st/: Hr 

(8.4) 
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Since the last two terms do not involve fs (remember that V c 
only depends on the sites in C), the ratio in (8.4) depends only 
on the first two terms above. The first term depends only on 
coordinates of (f, /)for sites in §s(sEC=?C<:_§ 8) and the 
second term only on sites in 

LJ Hr= LJ J<r ~ H} · 
r:sEJ( 7 r E J<s 

Hence,§;= § 8 U H}\{s}, as asserted in the theorem. D 

IX. THE COMPUTATIONAL PROBLEM 

The posterior distribution P(X = w I g) is a powerful tool for 
image analysis; in principle, we can construct the optimal 
(Bayesian) estimator for the original image, examine images 
sampled from P(X =wig), estimate parameters, design near­
optimal statistical tests for the presence or absence of special 
objects, and so forth. But a conventional approach to any of 
these involves prohibitive computations. Specifically, our job 
here is to find the value(s) of w which maximize the posterior 
distribution for a fixed g, i.e., minimize 

U(f, I)+ IIµ- <I>(g, </>(H(f)))l!2/2a2 , (f, I) E Q (9.1) 

where (see Section VIII) <I> is defined by <f>(H(f)) 0 <I>= g. 
Even without L, the size of Q is at least 24000 , corresponding 
to a binary image on a small (64 X 64) lattice. Hence, the 
identification of even near-optimal solutions is extremely diffi­
cult for such a relatively complex function. 

In Sections XI and XII we will describe our stochastic relaxa­
tion method for this kind of optimization. The same method 
works for sampling and for computing expectations (and 
hence forming likelihood ratios), as will be explained in Sec­
tion XI. The algorithm is highly parallel, but our current 
implementation is serial: it uses a single processor. The resto­
ration of more complex images than those in Section XIII, 
probably involving more levels in the hierarchy, may necessi­
tate some parallel processing. 

X. STOCHASTIC RELAXATION 

There are many types of "relaxation," two of them being 
the type used in statistical physics and the type developed in 
image processing called "relaxation labeling" (RL), or some­
times "probabilistic relaxation." Basically, ours is of the for­
mer class, referred to here as SR, although there are some com­
mon features with RL. 

The "Metropolis algorithm" (Metropolis et al. [42]) and 
others like it [7], [18] were invented to study the equilibrium 
properties, especially ensemble averages, time-evolution, and 
low-temperature behavior, of very large systems of essentially 
identical, interacting components, such as molecules in a gas or 
atoms in binary alloys. 

Let Q denote the possible configurations of the system; for 
example, w E Q might be the molecular positions or site con­
figuration. If the system is in thermal equilibrium with its 
surroundings, then the probability (or "Boltzmann factor") of 
w is given by 

1T(w)=e-!l&(w>jL e-!l©(w), wEQ 
w 

where & ( w) is the potential energy of w and {3 = 1 /KT where 
K is Boltzmann's constant and Tis absolute temperature. We 
have already seen an example in the Ising model ( 4.7). Usually, 
one needs to compute ensemble averages of the form 

L Y(w) e-!l&(w) 

(Y) = fn Y(w) d1T(w) = w L e-il fh(w) 

w 

where Y is some variable of interest. This cannot be done 
analytically. In the usual Monte Carlo method, one restricts 
the sums above to a sample of w's drawn uniformly from Q. 

This, however, breaks down in the situation above: the expo­
nential factor puts most of the mass of 1T over a very small part 
of n, and hence one tends to choose samples of very low prob­
ability. The idea in [ 42] is to choose the samples from 1T in­
stead of uniformly and then weight the samples evenly instead 
of by d1T. In other words, one obtains w 1 , w 2 , · · • , WR from 
1T and ( Y) is approximated by the usual ergodic averages: 

1 R 
(Y)::::; R L Y(wr). 

r=I 

(10.1) 

Briefly, the sampling algorithm in [42] is as follows. Given 
the state of the system at "time" t, say X(t), one randomly 
chooses another configuration 1/ and computes the energy 
change Ll& = &(7]) - & (X(t)) and the quantity 

- 1T(1/) - -!)t..€, 
q - 1T(X(t)) - e . (10.2) 

If q > 1, the move to 1/ is allowed and X(t + 1) = 1], whereas if 
q ~ 1, the transition is made with probability q. Thus we 
choose 0 ~ ~ ~ 1 uniformly and set X(t + 1) = 1/ if ~ ~ q and 
X(t+ I)=X(t) if ~>q. (A "parallel processing variant" of 
this for simulating certain binary MRF's is given by Berger 
and Bonomi [4] .) 

In binary, "single-flip" studies, 1] = X(t) except at one site, 
whereas in "spin-exchange" [18] systems, a pair of neighbor­
ing sites is selected. In either case, the "flip" or "exchange" 
is made with probability q/(1 + q), where q is given in (10.2). 
In special cases, the single-flip system is equivalent to our 
Gibbs Sampler. The exchange algorithm in Cross and Jain 
[12] is motivated by work on the evolution of binary alloys. 
The samples generated are used for visual inspection and statis­
tical testing, comparing the real and simulated textures. The 
model is an autobinomial MRF; see [6] or [12]. The algo­
rithm is not suitable (nor intended) for restoration: for one 
thing, the intensity histogram is constant throughout the itera­
tion process. This is necessarily the case with exchange sys­
tems which depend heavily on the initial configuration. 

The algorithm in Hassner and Sklansky [28] is apparently a 
modification of one in Bortz et al. [7] . Another application 
of these ideas outside statistical mechanics appears in Hinton 
and Sejnowski [29], a paper about neural modeling but a spiri­
tual cousin of ours. In particular, the parallel nature of these 
algorithms is emphasized. 

The essence of every SR scheme is that changes (w--"* 7]) 
which increase energy, i.e., lower probability, are permitted. 
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By contrast, deterministic algorithms only allow jumps to states 
of lower energy and invariably get "stuck" in local minima. 
To get to samples from n, we must occasionally "backtrack." 

All of these algorithms can be cast in a general theory involv­
ing Markov chains with state space n. See Hammersley and 
Handscomb [27] for a readable treatment. The goal is an 
irreducible, aperiodic chain with equilibrium measure n. If 
w 1 , w 2 , • • ·,WR is a realization of such a chain, then stan­
dard results yield (10.1), in fact at a rate O(R- 1/2) as R -* 00 • 

In this setup an auxiliary transition matrix is used to go from 
w to T/, and the general replacement recipe involves the same 
ratio n( ri)/n( w ). The Markovian properties of the Gibbs Sam­
pler will be described in the following sections. 

Chemical annealing is a method for determining the low en­
ergy states of a material by a gradual lowering of temperature. 
The process is delicate: if Tis lowered too rapidly and insuffi­
cient time is spent at temperatures near the freezing point, 
then the process may bog down in nonequilibrium states, cor­
responding to flaws in the material, etc. In simulated anneal­
ing, Kirkpatrick et al. [40] identify the solution of an optimal 
(computer) design problem with the ground state of an imagi­
nary physical system, and then employ the Metropolis algo­
rithm to reach "steady-state" at each of a decreasing sequence 
of temperatures {Tn}. This sequence, and the time spent at 
each temperature, is called an "annealing schedule." In [40], 
this is done on an ad hoc basis using guidelines developed for 
chemical annealing. Here, we prove the existence of annealing 
schedules which guarantee convergence to minimum energy 
states (see Section XII for formal definitions), and we identify 
the rate of decrease relative to the number of full sweeps. 

Turning to RL, there are many similarities with SR, both in 
purpose and, at least abstractly, in method. RL was designed 
for the assignment of numeric or symbolic labels to objects in 
a visual system, such as intensity levels to pixels or geometric 
labels to cube edges, in order to achieve a "global interpreta­
tion" that is consistent with the context and certain "local 
constraints." Ideally, the process evolves by a series of local 
changes, which are intended to be simple, homogeneous, and 
performed in parallel. The local constraints are usually so­
called "compatibility functions," which are much like statis­
tical correlations, and often defined in reference to a graph. 
We refer the reader to Davis and Rosenfeld [13] for an exposi­
tory treatment, to Rosenfeld et al. [46) for the origins, to 
Hummel and Zucker [30) for recent work on the logical and 
mathematical foundations, and to Rosenfeld and Kak [47] for 
applications to iterative segmentation. 

But there are also fundamental differences. First, most vari­
ants of RL are rather ad hoc and heuristic. Second, and more 
importantly, RL is essentially a nonstochastic process, both in 
the interaction model and in the updating algorithms. (Indeed, 
various probabilistic analogies are often avoided as misleading; 
see [30], for example.) There is nothing in RL corresponding 
to an equilibrium measure or even a joint probability law over 
configurations, whereas there is no analogue in SR of the all­
important, iterative updating formulas and corresponding se­
quence of "probability estimates" for various hypotheses in­
volving pixel or object classification. 

In summary, there are shared goals and shared features (lo-

cality, parallelism, etc.) but SR and RL are quite distinct, at 
least as practiced in the references made here. 

XI. GIBBS SAMPLER: GENERAL DESCRIPTION 

We return to the general notation of Section IV: \ == {Xs, 
s ES} is an MRF over a graph {§s, s ES} with state spaces 
As, configuration space Q == Ils As, and Gibbs distribution 
n(w) == e-U(w)/T/z, WE Q. 

The general computational problems are 

A) sample from the distribution n; 
B) minimize U over Q; 
C) compute expected values. 

Of course, we are most concerned with B), which corre­
sponds to MAP estimation when n is the posterior distribution. 
The most basic problem is A), however, because A) together 
with annealing yields B) and A) together with the ergodic 
theorem yields C). We will state three theorems corresponding 
to A), B), and C) above. Theorem C is not used here and will 
be proven elsewhere; we state it because of its potential im­
portance to other methods of restoration and to hypothesis 
testing. 

Let us imagine a simple processor placed at each site s of the 
graph. The connectivity relation among the processors is de­
termined by the bonds: the processor at s is connected to each 
processor for the sites in §s· In the cases of interest here (and 
elsewhere) the number of sites N is very large. However, the 
size of the neighborhoods, and thus the number of connec­
tions to a given processor, is modest, only eight in our experi­
ments, including line, pixel and mixed bonds. 

The state of the machine evolves by discrete changes and it 
is therefore convenient to discretize time, say t == 1, 2, 3, · · · . 
At time t, the state of the processor at sites is a random vari­
able Xs(t) with values in As. The total configuration is X(t) == 

(Xs1 (t), Xs2 (t), · · · , XsN(t)), which evolves due to state 
changes of the individual processors. The starting configura­
tion, X(O), is arbitrary. At each epoch, only one site under­
goes a (possible) change, so that X(t - 1) and X(t) can differ in 
at most one coordinate. Let n1 , n2 , • • • be the sequence in 
which the sites are "visited" for replacement; thus, nt ES and 
Xsi(t) == Xs/t - 1), i-=!= nt. Each processor is programmed to 
follow the same algorithm: at time t, a sample is drawn from 
the local characteristics of n for s == nt and w == X(t - 1). In 
other words, we choose a state x E Ant from the conditional 
distribution of Xnt given the observed states of the neighbor­
ing sites X,(t - 1), r E §nt· The new configuration X(t) has 
Xnt(t) == x and Xs(t) == Xs(t - 1 ), s-=!= nt. 

These are local computations, and identical in nature when n 
is homogeneous. Moreover, the actual calculation is trivial 
since the local characteristics are generally very simple. These 
conditional probabilities were discussed in Section IV and we 
refer the reader again to formulas (4.8) and (4.9). Notice that 
Z does not appear. 

Given an initial configuration X(O), we thus obtain a se­
quence X(l ), X(2), X(3), · · · of configurations whose conver­
gence properties will be described in Section XII. The limits 
obtained do not depend on X(O). The sequence (nt) we ac­
tually use is simply the one corresponding to a raster scan, i.e., 
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repeatedly visiting all the sites in some "natural" fixed order. 
Of course, in this case one does not actually need a processor 
at each site. But the theorems are valid for very general (not 
necessarily periodic) sequences (nt) allowing for asychronous 
schemes in which each processor could be driven by its own 
clock. Let us briefly discuss such a parallel implementation of 
the Gibbs Sampler and its advantage over the serial version. 

Computation is parallel in the sense that it is realized by sim­
ple and alike units operating largely independently. Units are 
dependent only to the extent that each must transmit its cur­
rent state to its neighbors. Most importantly, the amount of 
time required for one complete update of the entire system is 
independent of the number of sites. In the raster version, we 
simply "move" a processor from site to site. Upon arriving at 
a site, this processor must first load the local neighborhood 
relations and state values, perform the replacement, and move 
on. The time required to refresh s grows linearly with N = I sJ. 
Thus, for example, for the purposes at hand, the parallel pro­
cedure is potentially at least 104 times faster than the raster 
version we used, and which required considerable CPU time on 
a VAX 780. Of course, we recognize that the fully parallel 
version will require extremely sophisticated new hardware, 
although we understand that small prototypes of similar ma­
chines are underway at several places. 

A more modest degree of parallelism can be simply imple­
mented. Since the convergence theorems are independent of 
the details of the site replacement scheme n 1 , n2 , • • • the 
graph associated with the MRF \ can be divided into collec­
tions of sites with each collection assigned to an independently 
running (asynchronous) processor. Each such processor would 
execute a raster scan updating of its assigned sites. Communi­
cation requirements will be small if the division of the graph 
respects the natural topology of the scene, provided, of course, 
that the neighborhood systems are reasonably local. Such an 
implementation, with five or ten micro- or minicomputers, rep­
resents a straightforward application of available technology. 

XII. GIBBS SAMPLER: MATHEMATICAL FOUNDATIONS 

As in Section XI, (nt), t = 1, 2, · · · , is the sequence in which 
the sites are visited for updating, and Xs(t) denotes the state 
of sites after t replacement opportunities, of which only those 
for which n7 = s, 1 ~ T ~ t, involve sites. For simplicity, we 
will assume a common state space As= A= {O, 1, · · · , L - 1}, 
and as usual that 0 < 1T( w) < 1 for all w E n or, what is the 
same, that supw I U(w)I < 00 • The initial configuration is X(O). 

We now investigate the statistical properties of the random 
process {X(t), t = 0, 1, 2, · · ·}. The evolution X(t - 1)--* X(t) 
of the system was explained in Section XI. In mathematical 
terms, 

P(Xs(t) = Xs, s ES) 

= 1T(Xnt =xntlXs =xs, s =l=nt)P(Xs(t- 1) 

= Xs, s =I= nt) (12 .1) 

where, of course, 1T = e-u1r;z is the Gibbs measure which 
drives the process. Our first result states that the distribution 
of X(t) converges to 1T as t--* 00 regardless of X(O). The only 

assumption is that we continue to visit every site, obviously a 
necessary condition for convergence. 

Theorem A (Relaxation): Assume that for each s ES, these­
quence {nt, t > 1} contains s infinitely often. Then for every 
starting configuration T/ E n and every W E n, 

lim P(X(t) = wlX(O) = ri) = 1T(w). (12.2) 
t--+oo 

The proof appears in the Appendix, along with that of Theo­
rem B. Like the Metropolis algorithm, the Gibbs Sampler pro­
duces a Markov chain {X(t), t = 0, 1, 2, · · · } with 1T as equilib­
rium distribution. The only complication is that the transition 
probabilities associated with the Gibbs Sampler are nonstation­
ary, and their matrix representations do not commute. This 
precludes the usual algebraic treatment. These issues are dis­
cussed in more detail at the beginning of the Appendix. 

We now turn to annealing. Hitherto the temperature has 
been fixed. Theorem B is an "annealing schedule" or rate of 
temperature decrease which forces the system into the lowest 
energy states. The necessary programming modification in the 
relaxation process is trivial, and the local nature of the calcula­
tions is preserved. 

Let us indicate the dependence of 1T on T by writing 1Tr, and 
let T(t) denote the temperature at stage t. The annealing pro­
cedure generates a different process {X(t), t = 1, 2, · · · } such 
that 

P(Xs(t) = Xs, s ES) 

= 1TT(t)(Xnt = XntJXs = Xs, s =I= nr) 

· P(Xs(t - 1) = Xs, s =I= nt). 

Let 

n 0 = {wEn:U(w)=min U(ri)}, 
T/ 

(12.3) 

(12.4) 

and let 1To be the uniform distribution on n 0 • Finally, define 

U* =max U(w), 
w 

U* =min U(w), 
w 

(12.5) 

Theorem B (Annealing): Assume that there exists an integer 
r > N such that for every t = 0, 1, 2, · · ·we have 

Let T(t) be any decreasing sequence of temperatures for which 

a) T(t)-*O as t-*oo; 
b) T(t) >ND.flog t 

for all t > t0 for some integer t0 > 2. 

Then for any starting configuration T/ E n and for every 
wEn, 

lim P(X(t) = wlX(O) = ri) = 1T0 (w). (12.6) 
t--+ 00 

The first condition is that the individual "clocks" do not 
slow to an arbitrarily low frequency as the system evolves, and 
imposes no limitations in practice. For raster replacement, 
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T = N. The major practical weakness is b ); we cannot truly fol­
low the "schedule" ND.flog t. For example, with N= 20,000 
and D. = 1, it would take e40•000 site visits to reach T= 0.5. 
We single out this temperature because we have obtained good 
results by making T decrease from approximately T = 4 to T = 
0.5 over 300-1000 sweeps (= 300N - lOOON replacements), 
using a schedule of the form C/log (I + k), where k is the num­
ber of full sweeps. (Notice that the condition in b) is then sat­
isfied provided C is sufficiently large.) Apparently, the bound 
in b) is far from optimal, at least as concerns the constant ND.. 
(In fact, the proof of Theorem B does establish something 
stronger, namely that D. can be taken as the largest absolute 
difference in energies associated with pairs w and w* which 
differ at only one coordinate. But this improvement still 
leaves ND. too large for actual practice.) On the other hand, 
the logarithmic rate is not too surprising in view of the wide­
spread experience of chemists that T must be lowered very 
slowly, particularly near the freezing point. Otherwise one en­
counters undesirable physical embodiments of local energy 
minima. 

Concerning ergodicity, in statistical physics one attempts to 
predict the observable quantities of a system in equilibrium; 
these are the "time averages" of functions on n. Under the 
"ergodic hypothesis," one assuumes that (10.1) is in force, so 
that time averages approach the corresponding "phase aver­
ages" or expected values. The analog for our system is the 
assertion that, in some suitable sense, 

1 n 1 Jim - L Y(X(t))= Y(w)d7T(w). 
n-+oo n t=l n 

(12.7) 

(Here again Tis fixed.) As we have aheady stated, a direct cal­
culation of the righthand side of (12.7), namely, 

L Y(w) e-U(w)/T /L e-U(w)/T 

w I w 

is impossible in general. The left-hand side of (12.7) suggests 
that we use the Gibbs Sampler and compute a time average of 
the function Y. For most physical systems, the ergodic hy­
pothesis is just that-a hypothesis-which can rarely be verified 
in practice. Fortunately, for our system it is not too difficult 
to directly establish ergodicity. 

Theorem C (Ergodicity): Assume that there exists a T such 
that S ~ {nt+ 1 , • • • , nr+r} for all t. Then for every function 
Y on Q and for every starting configuration 7] E Q, (I 2.7) 
holds with probability one. 

XIII. EXPERIMENTAL RESULTS 

There are three groups of pictures. Each contains an original 
image, several degraded versions, and the corresponding resto­
rations, usually at two stages of the annealing process to illus­
trate its evolution. The degradations are formed from com­
binations of 

i) 1> absent or ¢(x) = y'X; 
ii) multiplicative or additive noise; 

iii) signal-to-noise levels. 

The signal-to-noise ratios are all very low. For blurring, we 
always took the convolution Hin (2.3). The restorations are 

all MAP estimates generated by the serial Gibbs Sampler with 
annealing schedule 

Tfk)- C 
'- log (I + k)' 

I~k~K 

where T(k) is the temperature during the kth iteration(= full 
sweep of S), so that K is the total number of iterations. In 
each case, C = 3.0 or C = 4.0. No pre- or postfiltering, nor 
anything else was done. The models for the intensity and line 
processes were kept as simple as possible; indeed, only cliques 
of size two appear in the intensity model. 

Group 1: The original image [Fig. 2(a)] is a sample of an 
MRF on Z 128 with L = 5 intensities and the eight-neighbor sys­
tem (Fig. I, c = 2). The potentials V c = 0 unless C = {r, s}, in 
which case 

{ 

1 
3, 

Vc(f) = -1 
3' 

fs =fr 

fs =I= fr· 

Two hundred iterations (at T= I) were made to generate 
Fig. 2(a). 

The first degraded version is Fig. 2(b ), which is simply Fig. 
2(a) plus Gaussian noise with a= 1.5 relative to gray levels f, 
1~f~5. Fig. 2(c) is the restoration of Fig. 2(b) with K = 25 
iterations only, i.e., early in the annealing process. In Fig. 
2(d), K = 300. 

The second degraded image [Fig. 3(b)] uses the model 

r.: =H(F) 1f2 • 'I (13.1) 

where µ = I and a = 0.1, again relative to intensities I ~ f ~ 5. 
Fig. 3( c) and 3( d) shows the restorations of Fig. 3(b) with K = 
25 and K = 300, respectively. 

Group 2: Fig. 4(a) is "hand-drawn." The lattice size is 64 X 
64 and there are three gray levels. Gaussian noise (µ = 0, a= 
0.7) was added to produce Fig. 4(b). We tried two types of 
restoration on Fig. 4(b ). First, we used the "blob process" 
which generated Fig. 2(a) for the F -model. There was no line 
process and K = 1000. Obviously these are flaws; see Fig. 4(c). 

A line process L was then adjoined to F for the original 
image model, and the corresponding restoration after 1000 
iterations is shown in Fig. 4( d). L itself was described in Case 
2 of Section III and the neighborhood system for (F, t.) on 
Z64 U D64 was discussed in Case 3 of Section III. The (prior) 
distribution on \ = (F, t) was as follows. The range of f1 is 
{O, I, 2} (L = 3 intensities). The energy U(f, /) consists of 
two terms, say U(f!I) + U(l). To understand the interaction 
term U(fl I), let d denote a line site, say between pixels rand 
s. If Ld = I, i.e., an edge element is "present" at d, then the 
bond between s and r is "broken" and we set V{r, s}Ur.fs) = 

0 regardless of fr.fs; otherwise (Ld = O) V{r, s} is as before ex­
cept that ±} are replaced by ±I. As for U(I), only cliques of 
size four are nonzero, of which there are six distinct types up 
to rotations. These are shown in Fig. 5(a) with their asso­
ciated energy values. 

Then we corrupted the hand-drawn figure using (13.l)with 
the same noise parameters as Fig. 3(b ), obtaining Fig. 6(b ), 
which is restored in Fig. 6(c) using the same prior on(!", L) 
as above and with K = 1000 iterations. 
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(a) (c) 

(b) (d) 

Fig. 2. (a) Original image: Sample from MRF. (b) Degraded image: Additive noise. (c) Restoration: 25 iterations. (d) 
Restoration: 300 iterations. 

Group 3: The results in Group 2 suggest a boundary-finding 
algorithm for general shapes: allow the line process more 
directional freedom. Group 3 is an exercise in boundary find­
ing at essentially 0 dB. Fig. 7(a) is a 64 X 64 segment of a 
roadside photograph that we obtained from the Visions Re­
search Group at the University of Massachusetts. The levels 
are scaled so that the (existing) two peaks in the histogram 
occur at f = 0 and f = 1. We regard Fig. 7(a) as the blu"ed 
image H(F). Noise is added in Fig. 7(b); the standard error is 
a= 0.5 relative to the two main gray levels f = 0, 1. 

Figs. 7( c) and 7( d) are "restorations" of Fig. 7(b) for K = 
100 and K = 1000 iterations, respectively. The outcome of 
the line process is indicated by painting black any pixels to the 
left of or above a "broken bond." The two main regions, com­
prising the sign and the arrow, are perfectly circumscribed by a 
continuous sequence of line elements. 

The model for X is more complex than the one in Group 2. 
There are now four possible states for each line site corre­
sponding to "off" (1 = 0) and three directions, shown in Fig. 
S(b ). The U(f 11) term is the same as before in that the pixel 
bond between rand s is broken whenever Id =F 0. The range of 
F is {O, I} (L = 2). 

Only cliques of size four are nonzero in U(I), as before. 
However, there are now many combinations for (ld

1
, ld

2
, ld

3
, 

ld
4

) given such a clique C = {d1 , d2 , d3 , d4 } of line sites, al­
though the number is substantially reduced by assuming rota­
tional invariance, which we do. Fig. S(c) shows the conven­
tion we will use for the ordering and an example of the nota­
tion. The energies for the possible configurations (Id;, 1 ~ i ~ 
4) range from 0 to 2.70. (Remember that high energies cor­
respond to low probability, and that the exponential exagger­
ates differences.) We took V(O , 0, 0, 0) = 0 and V(ld;• 1 ~ i ~ 
4) = 2.70 otherwise, except when exactly two of the ldt are 
nonzero. Parallel segments [e.g., (1 , 0, 1, O)] receive energy 
2.70 ; sharp turns [e.g., (0, 2, 1, O)] and other "corner" types 
get 1.80; mild turns [e.g. , (0, 2, 3, O)] are l.35;and continua­
tions [e.g. , (2 , 0 , 2, 0) or (0, 1, 3, O)] are 0.90. 

XIV. CONCLUDING R EMARKS 

We have introduced some new theoretical and processing 
methods for image restoration. The models and estimates are 
noncausal and nonlinear, and do not represent extensions into 
two dimensions of one-dimensional filtering and smoothing 
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(a) (c) 

(b) (d) 

Fig. 3. (a) Original image: Sample from MRF. (b) Degraded image: Blur, nonlinear transformation, multiplicative noise. 
(c) Restoration: 25 iterations. (d) Restoration: 300 iterations. 

algorithms. Rather, our work is largely inspired by the meth­
ods of statistical physics for investigating the time-evolution 
and equilibrium behavior of large, lattice-based systems. 

There are, of course, many well-known and remarkable fea­
tures of these massive, homogeneous physical systems. Among 
these is the evolution to minimal energy states, regardless of 
initial conditions. In our work posterior (Gibbs) distribution 
represents an imaginary physical system whose lowest energy 
states are exactly the MAP estimates of the original image 
given the degraded "data." 

The approach is very flexible . The MRF-Gibbs class of 
models is tailor-made for representing the dependencies among 
the intensity levels of nearby pixels as well as for augmenting 
the usual, pixel-based process by other, unobservable attribute 
processes, such as our "line process," in order to bring exoge­
nous information into the model. Moreover, the degradation 
model is almost unrestricted; in particular, we allow for defor­
mations due to the image formation and recording processes. 
All that is required is that the posterior distribution have a 
"reasonable" neighborhood structure as a MRF, for in that 
case the computational load can be accommodated by appro-

priate variants (such as the Gibbs Sampler) of relaxation algo­
rithms for dynamical systems. 

APPENDIX 

PROOFS OF THEOREMS 

Background and Notation 

Recall that A= {O, 1, 2, · · · , L - 1} is the common state 
space, that ri, rt', w, etc. denote elements of the configuration 
space n =AN, and that the sites S = {s1, s2 , · · · , sN} are vis­
ited for updating in the order {n 1 , n2 , • • ·}CS. The result­
ing stochastic process is {X(t), t = 0, 1, 2, ···}, where X(O) is 
the initial configuration. 

For Theorem A, the transitions are governed by the Gibbs 
distribution rr(w)=e-U(w)/Tjz in accordance with (12.1), 
whereas, for Theorem B (annealing), we use rrr(t) (see Section 
XII) for the transition X(t - 1) ~ X(t) [see (12.3)]. 

Let us briefly discuss the process {X(t), t ~ 0}, restricting 
attention to constant temperature ; the annealing case is essen­
tially the same. To begin with, {X(t), t ~ O} is indeed a Mar­
kov chain; this is apparent from its construction. Fix t and 
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(a) (c) 

(b) (d) 

Fig. 4. (a) Original image: "Hand-drawn." (b) Degraded image: Additive noise. (c) Restoration: Without line process; 
1000 iterations. (d) Restoration: Including line process; 1000 iterations. 
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(a) (b) 

(c) 

Fig. 6. (a) Original image: "Hand-drawn." (b) Degraded image: Blur, 
nonlinear transformation, multiplicative noise. (c) Restoration: in­
cluding line process; 1000 iterations. 

w E Q. For any x EA, let wx denote the configuration which 
is x at site n1 and agrees with w elsewhere. The transition ma­
trix at time tis 

{

7T(X nt = Xnt I Xs = Xs, S * n1), 

(Mt)11 , w = if 'Tl= wx for some x EA 

0, otherwise 

where (Mt) 11 ,w denotes the row rz, column w entry of M1, and 
w = (xsp Xs2 , · · · , XsN). In particular, the chain is nonstation­
ary, although clearly aperiodic and i"educible (since 7T( w) > 
0 V w ). Moreover, given any starting vector (distribution) µ0 , 

the distribution of X(t) is given by the vector µ0 TI/= 1 Mi, i.e., 

Pµ 0 (X(t) = w) = (µ 0 X fl M1) 

1=1 w 

= L P(X(t) = wjX(O) = rz) µo(rz). 
1) 

Notice that 1T is the (necessarily) unique invariant vector, i.e., 
for every t = 1, 2, · · · , 

1T(w) = (1TM1)w = L P(X(t) = wjX(O) = rz) 1T(rz). 
1) 

To see this, fix t and w = {xs}, and write 

(1TMt)w = L 1T(rz)(Mtk w 
1) 

(A.I) 

= (M1) x' L 1T(wx) (for any x' EA) 
w ,w xEA 

= 1T(w). 

It will be convenient to use the following, semistandard no­
tation for transitions. For nonnegative integers r < t and 
w, rzE il, set 

P(t, wlr, 11) = P(X(t) = wlX(r) = 11) 
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(a) (c) 

(b) (d) 

Fig. 7. (a) Blurred image (roadside scene). (b) Degraded image: Addi­
tive noise. (c} Restoration including line process; 100 iterations. (d) 
Restoration including line process; 1000 iterations. 

and, for any distribution µ on il, set 

P(t, wjr, µ) = L P(t, wjr, 11) µ(17). 
11 

Finally, IIµ - vii denotes the I. 1 distance between two distri­
butions on il: 

IIµ - vii= L jµ(w) - v(w)j. 
w 

Obviously, µn ~ µ(n ~ 00) in distribution (i.e., µn( w) ~ µ( w) 
'</ w) if and only if llµn - µII~ 0, n ~ 00• (Remember that il 
is finite.) 

Proof of Theorem A : Set T0 = 0 and define T1 < T2 < · · · 
such that 

Ss;;;_ {nrk-I +1,nTk-I +2• • •• ,nrk}, k = 1, 2, · · · . 

This is possible since every site is visited infinitely often. 
Clearly (at least) k iterations or full sweeps have been com­
pleted by "time" Tk. In particular, kN,;;;; Tk < 00 '</ k. Let 

K(t) =sup {k : Tk < t}. 

Obviously K(t) ~ 00 at t ~ 00• The proof of Theorem A is 
based on the following lemma, which also figures in the proof 
of the annealing theorem. 

Lemma J: There exists a constant r, 0,;;;; r < 1, such that for 
every t = 1 , 2, · · · , 

S1!P,, jP(X(t) = wjX(O) = 171
) - P(X(t) 

W , 1'j , 1'j 

Assume for now that the lemma is true. Since 1T is an in­
variant vector for the chain: 

lim sup jP(X(t) 
t-+ 00 w , 1} 

= wjX(O) = 17) - 7r(w)j 

= lim sup IL 7r(77
1

) {P(X(t) 
t-+ 00 w , 11 11' 

= wjX(O) = 11) - P(X(t) = wjX(O) = 77')}1 
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[by (AJ)] Certainly, for each w E il, 

~ lim sup ,. IP(X(t) = wlX(O) = 71') 
t-+ 00 w, 1l ' ,.., 

- P(X(t) = wl X(O) = 71")! 

= 0, by Lemma 1. 

So it suffices to prove Lemma 1. 
Proof of Lemma 1: For each k = 1, 2, ···and 1 ~ i ~N, 

let mi be the time of the last replacement of site si before Tk + 
1, i.e., 

We can assume, without loss of generality, that m1 > m2 > 
· · · > mN; ?therwise, relabel the sites. For any w = (x 81' • • · , 

x8N)and w, 

P(X(Tk) = wjX(Tk_i) = w') 

= P(X81 (mi)= x81' · · · , X8N(mN) 

=xsNjX(Tk_ 1) = w') 

N 

= n P(Xs/m;)=xs;IXs;+1(m;+1) 
I= I 

Let {i be the smallest probability among the local characteristics: 

{i = inf 1T(X8i = Xs;IXs· = X8., j i= i). 
(Xs1• ... ,XsN)EO. I I 

t <;. i.;;.N 

sup L P(X(t) = w!X(T1) = w')P(X(Ti) = w'jX(O) = 71) 
1J w' 

~sup L P(X(t)=w1X(T1)=w')µ(w') 
µ w' 

where the supremum is over all probability measures µ on n 
which, by (A.2), are subject to µ(w') ~ {iN 'if w'. Suppose 
w'-+ P(X(t) = wjX(T1) = w') is maximized at w' = w* (which 
depends on w ). Then the last supremum is attained by plac­
ing mass {iN on each w' and the remaining mass, namely, 1 -
In! {iN = 1 - LNliN, on w*. The value so obtained is 

(1 - (LN - 1) liN)P(X(t) 

= wjX(T1) = w*) 

+ {iN L: P(X(t) = w!X(Ti) = w'). 
w' * w• 

Similarly, 

inf L: P(X(t) = wlX(Ti)=w')P(X(T1)=w'IX(0)=11) 
1J w' 

~(1- (LN - l)liN)P(X(t) 

= wjX(Ti) = w*) 

+ {iN L P(X(t) = w!X(Ti) = w*) 
w'*w* 

where w'-+ P(X(t) = wlX(Ti) = w') is minimized at w*. It 
follows immediately that 

Q(t,w)~(l -LNliN){P(X(t) 

Then 0<{i<1 and a little reflection shows that every term in = w!X(T1) = w*)- P(X(t) = w!X(T1) = w*)}, 

the product above is at least li. Hence, and hence, 

inf P(X(Tk) = wlX(Tk-d = w')~ liN. 
k=1,2,-·· . w,w 

(A.2) 

Consider now the inequality asserted in Lemma 1. It is triv­
ial for t ~ T1 since in this case K(t) = 0. For t > T1 , 

sup . " W, 1]' 1] 

IP(X(t) = w!X(O) = 71')- P(X(t) = w!X(O) = 7111 )! 

=sup {sup P(X(t) = w!X(O) = 71) 
w 1] 

- inf P(X(t) = w I X(O) = 71)} 
1] 

= sup {sup L P(X(t) = w I X(T1) 
w 11 w' 

= w')P(X(T1) = w'JX(O) = 71) 

- inf L P(X(t) = w!X(T1) 
11 w' 

= w')P(X(Ti) = w'JX(O) = 11)} 

=sup Q(t, w). 
w 

sup jP(X(t) = w!X(O) = 71')- P(X(t) = wlX(O) = 7111 )J . " w, 1]' 1] 

~(I-LNliN) s~p" jP(X(t) 
w, 1]' 11 

= wlX(T1) = 71')- P(X(t) 

= wJX(Ti) = 7111 )1. 
Proceeding in this way, we obtain the bound 

(I - L N {iNl(t) sup jP(X(t) . " w, 1], 11 

= wlX(TK(t)) = 71')- P(X(t) = wjX(TK(t)) = 71")J 

and the lemma now follows with r = 1 - L N {iN. Notice that 
r = 0 corresponds to the (degenerate) case in which {i = L- 1 , 

i.e., all the local characteristics are uniform on A. Q.E.D. 
Proof of Theorem B: We first state two lemmas. 

Lemma 2: For every t 0 = 0, 1, 2, · · · , 

lim sup IP(X(t) 
t~oo W,fl','fl" 

= wJX(t0 ) = 71') - P(X(t) = wJX(t0 ) = 7111 )J = 0. 
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Lemma 3: 

lim sup JJP(t, · Jto, 1To)- 1ToJJ = 0. 
to--> oo t~ to 

Recall that 1To is the uniform probability measure over the 
minimal energy states Q 0 = {w: U(w) = min11 U(17)}. 

First we show how these lemmas imply Theorem B, which 
states that P(X(t) = · JX(O) = 17) converges to 1To as t ~ 00• For 
any Tl E Q, 

lim llP(X(t) = · JX(O) = 17)- 1Toll 
t--> 00 

= lim lim //I: P(t, · J to, 17') 
to -->oo t-->oo ri' 

t~ to 

· P(to, 11'Jo, 11)- 1TolJ 

< lim lim 
to ~oo t-?oo 

t~ to 
l/7P(t,· lto,T/1

) 

·P(to,11'J0,17)-P(t,· Jto,1To)ll 

+ lim lim llP(t, · J to, 1To)- 1Toll· 
to ~oo t~oo 

t~t0 

The last term is zero by Lemma 3. Furthermore, siuceP(t0 , • 

J 0, 17) and 1T0 have total mass 1, we have 

/17P(t, · I to, 11')P(to, 11'10, 17)- P(t, · I t0 , 1To) II 

= L s~p /4 (P(t,wlto,11')-P(t,wlto,1/11
)) 

w 11 11 

X (P(to, 11'10, 17)- 1To(11')) J 

<2 I; sup JP(t,wlt0 ,11')-P(t,wlt0 ,17")I. . ,, 
w ri, 11 

Finally, then, 

lim llP(X(t) = · I X(O) = 17) - 1To II 
t--> 00 

<2 I; lim lim s,up,, IP(t,wlt0 ,171
) 

w to-->oo t-->oo 11,11 
t~ to 

- P(t, wl t0 , 17")1 

= 0 by Lemma 2. Q.E.D. 

Proof of Lemma 2: We follow the proof of Lemma 1. Fix 
t 0 = 0, 1, · · · and define Tk = t 0 + kT, k = 0, 1, 2, · · ·. Re­
call that Sh_ {nt+i. · · · ,nt+T} for all t by hypothesis, that 
1TT(t)(w) = e-U(w)/T(t)/Z and that U*, U* are the maximum 
and minimum of U(w), respectively, the range being~= U* -
U*. Let 

o(t) = inf 
1,,;;,i,,;;,N 

(xs1,···,xsN)Efl. 

Observe that 

e-U*/T(t) 1 
o(t)> ---=- e-1:>/T(t). 

Le-u*/T(t) L 

Now fix k for the moment and define the mi as before: 

mi= sup {t: t <Tb nt = si}, 1 < i <N. 

We again assume that m 1 > m2 > · · · > mN. Then 

P(X(Tk) = wlX(Tk-i)=w') 

= P(Xs1 (m1) = Xs1' . .. 'XsN(mN) 

=xsNIX(Tk_ 1 ) = w') 

N 

= D P(Xs;(m;)=xs;JXs;+/m;+ 1 ) 

J=l 

= Xs; + t' ... ·, XsN(mN) = XsN' X(Tk-d = w') 

N 
> n o(m;) (using (12.3) and the definition of o) 

j=I 

N 
>rN n e-1:>/T(m;) 

/=! 

>L- ex -N { ~N } 
p T(t0 + kT) 

= t0 + kT, j = 1, 2, · · · , N, and T( ·)is decreasing) 

> rN (to + kTr 1 

wherever t0 + k7 is sufficiently large. In fact, for a sufficiently 
small constant C, we can and do assume that 

cL-N 
inf P(X(Tk) = wlX(Tk _i) = w') > (A.3) 

w, w' to+ kT 

for every t0 = 0, 1, 2, · · · and k = 1, 2, · · · , bearing in mind 
that Tk depends on t0 • 

For each t > t0 , define K(t) = sup {k: Tk < t} so that K(t) ~ 
00 as t ~ 00 • Fix t > T1 and continue to follow the argument 
in Lemma 1, but using (A.3) in place of (A.2), obtaining 

sup IP(X(t) = wlX(to) = 11')- P(X(t) = wlX(t0 ) = 11")1 
' ,, w,71,11 

K(t) ( C ) <n 1---. 
k=1 to+kT 

Hence it will be sufficient to show that 

m ( C ) lim CT 1--- =O 
m-->oo k=I t0 +kT 

(A.4) 

for every t 0 • However, (A.4) is a well-known consequence of 
the divergence of the series Lk (t0 + kT)- 1 for all t 0 , 7. This 
completes the proof of Lemma 2. 

Proof of Lemma 3: The probability measuresP(t, · I t 0 , 1To) 
figure prominently in the proof, and for notational ease we 
prefer to write Pt0 , tC ·),so that for any t > t 0 > 0 we have 

Pt0 , t(w) = L P(X(t) = wlX(to) = 11) 1T0 (17). 
11 

To begin with, we claim that for any t > t0 > 0, 

11Pt0 ,t - 1TT(t)" <; 11Pt0 ,t-1 - 1TT(t)"· (A.5) 
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Assume for convenience that nt = s1 • Then 

llPto,t - 7TT(t)ll 

I: 
(xsl' ... 'XsN) 

. pto,t-1 (Xs =xs, s =1=-si) 

- 1TT(t)(Xs = X8 , s E S)I 

= L { L 1Tr(t)(Xs1 = Xs 1 I Xs = X8 , S =I=- S1) 
Xs2····,xsN Xs1EA 

X !Pt0 , 1 _ 1(X8 =x8 ,s=l=-si) 

- 1TT(t)(X8 = X8 , S =I=- S1) I } 

L 1Pt0 ,1-1(Xs=x8 ,s=l=-si) 
Xs2' ... 'XsN 

- 1TT(t)(Xs=xs,s=l=-s1)\ 

L \ L {Pt0 ,t- 1(X8 =x8,sES) 
Xs2' ... 'XsN Xs1 

- 1Tr(t)(X8 = X8 , s ES)} I 

= 

< L JP10 ,1-1(X8 =X8 ,sES) 
(Xs1' ... 'XsN) EU 

= llPto,t-1 - 1TT(t)ll· 

Observe that II tr0 - trr(t)ll-+ 0 as t-+ 00• To see this, let 
I no I be the size of no . Then 

w'EUo 

t-+ 00 

e-U(w)/T(t) 

w'EU\Uo 

e-(U(w)-U*)/T(t) 

{
o, 

-----+ I 
wEn0 • 

lnoJ' 

Next, we claim that 

00 

L Jltrr(t) - trr(t+1>ll < 00 • 

t= 1 

Since 

00 

e-U(w')/T(t) 

(A.6) 

(A.7) 

L lltrr(t)-trT(t+1)l1=.L L ltrr(t)(w)-trr(t+1)(w)I 
t=1 W t=I 

and since 1TT(t)(w)-+ 7T0 (w) for every w, it will be enough to 
show that, for every w, trr(w) is monotone (increasing or de­
creasing) in T for all T sufficiently small. But this is clear from 
(A.6): if w ti- n0 , then a little calculus shows that 1Tr( w) is 
strictly increasing for TE (0, €) for some €, whereas if w E 

n 0 , then 1Tr( w) is strictly decreasing for all T > 0. 

Lemma 3 can now be obtained from (A.5) and (A.7) in the 
following way. Fix t > t0 > 0: 

llP10 ,t - tro\\ 

< l1P10 ,t - trr(t)\\ + ll1Tr(t) - 7Toll 

< l1P10 ,t-1 - 1Tr(t)I\ + lltrr(t)- 1To\\, by (A.5) 

< llP10,t-1 - 7Tr(t-1)JI + ll7Tr(t-1) 

- trr(t) II + II 1TT(t) - tro II 
< 11Pt0 ,t-2 - trr(t-1)11 + ll7Tr(t-1) 

- 1Tr(t) II + II trr(t) - tro !I 
< llP10 ,t-2 - 1Tr(t-2)ll + !ltrr(t-2) 

- trr(t-1)!1 + ll7Tr(t-1) - 1TT(t)ll 

+ II 1T'.f(t) - troll· 

Proceeding in this way, 

t-1 
l\P10,t- 1Tol\ < llPto,to - 1TT(to)ll + L 111Tr(k) 

k = t 0 

- 1Tr(k+1)ll + lltrr(t)- troll· 

Since P10 , to = tr0 and II 1Tr(t) - 1To II -+ 0 as t-+ 00, we have, 

lim sup 11Pt0 , 1 - troll 
t0 -+oo t-,,.t0 

t-1 
< lim sup L II 1TT(k) - trr(k+1)!1 

to-+oo t>to k=to 

00 

= lim I: 
to-+oo k=to 

= 0 due to (A.7). 
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