
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

476 American Scientist, Volume 95

Computing Science

© 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Computing in a Parallel Universe

Brian Hayes

The pace of change in com-
puter technology can be breath-

taking—and sometimes infuriating.
You bring home a new computer, and
before you can get it plugged in you’re
hearing rumors of a faster and cheaper
model. In the 30 years since the micro-
processor first came on the scene, com-
puter clock speeds have increased by a
factor of a thousand (from a few mega-
hertz to a few gigahertz) and memory
capacity has grown even more (from
kilobytes to gigabytes).

Through all this frenzy of upgrades
and speed bumps, one aspect of com-
puter hardware has remained stub-
bornly resistant to change. Until re-
cently, that new computer you brought
home surely had only one CPU, or
central processing unit—the computer-
within-the-computer where programs
are executed and calculations are per-
formed. Over the years there were
many experiments with multiproces-
sors and other exotica in the world of
supercomputers, but the desktops and
laptops familiar to most of us contin-
ued to rely on a single-CPU architec-
ture whose roots go back to the age of
the vacuum tube and the punch card.

Now a major shift is under way.
Many of the latest computers are
equipped with “dual core” proces-
sor chips; they bundle two CPUs on
a single slab of silicon. The two pro-
cessors are meant to share the work
of computation, potentially doubling
the machine’s power. Quad-core chips
are also available; Intel has announced
an eight-core product, due in 2009;
Sun Microsystems has been testing a
16-core chip. A company called Tilera
even offers 64 cores. It seems we are
on the threshold of another sequence

of doublings and redoublings, with
the number of cores per chip following
the same kind of exponential growth
curve that earlier traced the rise in
clock speed and memory capacity.

The next computer you bring home,
a few years from now, could have hun-
dreds or even thousands of processors.
If all goes according to plan, you may
notice nothing different about the new
machines apart from another boost in
performance. Inside, though, coordi-
nating all those separate computation-
al cores is going to require profound
changes in the way programs are de-
signed. Up to now, most software has
been like music written for a solo per-
former; with the current generation
of chips we’re getting a little experi-
ence with duets and quartets and other
small ensembles; but scoring a work
for large orchestra and chorus is a dif-
ferent kind of challenge.

Free Lunch
Why build chips with multiple proces-
sors? Why not just keep cranking up
the speed of a single CPU? If the latter
option were feasible, the chipmakers
would be delighted to adopt it. They
are turning to multicore systems only
because the path to higher gigahertz
seems to be blocked, at least for now.

The causes of this impasse lie in the
peculiar physical and economic laws
that govern the design of integrated
circuits. The most celebrated of those

laws is an economic miracle: As tran-
sistors or other components are made
smaller and packed more densely on
the surface of a silicon chip, the cost
of producing the chip remains nearly
constant. Thus the cost per transistor
steadily declines; it’s now measured in
nanodollars. This extraordinary fact is
the basis of Moore’s Law, formulated
in 1965 by Gordon E. Moore, one of the
founders of Intel. Moore observed that
the number of transistors on a state-of-
the-art chip doubles every year or two.

Less famous than Moore’s Law but
equally important are several “scaling
laws” first stated in 1974 by Robert
H. Dennard and several colleagues at
IBM. Dennard asked: When we reduce
the size of a transistor, how should we
adjust the other factors that control its
operation, such as voltages and cur-
rents? And what effect will the changes
have on performance? He found that
voltage and current should be pro-
portional to the linear dimensions of
the device, which implies that power
consumption (the product of voltage
and current) will be proportional to
the area of the transistor. This was an
encouraging discovery; it meant that
even as the number of devices on a
chip increased, the total power density
would remain constant.

Dennard’s conclusion about per-
formance was even more cheering. In
digital circuits, transistors act essen-
tially as on-off switches, and the cru-
cial measure of their performance is
the switching delay: the time it takes to
go from the conducting to the noncon-
ducting state or vice versa. The scaling
laws show that delay is proportional to
size, and so as circuits shrink they can
be operated at higher speed.

Taken together, these findings sug-
gest that our universe is an especially
friendly place for making electronic
computers. In other realms, the laws
of nature seem designed to thwart us.
Thermodynamics and quantum me-

Brian Hayes is Senior Writer for American Sci-
entist. Additional material related to the “Comput-
ing Science” column appears in Hayes’s Weblog at
http://bit-player.org. Address: 211 Dacian Avenue,
Durham, NC 27701. Internet: bhayes@amsci.org

Multicore chips
could bring about
the biggest change

in computing since
the microprocessor

2007 November–December 477www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

chanics tell us what we can’t hope to
do; levers amplify either force or dis-
tance but not both. Everywhere we
turn, there are limits and tradeoffs,
and no free lunch. But Moore’s Law
and the Dennard scaling rules promise
circuits that gain in both speed and
capability, while cost and power con-
sumption remain constant. From this
happy circumstance comes the whole
bonanza of modern microelectronics.

The Impasse
Free lunch is great, but there’s still a
bill to pay for breakfast and dinner.
Throughout the past decade, chip de-
signers have struggled with two big
problems.

First, although CPUs are a thou-
sand times faster, memory speed has
increased only by a factor of ten or so.
Back in the 1980s, reading a bit from
main memory took a few hundred
nanoseconds, which was also the time
needed to execute a single instruction
in a CPU. The memory and the proces-
sor cycles were well matched. Today,
a processor could execute a hundred
instructions in the time it takes to get
data from memory.

One strategy for fixing the memory
bottleneck is to transfer data in large
blocks rather than single bits or bytes;
this improves throughput (bits per sec-
ond), but not latency (the delay be-
fore the first bit arrives). To mitigate
the latency problem, computers are
equipped with an elaborate hierarchy
of cache memories, which surround
the processor core like a series of wait-
ing rooms and antechambers. Data and
instructions that are likely to be needed
immediately are held in the innermost,
first-level cache, which has only a
small capacity but is built for very high
speed. The second-level cache, larger
but a little slower, holds information
that is slightly less urgent. Some sys-
tems have a third-level cache.

Reliance on cache memory puts a
premium on successfully predicting
which data and instructions a program
is going to call for next, and there’s
a heavy penalty when the prediction
is wrong. Moreover, processor chips
have to sacrifice a large fraction of their
silicon area to make room for caches
and the logic circuits that control them.
As the disparity between memory and
CPU speed grows more extreme, a pro-
cessor begins to look like a shopping
mall where the stores are dwarfed by
the surrounding parking lot. At some

point, all the benefits of any further
boost in processor speed will be eaten
up by the demand for more cache.

The second problem that plagues
chip designers is a power crisis. Den-
nard’s scaling laws promised that
power density would remain constant
even as the number of transistors and
their switching speed increased. For
that rule to hold, however, voltages
have to be reduced in proportion to
the linear dimensions of the transistor.
Manufacturers have not been able to
lower operating voltages that steeply.

Historically, each successive genera-
tion of processor chips has scaled the
linear dimensions by a factor of 0.7,
which yields an area reduction of one-
half. (In other words, density doubles.)
The scaling factor for voltages, howev-
er, has been 0.85 rather than 0.7, with
the result that power density has been
rising steadily with each new genera-
tion of chips. That’s why desktop ma-
chines now come equipped with fans

that could drive a wind tunnel, and
laptops burn your knees.

In the future, even the 0.85 voltage
reduction looks problematic. As volt-
age is lowered, transistors become
leaky, like valves that cannot be com-
pletely shut off. The leakage current
now accounts for roughly a third of
total power consumption; with further
reductions in voltage, leakage could
become unmanageable. On the other
hand, without those continuing volt-
age reductions, the clock rate cannot
be increased.

These problems with memory la-
tency and power density are some-
times viewed as signalling the end of
Moore’s Law, but that’s not the apoca-
lypse we’re facing. We can still pack
more transistors onto a chip and man-
ufacture it for roughly constant cost.
The semiconductor industry “road-
map” calls for increasing the number
of transistors on a processor chip from
a few hundred million today to more

A “quad core” microprocessor chip manufactured by Advanced Micro Devices has four sepa-
rate processors that act in parallel. The cores are the four large areas of irregular geometry;
most of the gridlike regions hold cache memory. The chip is part of the AMD Opteron product
line and is also known by its prerelease codename Barcelona. The total silicon area of 285
square millimeters holds about 600 million transistors.

478 American Scientist, Volume 95 © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

than 12 billion by 2020. What appears
to be ending, or at least dramatically
slowing, is the scaling law that allows
processor speed to keep climbing. We
can still have smaller circuits, but not
faster ones. And hence the new Lilli-
putian strategy of Silicon Valley: lots of
little processors working in parallel.

A Notorious Hangout
Parallel processing is hardly a new
idea in computer science. Machines
with multiple processors were built
as early as the 1960s, when it was al-
ready widely believed that some form
of “massive parallelism” was the way
of the future. By the 1980s that future
was at hand. David Gelernter of Yale
University wrote that “parallel com-
puting, long a notorious hangout for
utopians, theorists, and backyard tin-
kerers, has almost arrived and is defi-
nitely for sale.”

Throughout that decade and into the
early 1990s novel parallel architectures
became a wonderful playground for
computer designers. For example, W.
Daniel Hillis developed the Connec-

tion Machine, which had 216 single-bit
processors (and 212 blinking red lights).
Another notable project was the Trans-
puter, created by the British semicon-
ductor firm Inmos. Transputer chips
were single processors designed for
interconnection, with built-in commu-
nications links and facilities for man-
aging parallel programs.

Software innovators were also
drawn to the challenges of parallelism.
The Occam programming language
was devised for the Transputer, and
languages called *Lisp and C* were
written for the Connection Machine.
Gelernter introduced the Linda pro-
gramming system, in which multiple
processors pluck tasks from a cloud
called “tuple space.”

What became of all these ventures?
They were flattened by the steam-
roller of mass-market technology and
economics. Special-purpose, limited-
production designs are hard to justify
when the same investment will buy
hundreds or thousands of commodity
PCs, which you can mount in racks
and link together in a loose federation
via Ethernet. Such clusters and “server
farms” soon came to dominate large-
scale computing, especially in the sci-
ences. The vendors of supercomputers
eventually gave in and began selling
systems built on the same principle.
All of the fastest supercomputers are
now elaborations of this concept. In
other words, parallelism wasn’t de-
feated; it was co-opted.

It’s also important to note that paral-
lelism of a different kind insinuated it-
self into mainstream processor designs.
The impressive performance of recent
CPU chips comes not only from giga-
hertz clock rates but also from doing
more during each clock cycle. The pro-
cessors “pipeline” their instructions,
decoding one while executing another

and storing results from a third. When-
ever possible, two or more instructions
are executed simultaneously. Through
such “instruction-level parallelism” a
single CPU can have a throughput of
more than one instruction per cycle,
on average.

Shared Memories
It is surely no coincidence that the
kinds of parallelism in widest use
today are the kinds that seem to be
easiest for programmers to manage.
Instruction-level parallelism is all but
invisible to the programmer; you cre-
ate a sequential series of instructions,
and it’s up to the hardware to find op-
portunities for concurrent execution.

In writing a program to run on a
cluster or server farm, you can’t be
oblivious to parallelism, but the archi-
tecture of the system imposes a helpful
discipline. Each node of the cluster is
essentially an independent computer,
with its own processor and private
memory. The nodes are only loosely
coupled; they communicate by passing
messages. This protocol limits the op-
portunities for interprocess mischief.
The software development process is
not radically different; programs are
often written in a conventional lan-
guage such as Fortran or C, augment-
ed by a library of routines that handle
the details of message passing.

Clusters work well for tasks that
readily break apart into lots of nearly
independent pieces. In weather predic-
tion, for example, each region of the at-
mosphere can be assigned its own CPU.
The same is true of many algorithms
in graphics and image synthesis. Web
servers are another candidate for this
treatment, since each visitor’s requests
can be handled independently.

In principle, multicore computer
systems could be organized in the

Scaling laws relate the physical dimensions of transistors to their electrical properties. In each successive generation of microprocessors lin-
ear dimensions (such as the gate width of a transistor) are reduced by a factor of about 0.7, which means the area of a transistor is cut in half.
Switching delay (the reciprocal of processing speed) is proportional to the linear size. If operating voltage could also be lowered by a factor of
0.7, a transistor’s power consumption would be proportional to its surface area, and the power density of the entire chip would remain constant.
But voltages have actually been reduced only by 0.85 per generation, with the result that power and heat have become limiting factors.

The field-effect transistor, seen here in cross
section, is the building block of virtually all
microelectronic circuits. A voltage applied
to the gate controls the flow of current from
source to drain. The transistor is fabricated by
implanting ions in selected areas (green) and
depositing layers of insulating silicon dioxide
(light gray) and metal interconnects (dark
gray). The width of the gate is a crucial dimen-
sion; in recent chips it is 65 nanometers.

2007 November–December 479www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

same way as clusters, with each CPU
having its own private memory and
with communication governed by a
message-passing protocol. But with
many CPUs on the same physical
substrate, it’s tempting to allow much
closer collaboration. In particular, mul-
ticore hardware makes it easy to build
shared-memory systems, where pro-
cessors can exchange information sim-
ply by reading and writing the same
location in memory. In software for
a shared-memory machine, multiple
computational processes all inhabit the
same space, allowing more interesting
and flexible patterns of interaction, not
to mention subtler bugs.

Losing My Minds
If our universe is a peculiarly friendly
place for builders of digital computers,
it is not so benign for creators of pro-
grams that run concurrently on paral-
lel hardware. Or maybe the difficulty
lies in the human mind rather than in
the nature of the universe.

Think of a program that reserves
airline seats. Travelers access the pro-
gram through a Web site that shows
a diagram of the aircraft interior, with
each seat marked as either vacant or
occupied. When I click on seat 3A, the
program first checks its database to
make sure 3A is still available; if it is,
I get a confirming message, and the
database is updated to show that seat
3A has been taken. All’s well, at least
in a sequential world. But you too may
be booking a seat on the same flight,
and you may want 3A. If my trans-
action completes before your request
arrives, then I’m afraid you’re out of
luck. On the other hand, if you are
quicker with the mouse, I’m the one
who will be disappointed. But what
happens if the two requests are essen-
tially simultaneous and are handled
in parallel by a multiprocessing com-
puter? Suppose the program has just
assigned the seat to me but has not yet
revised the database record when your
request reaches the Web server. At that
instant a check of the database indi-
cates 3A is still vacant, and so we both
get confirming messages. It’s going to
be a cozy flight!

Of course there are remedies for this
problem. Programming techniques for
ensuring exclusive access to resources
have been known for 50 years; they are
key assets in the intellectual heritage
of computer science, and the airline’s
programmer should certainly know

all about them. Many of the same is-
sues arise even in uniprocessor systems
where “time slicing” creates the illusion
that multiple programs are running at
the same time.

Writing correct concurrent programs
is not impossible or beyond human
abilities, but parallelism does seem to
make extreme demands on mental dis-
cipline. The root of the difficulty is non-
determinism: Running the same set of
programs on the same set of inputs can
yield different results depending on the
exact timing of events. This is discon-
certing if your approach to program-
ming is to try to think like a computer.

Even though the brain is a highly
parallel neural network, the mind
seems to be single-threaded. You may
be able to walk and chew gum at the
same time, but it’s hard to think two
thoughts at once. Consciousness is sin-
gular. In trying to understand a com-
puter program, I often imagine myself
standing at a certain place in the pro-
gram text or in a flow chart. As the in-
structions are executed, I follow along,
tracing out the program’s path. I may
have to jump from place to place to
follow branches and loops, but at any
given moment there is always one lo-
cation that I can call here. Furthermore,
I am the only actor on the stage. Noth-
ing ever happens behind my back or
out of sight. Those airline seats can’t be
assigned unless I assign them.

That’s how it works in a sequential
program. With parallel processing, the
sense of single-mindedness is lost. If I
try to trace the path of execution, I have
to stand in many places at once. I don’t
know who “I” am anymore, and there

are things happening all around me
that I don’t remember doing. “I con-
tain multitudes,” declared Walt Whit-
man, but for a computer programmer
this is not a healthy state of mind.

Edward A. Lee, of the University of
California, Berkeley, recently described
the mental challenge of writing non-
deterministic programs:

A folk definition of insanity is to
do the same thing over and over
again and expect the results to be
different. By this definition, we in
fact require that programmers of
multithreaded systems be insane.
Were they sane, they could not
understand their programs.

Lee also writes:

I conjecture that most multi-
threaded general-purpose appli-
cations are so full of concurrency
bugs that—as multicore architec-
tures become commonplace—
these bugs will begin to show up
as system failures. This scenario is
bleak for computer vendors: Their
next-generation machines will be-
come widely known as the ones
on which many programs crash.

Cynics, of course, will reply that com-
puters of every generation have exactly
that reputation.

The Slice-and-Dice Compiler
Not everyone shares Lee’s bleak out-
look. There may well be ways to tame
the multicore monster.

One idea is to let the operating sys-
tem deal with the problems of allocat-
ing tasks to processors and balancing

Software for parallel processors is susceptible to subtle errors that cannot arise in strictly
sequential programs. Here two concurrent processes both access a shared location in memory
designated by the variable name x. Each process reads the current value of x, increments it by
1, and writes the new value back to the same location. The outcome depends on the way the
two transactions are interleaved, and the timing of these events is not under the programmer’s
control. Only the rightmost case is correct.

480 American Scientist, Volume 95 © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

the workload. This is the main ap-
proach taken today with time-sliced
multiprocessing and, more recently,
with dual-core chips. Whether it will
continue to work well with hundreds
of cores is unclear. In the simplest case,
an operating system would adopt a
one-processor-per-program rule. Thus
the spreadsheet running in the back-
ground would never slow down the ac-
tion in the video game on your screen.
But this policy leaves processors idle if
there aren’t enough programs running,
and it would do nothing to help any
single program run faster. To make bet-
ter use of the hardware, each program
needs to be divided into many threads
of execution.

An alternative is to put the burden
on the compiler—the software that
translates a program text into machine
code. The dream is to start with an or-
dinary sequential program and have
it magically sliced and diced for ex-
ecution on any number of processors.
Needless to say, this Vegematic com-
piler doesn’t yet exist, although some
compilers do detect certain opportuni-
ties for parallel processing.

Both of these strategies rely on the
wizardry of a programming elite—
those who build operating systems
and compilers—allowing the rest of
us to go on pretending we live in a
sequential world. But if massive paral-
lelism really is the way of the future, it
can’t remain hidden behind the curtain
forever. Everyone who writes software
will have to confront the challenge of
creating programs that run correctly
and efficiently on multicore systems.

Contrarians argue that parallel pro-
gramming is not really much harder
than sequential programming; it just
requires a different mode of thinking.
Both Hillis and Gelernter have taken
this position, backing it up with de-
tailed accounts drawn from their own
experience. For example, Hillis and
Guy L. Steele, Jr., describe their search
for the best sorting algorithm on the
Connection Machine. They found, to
no one’s surprise, that solutions from
the uniprocessor world are seldom op-
timal when you have 65,536 processors
to play with. What’s more illuminating
is their realization that having immedi-
ate access to every element of a large
data set means you may not need to
sort at all. More recently, Jeffrey Dean
and Sanjay Ghemawat of Google have
described a major success story for
parallel programming. They and their

colleagues have written hundreds of
programs that run on very large clus-
ters of computers, all using a program-
ming model they call MapReduce.

The lesson of these examples ap-
pears to be that we shouldn’t waste
effort trying to adapt or convert exist-
ing software. A new computer archi-
tecture calls for a new mental model,
a new metaphor. We need to rethink
the problem as well as the solution. In
other words, we have a historic oppor-
tunity to clean out the closet of com-
puter science, to throw away all those
dusty old sorting algorithms and the
design patterns that no longer fit. We
get to make a fresh start. (Be ready to
buy all new software along with your
new kilocore computer.)

The Helium-cooled Laptop
Although there’s doubtless a multicore
processor in my future (and yours), I’m
not yet entirely convinced that massive
parallelism is the direction computing
will follow for decades to come. There
could be further detours and devia-
tions. There could be a -turn.

The multicore design averts a power
catastrophe, but it won’t necessarily
break through the memory bottleneck.
All of those cores crammed onto a sin-
gle silicon chip have to compete for
the same narrow channel to reach off-
chip main memory. As the number of
cores increases, contention for memory
bandwidth may well be the factor that
limits overall system performance.

In the present situation we have
an abundance of transistors available
but no clear idea of the best way to
make use of them. Lots of little pro-
cessors is one solution, but there are
alternatives. One idea is to combine
a single high-performance CPU and
several gigabytes of main memory on
the same sliver of silicon. This system-
on-a-chip is an enticing possibility; it
would have benefits in price, power
and performance. But there are also
impediments. For one thing, the steps
in fabricating a CPU are different from
those that create the highest-density
memories, so it’s not easy to put both
kinds of devices on one chip. There are
also institutional barriers: Semiconduc-
tor manufacturers tend to have exper-
tise in microprocessors or in memories
but not in both.

Finally, we haven’t necessarily seen
the last of the wicked-fast uniprocessor.
The power and memory constraints
that have lately driven chipmakers to

multicore designs are not fundamen-
tal physical limits; they are merely
hurdles that engineers have not yet
learned to leap. New materials or new
fabrication techniques could upset all
our assumptions.

A year ago, IBM and Georgia Tech
tested an experimental silicon-germa-
nium chip at a clock rate of 500 giga-
hertz—more than a hundred times the
speed of processors now on the mar-
ket. Reaching that clock rate required
cooling the device to 4 Kelvins, which
might seem to rule it out as a practi-
cal technology. But which is harder:
Writing reliable and efficient parallel
software, or building a liquid-helium
cooler for a laptop computer? I’m not
sure I know the answer.

Bibliography
Agarwal, Anant, and Markus Levy. 2007.

Thousand-core chips: The kill rule for multi-
core. In Proceedings of the 44th Annual Con-
ference on Design Automation DAC ’07, pp.
750–753. New York: ACM Press.

Asanovic, Krste, Ras Bodik, Bryan Christopher
Catanzaro, Joseph James Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel
Webb Williams and Katherine A. Yelick.
2006. The landscape of parallel computing
research: A view from Berkeley. University
of California, Berkeley, Electrical Engineer-
ing and Computer Sciences Technical Re-
port UCB/EECS-2006-183. http://www.
eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

Brock, David C., ed. 2006. Understanding
Moore’s Law: Four Decades of Innovation.
Philadelphia: Chemical Heritage Press.

Carriero, Nicholas, and David Gelernter.
1990. How to Write Parallel Programs: A First
Course. Cambridge, Mass.: The MIT Press.

Dean, Jeffrey, and Sanjay Ghemawat. 2004.
MapReduce: Simplified data processing
on large clusters. In Proceedings of the Sixth
Symposium on Operating Systems Design and
Implementation, pp. 137–150. http://labs.
google.com/papers/mapreduce.html

Dennard, Robert, Fritz Gaensslen, Hwa-Nien
Yu, V. Leo Rideout, Ernest Bassous and An-
dre LeBlanc. 1974. Design of ion-implanted
MOSFETs with very small physical dimen-
sions. IEEE Journal of Solid State Circuits SC-
9(5):256–268.

Hillis, W. Daniel, and Guy L. Steele, Jr. 1986.
Data parallel algorithms. Communications of
the ACM 29:1170–1183.

Intel Corporation. 2007. Special issue on tera-
scale computing. Intel Technical Journal 11(3).
http://www.intel.com/technology/itj/

International Technology Roadmap for Semicon-
ductors. 2005. http://www.itrs.net/Links/
2005ITRS/Home2005.htm

Lee, Edward A. 2006. The problem with
threads. IEEE Computer 39(5):33–42.

Sutter, Herb, and James Larus. 2005. Software
and the concurrency revolution. ACM
Queue 3(7):54–62.

