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Computing in a Parallel Universe

Brian Hayes

The pace of change in com-
puter technology can be breath-

taking—and sometimes infuriating. 
You bring home a new computer, and 
before you can get it plugged in you’re 
hearing rumors of a faster and cheaper 
model. In the 30 years since the micro-
processor first came on the scene, com-
puter clock speeds have increased by a 
factor of a thousand (from a few mega-
hertz to a few gigahertz) and memory 
capacity has grown even more (from 
kilobytes to gigabytes).

Through all this frenzy of upgrades 
and speed bumps, one aspect of com-
puter hardware has remained stub-
bornly resistant to change. Until re-
cently, that new computer you brought 
home surely had only one CPU, or 
central processing unit—the computer-
within-the-computer where programs 
are executed and calculations are per-
formed. Over the years there were 
many experiments with multiproces-
sors and other exotica in the world of 
supercomputers, but  the desktops and 
laptops familiar to most of us contin-
ued to rely on a single-CPU architec-
ture whose roots go back to the age of 
the vacuum tube and the punch card.

Now a major shift is under way. 
Many of the latest computers are 
equipped with “dual core” proces-
sor chips; they bundle two CPUs on 
a single slab of silicon. The two pro-
cessors are meant to share the work 
of computation, potentially doubling 
the machine’s power. Quad-core chips 
are also available; Intel has announced 
an eight-core product, due in 2009; 
Sun Microsystems has been testing a 
16-core chip. A company called Tilera 
even offers 64 cores. It seems we are 
on the threshold of another sequence 

of doublings and redoublings, with 
the number of cores per chip following 
the same kind of exponential growth 
curve that earlier traced the rise in 
clock speed and memory capacity.

The next computer you bring home, 
a few years from now, could have hun-
dreds or even thousands of processors. 
If all goes according to plan, you may 
notice nothing different about the new 
machines apart from another boost in 
performance. Inside, though, coordi-
nating all those separate computation-
al cores is going to require profound 
changes in the way programs are de-
signed. Up to now, most software has 
been like music written for a solo per-
former; with the current generation 
of chips we’re getting a little experi-
ence with duets and quartets and other 
small ensembles; but scoring a work 
for large orchestra and chorus is a dif-
ferent kind of challenge.

Free Lunch
Why build chips with multiple proces-
sors? Why not just keep cranking up 
the speed of a single CPU? If the latter 
option were feasible, the chipmakers 
would be delighted to adopt it. They 
are turning to multicore systems only 
because the path to higher gigahertz 
seems to be blocked, at least for now.

The causes of this impasse lie in the 
peculiar physical and economic laws 
that govern the design of integrated 
circuits. The most celebrated of those 

laws is an economic miracle: As tran-
sistors or other components are made 
smaller and packed more densely on 
the surface of a silicon chip, the cost 
of producing the chip remains nearly 
constant. Thus the cost per transistor 
steadily declines; it’s now measured in 
nanodollars. This extraordinary fact is 
the basis of Moore’s Law, formulated 
in 1965 by Gordon E. Moore, one of the 
founders of Intel. Moore observed that 
the number of transistors on a state-of-
the-art chip doubles every year or two.

Less famous than Moore’s Law but 
equally important are several “scaling 
laws” first stated in 1974 by Robert 
H. Dennard and several colleagues at 
IBM. Dennard asked: When we reduce 
the size of a transistor, how should we 
adjust the other factors that control its 
operation, such as voltages and cur-
rents? And what effect will the changes 
have on performance? He found that 
voltage and current should be pro-
portional to the linear dimensions of 
the device, which implies that power 
consumption (the product of voltage 
and current) will be proportional to 
the area of the transistor. This was an 
encouraging discovery; it meant that 
even as the number of devices on a 
chip increased, the total power density 
would remain constant.

Dennard’s conclusion about per-
formance was even more cheering. In 
digital circuits, transistors act essen-
tially as on-off switches, and the cru-
cial measure of their performance is 
the switching delay: the time it takes to 
go from the conducting to the noncon-
ducting state or vice versa. The scaling 
laws show that delay is proportional to 
size, and so as circuits shrink they can 
be operated at higher speed.

Taken together, these findings sug-
gest that our universe is an especially 
friendly place for making electronic 
computers. In other realms, the laws 
of nature seem designed to thwart us. 
Thermodynamics and quantum me-

Brian Hayes is Senior Writer for American Sci-
entist. Additional material related to the “Comput-
ing Science” column appears in Hayes’s Weblog at 
http://bit-player.org. Address: 211 Dacian Avenue, 
Durham, NC 27701. Internet: bhayes@amsci.org

Multicore chips
could bring about
the biggest change 

in computing since
the microprocessor



2007    November–December     477www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

chanics tell us what we can’t hope to 
do; levers amplify either force or dis-
tance but not both. Everywhere we 
turn, there are limits and tradeoffs, 
and no free lunch. But Moore’s Law 
and the Dennard scaling rules promise 
circuits that gain in both speed and 
capability, while cost and power con-
sumption remain constant. From this 
happy circumstance comes the whole 
bonanza of modern microelectronics.

The Impasse
Free lunch is great, but there’s still a 
bill to pay for breakfast and dinner. 
Throughout the past decade, chip de-
signers have struggled with two big 
problems.

First, although CPUs are a thou-
sand times faster, memory speed has 
increased only by a factor of ten or so. 
Back in the 1980s, reading a bit from 
main memory took a few hundred 
nanoseconds, which was also the time 
needed to execute a single instruction 
in a CPU. The memory and the proces-
sor cycles were well matched. Today, 
a processor could execute a hundred 
instructions in the time it takes to get 
data from memory.

One strategy for fixing the memory 
bottleneck is to transfer data in large 
blocks rather than single bits or bytes; 
this improves throughput (bits per sec-
ond), but not latency (the delay be-
fore the first bit arrives). To mitigate 
the latency problem, computers are 
equipped with an elaborate hierarchy 
of cache memories, which surround 
the processor core like a series of wait-
ing rooms and antechambers. Data and 
instructions that are likely to be needed 
immediately are held in the innermost, 
first-level cache, which has only a 
small capacity but is built for very high 
speed. The second-level cache, larger 
but a little slower, holds information 
that is slightly less urgent. Some sys-
tems have a third-level cache.

Reliance on cache memory puts a 
premium on successfully predicting 
which data and instructions a program 
is going to call for next, and there’s 
a heavy penalty when the prediction 
is wrong. Moreover, processor chips 
have to sacrifice a large fraction of their 
silicon area to make room for caches 
and the logic circuits that control them. 
As the disparity between memory and 
CPU speed grows more extreme, a pro-
cessor begins to look like a shopping 
mall where the stores are dwarfed by 
the surrounding parking lot. At some 

point, all the benefits of any further 
boost in processor speed will be eaten 
up by the demand for more cache.

The second problem that plagues 
chip designers is a power crisis. Den-
nard’s scaling laws promised that 
power density would remain constant 
even as the number of transistors and 
their switching speed increased. For 
that rule to hold, however, voltages 
have to be reduced in proportion to 
the linear dimensions of the transistor. 
Manufacturers have not been able to 
lower operating voltages that steeply. 

Historically, each successive genera-
tion of processor chips has scaled the 
linear dimensions by a factor of 0.7, 
which yields an area reduction of one-
half. (In other words, density doubles.) 
The scaling factor for voltages, howev-
er, has been 0.85 rather than 0.7, with 
the result that power density has been 
rising steadily with each new genera-
tion of chips. That’s why desktop ma-
chines now come equipped with fans 

that could drive a wind tunnel, and 
laptops burn your knees.

In the future, even the 0.85 voltage 
reduction looks problematic. As volt-
age is lowered, transistors become 
leaky, like valves that cannot be com-
pletely shut off. The leakage current 
now accounts for roughly a third of 
total power consumption; with further 
reductions in voltage, leakage could 
become unmanageable. On the other 
hand, without those continuing volt-
age reductions, the clock rate cannot 
be increased.

These problems with memory la-
tency and power density are some-
times viewed as signalling the end of 
Moore’s Law, but that’s not the apoca-
lypse we’re facing. We can still pack 
more transistors onto a chip and man-
ufacture it for roughly constant cost. 
The semiconductor industry “road-
map” calls for increasing the number 
of transistors on a processor chip from 
a few hundred million today to more 

A “quad core” microprocessor chip manufactured by Advanced Micro Devices has four sepa-
rate processors that act in parallel. The cores are the four large areas of irregular geometry; 
most of the gridlike regions hold cache memory. The chip is part of the AMD Opteron product 
line and is also known by its prerelease codename Barcelona. The total silicon area of 285 
square millimeters holds about 600 million transistors.
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than 12 billion by 2020. What appears 
to be ending, or at least dramatically 
slowing, is the scaling law that allows 
processor speed to keep climbing. We 
can still have smaller circuits, but not 
faster ones. And hence the new Lilli-
putian strategy of Silicon Valley: lots of 
little processors working in parallel.

A Notorious Hangout
Parallel processing is hardly a new 
idea in computer science. Machines 
with multiple processors were built 
as early as the 1960s, when it was al-
ready widely believed that some form 
of “massive parallelism” was the way 
of the future. By the 1980s that future 
was at hand. David Gelernter of Yale 
University wrote that “parallel com-
puting, long a notorious hangout for 
utopians, theorists, and backyard tin-
kerers, has almost arrived and is defi-
nitely for sale.” 

Throughout that decade and into the 
early 1990s novel parallel architectures 
became a wonderful playground for 
computer designers. For example, W. 
Daniel Hillis developed the Connec-

tion Machine, which had 216 single-bit 
processors (and 212 blinking red lights). 
Another notable project was the Trans-
puter, created by the British semicon-
ductor firm Inmos. Transputer chips 
were single processors designed for 
interconnection, with built-in commu-
nications links and facilities for man-
aging parallel programs.

Software innovators were also 
drawn to the challenges of parallelism. 
The Occam programming language 
was devised for the Transputer, and 
languages called *Lisp and C* were 
written for the Connection Machine. 
Gelernter introduced the Linda pro-
gramming system, in which multiple 
processors pluck tasks from a cloud 
called “tuple space.”

What became of all these ventures? 
They were flattened by the steam-
roller of mass-market technology and 
economics. Special-purpose, limited-
production designs are hard to justify 
when the same investment will buy 
hundreds or thousands of commodity 
PCs, which you can mount in racks 
and link together in a loose federation 
via Ethernet. Such clusters and “server 
farms” soon came to dominate large-
scale computing, especially in the sci-
ences. The vendors of supercomputers 
eventually gave in and began selling 
systems built on the same principle. 
All of the fastest supercomputers are 
now elaborations of this concept. In 
other words, parallelism wasn’t de-
feated; it was co-opted.

It’s also important to note that paral-
lelism of a different kind insinuated it-
self into mainstream processor designs. 
The impressive performance of recent 
CPU chips comes not only from giga-
hertz clock rates but also from doing 
more during each clock cycle. The pro-
cessors “pipeline” their instructions, 
decoding one while executing another 

and storing results from a third. When-
ever possible, two or more instructions 
are executed simultaneously. Through 
such “instruction-level parallelism” a 
single CPU can have a throughput of 
more than one instruction per cycle, 
on average.

Shared Memories
It is surely no coincidence that the 
kinds of parallelism in widest use 
today are the kinds that seem to be 
easiest for programmers to manage. 
Instruction-level parallelism is all but 
invisible to the programmer; you cre-
ate a sequential series of instructions, 
and it’s up to the hardware to find op-
portunities for concurrent execution.

In writing a program to run on a 
cluster or server farm, you can’t be 
oblivious to parallelism, but the archi-
tecture of the system imposes a helpful 
discipline. Each node of the cluster is 
essentially an independent computer, 
with its own processor and private 
memory. The nodes are only loosely 
coupled; they communicate by passing 
messages. This protocol limits the op-
portunities for interprocess mischief. 
The software development process is 
not radically different; programs are 
often written in a conventional lan-
guage such as Fortran or C, augment-
ed by a library of routines that handle 
the details of message passing.

Clusters work well for tasks that 
readily break apart into lots of nearly 
independent pieces. In weather predic-
tion, for example, each region of the at-
mosphere can be assigned its own CPU. 
The same is true of many algorithms 
in graphics and image synthesis. Web 
servers are another candidate for this 
treatment, since each visitor’s requests 
can be handled independently.

In principle, multicore computer 
systems could be organized in the 

Scaling laws relate the physical dimensions of transistors to their electrical properties. In each successive generation of microprocessors lin-
ear dimensions (such as the gate width of a transistor) are reduced by a factor of about 0.7, which means the area of a transistor is cut in half. 
Switching delay (the reciprocal of processing speed) is proportional to the linear size. If operating voltage could also be lowered by a factor of 
0.7, a transistor’s power consumption would be proportional to its surface area, and the power density of the entire chip would remain constant. 
But voltages have actually been reduced only by 0.85 per generation, with the result that power and heat have become limiting factors.

The field-effect transistor, seen here in cross 
section, is the building block of virtually all 
microelectronic circuits. A voltage applied 
to the gate controls the flow of current from 
source to drain. The transistor is fabricated by 
implanting ions in selected areas (green) and 
depositing layers of insulating silicon dioxide 
(light gray) and metal interconnects (dark 
gray). The width of the gate is a crucial dimen-
sion; in recent chips it is 65 nanometers.
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same way as clusters, with each CPU 
having its own private memory and 
with communication governed by a 
message-passing protocol. But with 
many CPUs on the same physical 
substrate, it’s tempting to allow much 
closer collaboration. In particular, mul-
ticore hardware makes it easy to build 
shared-memory systems, where pro-
cessors can exchange information sim-
ply by reading and writing the same 
location in memory. In software for 
a shared-memory machine, multiple 
computational processes all inhabit the 
same space, allowing more interesting 
and flexible patterns of interaction, not 
to mention subtler bugs.

Losing My Minds
If our universe is a peculiarly friendly 
place for builders of digital computers, 
it is not so benign for creators of pro-
grams that run concurrently on paral-
lel hardware. Or maybe the difficulty 
lies in the human mind rather than in 
the nature of the universe.

Think of a program that reserves 
airline seats. Travelers access the pro-
gram through a Web site that shows 
a diagram of the aircraft interior, with 
each seat marked as either vacant or 
occupied. When I click on seat 3A, the 
program first checks its database to 
make sure 3A is still available; if it is, 
I get a confirming message, and the 
database is updated to show that seat 
3A has been taken. All’s well, at least 
in a sequential world. But you too may 
be booking a seat on the same flight, 
and you may want 3A. If my trans-
action completes before your request 
arrives, then I’m afraid you’re out of 
luck. On the other hand, if you are 
quicker with the mouse, I’m the one 
who will be disappointed. But what 
happens if the two requests are essen-
tially simultaneous and are handled 
in parallel by a multiprocessing com-
puter? Suppose the program has just 
assigned the seat to me but has not yet 
revised the database record when your 
request reaches the Web server. At that 
instant a check of the database indi-
cates 3A is still vacant, and so we both 
get confirming messages. It’s going to 
be a cozy flight!

Of course there are remedies for this 
problem. Programming techniques for 
ensuring exclusive access to resources 
have been known for 50 years; they are 
key assets in the intellectual heritage 
of computer science, and the airline’s 
programmer should certainly know 

all about them. Many of the same is-
sues arise even in uniprocessor systems 
where “time slicing” creates the illusion 
that multiple programs are running at 
the same time.

Writing correct concurrent programs 
is not impossible or beyond human 
abilities, but parallelism does seem to 
make extreme demands on mental dis-
cipline. The root of the difficulty is non-
determinism: Running the same set of 
programs on the same set of inputs can 
yield different results depending on the 
exact timing of events. This is discon-
certing if your approach to program-
ming is to try to think like a computer. 

Even though the brain is a highly 
parallel neural network, the mind 
seems to be single-threaded. You may 
be able to walk and chew gum at the 
same time, but it’s hard to think two 
thoughts at once. Consciousness is sin-
gular. In trying to understand a com-
puter program, I often imagine myself 
standing at a certain place in the pro-
gram text or in a flow chart. As the in-
structions are executed, I follow along, 
tracing out the program’s path. I may 
have to jump from place to place to 
follow branches and loops, but at any 
given moment there is always one lo-
cation that I can call here. Furthermore, 
I am the only actor on the stage. Noth-
ing ever happens behind my back or 
out of sight. Those airline seats can’t be 
assigned unless I assign them.

That’s how it works in a sequential 
program. With parallel processing, the 
sense of single-mindedness is lost. If I 
try to trace the path of execution, I have 
to stand in many places at once. I don’t 
know who “I” am anymore, and there 

are things happening all around me 
that I don’t remember doing. “I con-
tain multitudes,” declared Walt Whit-
man, but for a computer programmer 
this is not a healthy state of mind.

Edward A. Lee, of the University of 
California, Berkeley, recently described 
the mental challenge of writing non-
deterministic programs:

A folk definition of insanity is to 
do the same thing over and over 
again and expect the results to be 
different. By this definition, we in 
fact require that programmers of 
multithreaded systems be insane. 
Were they sane, they could not 
understand their programs.

Lee also writes:

I conjecture that most multi-
threaded general-purpose appli-
cations are so full of concurrency 
bugs that—as multicore architec-
tures become commonplace—
these bugs will begin to show up 
as system failures. This scenario is 
bleak for computer vendors: Their 
next-generation machines will be-
come widely known as the ones 
on which many programs crash.

Cynics, of course, will reply that com-
puters of every generation have exactly 
that reputation.

The Slice-and-Dice Compiler
Not everyone shares Lee’s bleak out-
look. There may well be ways to tame 
the multicore monster. 

One idea is to let the operating sys-
tem deal with the problems of allocat-
ing tasks to processors and balancing 

Software for parallel processors is susceptible to subtle errors that cannot arise in strictly 
sequential programs. Here two concurrent processes both access a shared location in memory 
designated by the variable name x. Each process reads the current value of x, increments it by 
1, and writes the new value back to the same location. The outcome depends on the way the 
two transactions are interleaved, and the timing of these events is not under the programmer’s 
control. Only the rightmost case is correct.
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the workload. This is the main ap-
proach taken today with time-sliced 
multiprocessing and, more recently, 
with dual-core chips. Whether it will 
continue to work well with hundreds 
of cores is unclear. In the simplest case, 
an operating system would adopt a 
one-processor-per-program rule. Thus 
the spreadsheet running in the back-
ground would never slow down the ac-
tion in the video game on your screen. 
But this policy leaves processors idle if 
there aren’t enough programs running, 
and it would do nothing to help any 
single program run faster. To make bet-
ter use of the hardware, each program 
needs to be divided into many threads 
of execution.

An alternative is to put the burden 
on the compiler—the software that 
translates a program text into machine 
code. The dream is to start with an or-
dinary sequential program and have 
it magically sliced and diced for ex-
ecution on any number of processors. 
Needless to say, this Vegematic com-
piler doesn’t yet exist, although some 
compilers do detect certain opportuni-
ties for parallel processing.

Both of these strategies rely on the 
wizardry of a programming elite—
those who build operating systems 
and compilers—allowing the rest of 
us to go on pretending we live in a 
sequential world. But if massive paral-
lelism really is the way of the future, it 
can’t remain hidden behind the curtain 
forever. Everyone who writes software 
will have to confront the challenge of 
creating programs that run correctly 
and efficiently on multicore systems.

Contrarians argue that parallel pro-
gramming is not really much harder 
than sequential programming; it just 
requires a different mode of thinking. 
Both Hillis and Gelernter have taken 
this position, backing it up with de-
tailed accounts drawn from their own 
experience. For example, Hillis and 
Guy L. Steele, Jr., describe their search 
for the best sorting algorithm on the 
Connection Machine. They found, to 
no one’s surprise, that solutions from 
the uniprocessor world are seldom op-
timal when you have 65,536 processors 
to play with. What’s more illuminating 
is their realization that having immedi-
ate access to every element of a large 
data set means you may not need to 
sort at all. More recently, Jeffrey Dean 
and Sanjay Ghemawat of Google have 
described a major success story for 
parallel programming. They and their 

colleagues have written hundreds of 
programs that run on very large clus-
ters of computers, all using a program-
ming model they call MapReduce. 

The lesson of these examples ap-
pears to be that we shouldn’t waste 
effort trying to adapt or convert exist-
ing software. A new computer archi-
tecture calls for a new mental model, 
a new metaphor. We need to rethink 
the problem as well as the solution. In 
other words, we have a historic oppor-
tunity to clean out the closet of com-
puter science, to throw away all those 
dusty old sorting algorithms and the 
design patterns that no longer fit. We 
get to make a fresh start. (Be ready to 
buy all new software along with your 
new kilocore computer.)

The Helium-cooled Laptop
Although there’s doubtless a multicore 
processor in my future (and yours), I’m 
not yet entirely convinced that massive 
parallelism is the direction computing 
will follow for decades to come. There 
could be further detours and devia-
tions. There could be a -turn.

The multicore design averts a power 
catastrophe, but it won’t necessarily 
break through the memory bottleneck. 
All of those cores crammed onto a sin-
gle silicon chip have to compete for 
the same narrow channel to reach off-
chip main memory. As the number of 
cores increases, contention for memory 
bandwidth may well be the factor that 
limits overall system performance.

In the present situation we have 
an abundance of transistors available 
but no clear idea of the best way to 
make use of them. Lots of little pro-
cessors is one solution, but there are 
alternatives. One idea is to combine 
a single high-performance CPU and 
several gigabytes of main memory on 
the same sliver of silicon. This system-
on-a-chip is an enticing possibility; it 
would have benefits in price, power 
and performance. But there are also 
impediments. For one thing, the steps 
in fabricating a CPU are different from 
those that create the highest-density 
memories, so it’s not easy to put both 
kinds of devices on one chip. There are 
also institutional barriers: Semiconduc-
tor manufacturers tend to have exper-
tise in microprocessors or in memories 
but not in both.

Finally, we haven’t necessarily seen 
the last of the wicked-fast uniprocessor. 
The power and memory constraints 
that have lately driven chipmakers to 

multicore designs are not fundamen-
tal physical limits; they are merely 
hurdles that engineers have not yet 
learned to leap. New materials or new 
fabrication techniques could upset all 
our assumptions. 

A year ago, IBM and Georgia Tech 
tested an experimental silicon-germa-
nium chip at a clock rate of 500 giga-
hertz—more than a hundred times the 
speed of processors now on the mar-
ket. Reaching that clock rate required 
cooling the device to 4 Kelvins, which 
might seem to rule it out as a practi-
cal technology. But which is harder: 
Writing reliable and efficient parallel 
software, or building a liquid-helium 
cooler for a laptop computer? I’m not 
sure I know the answer.
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