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Abstract

Markov chain Monte Carlo (e. g., the Metropolis algo-
rithm and Gibbs sampler) is a general tool for simulation
of complex stochastic processes useful in many types of
statistical inference. The basics of Markov chain Monte
Carlo are reviewed, including choice of algorithms and
variance estimation, and some new methods are intro-
duced. The use of Markov chain Monte Carlo for max-
imum likelihood estimation is explained, and its per-
formance is compared with maximum pseudo likelihood
estimation.
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1 Introduction

For many complex stochastic processes very little can
be accomplished by analytic calculations, but simula-
tion of the process is possible using Markov chain Monte
Carlo (Metropolis, et al., 1953; Hastings, 1970; Geman
and Geman, 1984). The simulation can be used to cal-
culate integrals involved in various forms of statistical
inference. Most work in this area has concentrated on
Bayesian inference (Geman and Geman, 1984; Gelfand
and Smith, 1990; Besag, York, and Mollié, 1991). But
Markov chain Monte Carlo is a general tool for simula-
tion of stochastic processes; it should be useful, and has
been applied, in other forms of inference.

One such area 1s likelihood inference. For complex
stochastic processes such as the Markov random fields
(Gibbs distributions) used in spatial statistics (and other
areas, with Markov random fields defined on graphs,
networks, pedigrees, and the like) exact calculation of
the maximum likelihood estimate (MLE) is impossible,
but several methods of Monte Carlo approximation of
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the MLE have been devised. One uses direct Monte
Carlo calculation of the likelihood (Penttinen, 1984;
Geyer, 1990; Geyer and Thompson, 1992). Another
uses stochastic approximation (Younes, 1988; Moyeed
and Baddeley, 1991). A third is that of Ogata and
Tanemura (1989). Only the first of these permits the
computation of many estimates from one Monte Carlo
sample and so permits rapid parametric bootstrap com-
putations and simulation studies. These are important
ways of studying the properties of the estimators, and
the other methods will not be further discussed. Cod-
ing and maximum pseudolikelihood estimates (MPLE)
(Besag, 1974, 1975) have also been used for such prob-
lems, but these estimators do not approximate the MLE,
except in the limit of zero dependence.

Monte Carlo maximum likelihood is illustrated using
the two-parameter Ising model as an example. This
model is simple enough so that extensive simulations are
possible but has most of the complexity of more elab-
orate models, in particular, the behavior of “freezing,”
which presents severe problems for maximum pseudo-
likelihood, but none for maximum likelihood. MLE is
compared to MPLE in a case where the random field
has strong dependence (is near freezing) where the su-
periority of MLE over MPLE is clearly shown.

2 Markov Chain Monte Carlo

Before discussing the use of Markov chain Monte Carlo
for maximum likelihood, it is first necessary to briefly
review these Markov chain methods, since the literature
is confused and contains some bad advice.

Markov chain Monte Carlo is an old method of simu-
lation that goes back to the dawn of the computer age,
but which has had, until recently, little application in
statistics. The main idea is very simple. In ordinary
Monte Carlo, if one wishes to evaluate an integral

pg:/gdp, (1)

where P is a probability measure and one has a method
of simulating a sequence X1, X5, ...ofi.1. d. realizations



from P, the obvious estimate is

Png = %Zg(Xi), (2)

since
Png == Py (3)

by the strong law of large numbers whenever ¢ is P-
integrable. The notation in (1) and (2) is standard in
the empirical process literature and very convenient; (1)
treats the symbol P interchangeably as a measure and
as an operator, (2) treats the empirical measure (the
measure-valued stochastic process that puts mass 1/n
at each of the points X; in the sample) the same way.
Though ordinary Monte Carlo is very powerful, it has
its limitations. In particular there are no general meth-
ods for simulating independent realizations of multivari-
ate random vectors or, more generally, from complex
stochastic processes. This difficulty is gotten around by
Markov chain Monte Carlo in which one simulates not
independent realizations from P but a Markov chain X1,
X5, ... with stationary transition probabilities having P
as a stationary distribution. If the chain is irreducible,
(3) still holds, though it is now referred to as the ergodic
theorem rather than the strong law of large numbers.

Since a countable union of null sets is a null set, (3)
can be taken to hold simultaneously (for the same null
set of sample paths of the Markov chain) for all func-
tions ¢ in any countable family. If the state space of the
Markov chain (the sample space of the measure P) is a
second countable topological space (such as R?) and the
countable family of functions i1s taken to be indicators
of open sets in the countable base, then, for almost all
sample paths of the Markov chain,

P,1s 2% plg, for all open sets B,

that is
Pn —~ P (4)
(the empirical converges in distribution to the truth).

This is the sense in which Markov chain Monte Carlo
“works.” The samples X1, X5, ... are neither indepen-
dent nor 1dentically distributed, and none has marginal
distribution P (though typically the marginal distribu-
tion of X, is close to P for large n). They behave like
samples from P, however, in the sense that (4) holds,
just as if Xy, Xo, ... werei. 1. d. P.

Some confusion in the literature has resulted from
failure to understand this basic nature of Markov chain
Monte Carlo. One sees described without justification
in various places the following way to do Markov chain
Monte Carlo. Let X1, ..., X1 be independent real-
izations from some distribution. For j =1, ..., m, sim-
ulate Xj», ..., X;, a Markov chain starting at Xj;,, all

m chains having the same transition probabilities and
stationary distribution P. Take

> o(X) 6)

j=1

as an estimate of [ ¢ dP. This formula, which may be
referred to as the “many short runs” school of Markov
chain Monte Carlo (as opposed to the “one long run”
school) has some problems. As m — oo (5) converges to
something by the strong law of large numbers; it does
not, however, converge to [ gdP. That would require
that both m and n go to infinity. One can, of course,
collect multiple samples in each short run, and this does
ameliorate the problem but relies on the “short” runs
actually being “long.” The closer many short runs is
made to one long run, the better it is. This was well un-
derstood 1n the statistical physics literature and in some
of the early statistics literature, but needs reiteration.
This is not a purely theoretical point; many short runs
also has practical drawbacks. To see these we need some
discussion of the practice of Markov chain Monte Carlo.
Typically a chain is run for a while to “forget” its start-
ing point before samples are collected; then the chain is
subsampled, a sample being taken every kth step. The
number of samples m thrown away at the beginning of
the chain will be termed the “burn-in” (there is no stan-
dard terminology), and & will be termed the “spacing.”
The empirical estimate for such a subsample is defined
by
1 n
Py =~ ;gam%z), (6)
rather than (2). Of course the subsample is again a
Markov chain with stationary transition probabilities,
and (3) still holds. The reasons for choosing any m
other than zero and any k other than one have not been
made clear. The spacing k is often chosen to be large
in order that the samples X, 5 be “almost indepen-
dent” as if reliance were being placed on some hypo-
thetical “almost” law of large numbers rather than the
ergodic theorem. Simple variance calculations, which
will be explained below, show that in many cases k = 1
is optimal and in almost all cases the optimal k is less
than five. The role of the burn-in m is also not well
understood. It is often thought that m must be chosen
large enough so that X, “almost” has marginal distri-
bution P, something that typically cannot be checked.
This leads to using very large m for “safety.” If the one
long run method is being used, a fairly large burn-in,
say five per cent of the total run length, is not exces-
In any
case, the accuracy of the method is relatively insensi-

sive and will usually be more than adequate.



tive to the burn-in. Even inadequate burn-in will have
only a small effect on the results. The many short runs
method perversely arranges the calculation so that not
only does burn-in dominate the cost of the calculation
(the method is really only valid as the burn-in becomes
infinite), but also the accuracy critically depends on the
adequacy of burn-in, which is uncheckable. The many
short runs method arranges to have many burn-ins at
much cost and to no benefit.

At this point many people remark that even if one
is willing to concede the point just made, multiple runs
have some diagnostic value, at least. This 1s, of course,
correct. It is clear that if two runs produce completely
different answers, the runs are too short. But this di-
agnostic value is a “one-edged” sword. It is not valid
to draw any comfort from the agreement of short runs,
even many short runs. Counterexamples exist that prove
such hopes illusory. The best diagnostic is a very long
run, which will find places in the state space that one
never thinks to start.

With these general comments out of the way, we now
turn to specific algorithms. The first Markov chain
Monte Carlo method was given by Metropolis et al.
(1953) and is generally known as the “Metropolis al-
gorithm.” This algorithm received wide use in the sta-
tistical physics community from the beginning, but has,
even today, had little use in the statistics community.

Suppose the desired stationary distribution has a den-
sity p with respect to some measure p. The algorithm
employs an auxiliary function ¢(y, #) such that ¢(-,z)
is a probability density with respect to u for each # and
q(z,y) = q(y,z) for all x and y. The Markov chain is
generated by repeatedly applying the following update
step.

1. simulate y from the distribution with density

Q( ) $)
2. calculate the odds ratio r = p(y)/p(x)
3.ifr>1gotoy

4. if r < 1 go to y with probability r, else stay at =

Simple calculations show that the Metropolis algorithm
has the desired distribution with density p as one sta-
tionary distribution (see, for example, Ripley, 1987). If
the chain can be shown to be irreducible (which depends
on the specific structure of p and ¢), it is ergodic and
can be used for Monte Carlo.

One problem with the Metropolis algorithm is the re-
quirement that ¢ be symmetric. Hastings’ (1970) al-
gorithm drops this requirement. In order to maintain
the correct stationary distribution, this requires that in

step 2 of the Metropolis update, r be redefined as
_ p() a(x,y)

-~ p(e) q(y, )

(so it can no longer be called an “odds ratio.”) The
algorithm works just as well with this modification. The
Hastings algorithm allows an essentially arbitrary choice
of “candidate” points.

A more recent algorithm is the Gibbs sampler (Ge-
man and Geman, 1984). This algorithm is applica-
ble only when the state variable is a random vector
z = (21,...,2,); it does not apply to arbitrary state
spaces. At each step one variable, say z;, is changed by
giving it a realization from the conditional distribution
of z; given the rest of the variables under the stationary
distribution.

Though this looks very different from the Metropolis
and Hastings, it is almost a special case of the Hast-
ings algorithm in which the one-dimensional conditional
distributions play the role of the auxiliary function g¢.
The analogy with Hastings does suggest that when one
cannot sample exactly from the one-dimensional condi-
tionals, one can do a Hastings-like rejection to correct
inexact sampling, as long as one does know the density
one is sampling from. For more on this subject see Besag
(this volume).

3 New Methods

All of the literature on Markov chain Monte Carlo de-
scribes using chains with all Metropolis update steps
(a Metropolis algorithm) or pure Gibbs steps (a Gibbs
sampler), although there is no reason for this. Any steps
that preserve the stationary distribution can be mixed
in any order. To make a chain with stationary transi-
tion probabilities, it is necessary that a fixed sequence
of steps (called a “scan”) be repeated over and over and
that samples be collected only after complete scans or
multiples of complete scans. This is typical for the Gibbs
sampler, a scan consisting of updating each z;, running
through the variables in some fixed order. But much
more general scans are possible. There is no reason not
to mix Gibbs, Metropolis, and Hastings steps in a single
chain, or for that matter, other update steps yet to be
invented. Large increases in speed can be obtained by
clever choices of update steps.

A simple example is to attempt to make a variety of
steps of various sizes. When the distribution of inter-
est has two (or more) modes, it is important to make
attempts to jump from one mode to the other, if at all
possible. This will be illustrated below in the discussion
of the Ising model, where the modes are roughly sym-
metrically distributed in the sample space and hence



easy to 1dentify and one can jump between modes via a
“symmetry swap,” changing the sign of all variables at
once. Metropolis rejection of the swaps steps preserves
the desired stationary distribution.

It 1s not always possible to find steps that jump be-
tween modes, or even to find out (apart from Monte
Carlo experiments) how many modes there are. What
is needed is some way to make large steps without ex-
plicit detailed knowledge about the distribution of inter-
est. A device which we are calling Metropolis-coupled
Markov chain Monte Carlo, (M C)? for short, provides
a way to do this (Geyer, 1991b). Suppose we run m
Markov chains in parallel, having different, but related,
equilibrium distributions, Py, ..., P,. For example, if
the distribution of interest is a Gibbs distribution with
density proportional to eV(®)/7 [/ (x) being the poten-
tial function and 7 the temperature, we could take P; to
have density proportional to eV(®)/k7  After each scan
(in which all of the chains attempt one step for each
variable) we attempt to swap the states of two of the
chains. This is a Metropolis update since swapping is
symmetric, so the swap of chains ¢ and j is accepted or
rejected according to the odds ratio

. bilzi)pi(e:) (1)
piei)p;(z;)

The coupling induces dependence among the chains, and
they are no longer (by themselves) Markov. The whole
stochastic process (the m chains together) does form
a Markov chain on the m-fold cartesian product of the
original state space. Since (7) is the odds ratio assuming
independence of the distributions for the chains, the sta-
tionary distribution of the whole process, is the product
of the P;. The chains are asymptotically independent
with the desired stationary distributions.

If the coupling does not change the stationary distri-
butions, what i1s the point? It may make all of the chains
mix much faster, faster than any one of them uncoupled.
This effect is due to the chains having different distribu-
tions. It is clear that if the distributions are the same,
every swap is accepted and the chains produce the same
realizations with or without swapping. If one untan-
gles the swapped chains (following one state as it jumps
back and forth among the distributions), one gets a dif-
ferent process. Now, by symmetry, all of the untangled
chains have the same marginal distribution, though they
are no longer even asymptotically independent, and this
marginal distribution must be the equal mixture of the
distributions P;. This says that in some sense the speed
of the chains is that of a mixture of the update steps for
the separate chains. This mixture may run faster than
any of the pure chains.

Examples of these devices will be given later after the

Ising model is described. For now, let us close this sec-
tion with the point that if one is worried that the Gibbs
sampler, or whatever Markov chain scheme one is using,
mixes too slowly, one should try to speed it up. There
are many possible tricks for doing so. These are exam-
ples of what is possible.

4 Variance Calculations

Given the consistency (3) of Markov chain Monte Carlo,
the natural next question is to examine the error
Vn(Png — Pyg). Typically one would like there to be
a central limit theorem

Vi(Pa g — Pg) 2= N(0,02) (8)

(note that 05 depends on g). When the state space of the
Markov chain Monte Carlo is finite, the central limit the-
orem (8) always holds, (see, for example, Chung, 1967,
p. 99 ff. or Tbragimov and Linnik, 1971, pp. 365-369).
There are Markov chain central limit theorems for non-
finite state spaces, but the regularity conditions seem
difficult to apply (this is a subject of active research by
a number of investigators).

Markov chain limit theory is of use only in demon-
strating that (8) holds with 05 finite; it does not yield
the value of 05, which must be estimated from the
Markov chain. This is easily done using standard time-
series methods. Hastings (1970) gave references to meth-
ods then current; only slight changes are needed to bring
these recommendations up to date. In cases of practical
interest 05 will have the form

052 Z Tt (9)

t=—o00
where

7 = 7=t = Cov(9(Xo), 9(X1))
the expectation being with respect to the stationary dis-
tribution. The 7, are easily estimated by

t

[9(X3) = Egllo(Xite) — E ]

n

3| =

Yt = Y-t =

7

For why we divide by n rather than n — ¢ see Priestly
(1981, pp. 323-324). One might think that the sum of
the 9, would be a natural estimator of 05, but this is a
bad idea for the following reason. For large ¢ the variance
of 44 is approximately constant

. 1 &
Var(y:) ~ -~ > (10)

§=—00

(Bartlett, 1946); the right hand in (10) does not depend
on t. This assumes that g(X) has a fourth moment and



that some mixing condition holds (p-mixing suffices).
Thus the sum of the 4; differs from (9) by n terms of
size 1/n. Tt does not decrease with n; the estimate is
not even consistent. In order to get a good estimate it is
necessary to downweight the terms for large lags, which
are essentially noise. One estimates 05 by

o= w(t)y (11)

t=—0o0

where w is some weight function that satisfies w(t) = 1
for small ¢, w(t) = 0 for large ¢, and makes a smooth
monotone transition between these levels.

The right hand side of (10) is useful in choosing w.
One can take w(t) = 1 for ¢ such that 4 exceeds two
“large t” standard deviations. Since 1t is usually impos-
sible to arrange a chain with significant negative auto-
correlations, one can take w(?) = 0 when 4 < 0 and
for all larger t. Any smooth curve connecting these two
points 1s satisfactory. We use a scaled cosine.

Before leaving this subject, the frequency domain ver-
sion of the same procedure should perhaps be explained,
since one may see this described instead and the equiva-
lence of the two methods is not obvious. (9) is 27 times
the value of spectral density at the origin (of the time
series g(X3:)). To estimate the spectral density one may
use a kernel smoother with kernel w on the empirical
spectral estimate, which is the Fourier transform of the
¥¢. If one uses the Fourier transform of w for the smooth-
ing kernel w, one obtains exactly the same estimate as
(11). In the usual time-series parlance w is called a lag
window and @ a spectral window.

5 Choosing the Spacing

Having a method of estimating variances gives us a
method of measuring the “speed” of a Markov chain
scheme. A chain is rapidly mixing if the autocorrela-
tions decrease rapidly enough so that the variance of our
estimate(s) of interest is small. This is a relative term,
we can only say that one chain mixes more rapidly than
another. There is no absolute standard.

One obvious comparison is between chains that are
alike except for different spacing. Suppose that the chain
is p-mixing (always true if the state space is finite) so
the ~; decrease exponentially fast. Then the asymptotic
variance for a chain with spacing & will be

k

= A
Sp = Z Ykt §70+21_ppk
t=—o0o0

for some constants A > 0 and 0 < p < 1. Clearly
as k — oo the variance s; converges to the marginal

variance vy that would be obtained if one could do in-
dependent sample Monte Carlo. Since the convergence
is exponentially fast, there is little benefit to large spac-
ings. To see this more clearly, let B be the cost of sam-
pling (typically computer time), and let C' be the cost
of “using” a sample. If the samples cost almost nothing
to use, one may take C' = 0. If one uses n samples with
spacing k, the cost is Bnk + C'n, because the chain runs
for nk steps and n samples are used. The variance of
the estimate is approximately si /n. Hence to get a fixed
accuracy one must have n proportional to s;. Thus the
cost for spacing k is proportional to (Bk 4+ C)sp. For
large k this increases linearly in k. The minimum cost
will be attained for some small value of k, the optimal
spacing. Note that if C' = 0 the optimal spacing is
greater than one only if s > 255, which is typically not
the case. One needs some cost of using samples (cost of
calculating estimates, cost of storing samples, plotting
samples, or whatever) to make subsampling a good idea.

If one is interested in calculating integrals of many
functions ¢, there is no one spacing that is optimal for
all, nor would one want to do variance calculations for
all. Fortunately, this is not necessary. Typically the
cost curves will be U-shaped with a broad bottom and
the curves for a representative sample of functions will
have minima in roughly the same place. We do not rec-
ommend elaborate variance calculations accompanying
every Markov chain Monte Carlo estimate, but there is
no substitute for some variance calculations for compar-
ing methods, for selecting spacings, and just generally
getting a feel for how well a scheme works.

6 The Ising Model

The model employed for our example is a standard two-
parameter Ising model on a 32 x 32 square lattice with
periodic boundary conditions. Let x; denote the random
variable at lattice site ¢ which takes values in {—1,1},
and ¢ = {x;} denote the whole random field. Let i ~ j
denote that sites ¢ and j are nearest neighbors. Every
site has four neighbors; since the lattice is considered
a torus. The statistical model is a two-parameter ex-
ponential family with natural statistics ¢1(z) = >, #;
and to(z) = ), Z]’Ni z;x;. For concreteness we will
call the lattice sites with #; = 1 “white pixels” and the
rest “black pixels” following the language of image pro-
cessing. Then 7 is the excess of white over black pixels,
and t5 is the excess of concordant nearest neighbor pairs
over discordant pairs.
The probability of a point z in the sample space 1s

1 xr
pe(x) = mew )4



where (t,0) = t101 + 1202 and
2(0) = el (12)

TES

The parameters #; and 0, are referred to here as the
“level” parameter and “dependence” parameter respec-
tively. We also use the notation a = 8, and 3 = 6.

At 8 = 0, the pixels are independent; for large 3 the
distribution has two modes, almost all of the pixels are
the same color with just a speckle of the other. The
proportion of realizations that are predominantly white
or black depends on «; when o = 0, the modes are
equally probable. This behavior occurs for all lattice
sizes, even for an infinite lattice, where the transition
from patches of both colors to (almost) all one color
occurs sharply at the critical value % sinh_l(l) = 0.4407.
The transition is not sharp for finite lattice sizes, but
occurs in roughly the same place.

For any lattice site 4, let x_; denote the rest of the
variables besides x;. The conditional distribution of x;
given z_; plays an important role in both likelihood and
pseudolikelihood methods. This conditional distribution
is denoted pg(z;|z_;). Let n; = Z]»NZ» z; denote the sum
of the nearest neighbors of lattice site ¢. Then

logit pe(x; = 1|o—;) = logit pe(x; = 1|ny)

The first equality, that the distribution of z; given the
rest depends only on its neighbors, is called the spatial
Markov property. It simplifies calculations, but other-
wise plays no role in the analysis.

A Metropolis algorithm for the Ising model runs over
the variables in either fixed or random order attempting
to swap the state of the variable at each step (from 1 to
—1 or vice versa) according to the odds ratio of these two
states. A Gibbs sampler does the same thing but instead
samples from the conditionals. Metropolis makes more
transitions and hence is a bit better, but there is not
much difference.

Whichever is used, it is wise to follow each scan of
all the variables with a symmetry swap, attempting to
change z for —z, where —z denotes the state derived
from x by changing the sign of all the variables. The
odds ratio for this swap is r = exp (t1(—2)a — {1 (2))
since to(x) = t2(—x). When « is small and 3 is large so
the model has a bimodal distribution, these swaps jump
between modes. For other parameter values, the swaps
are not useful, but they are also not needed since the
distribution is unimodal and the Markov chain mixes
rapidly in any case. The swaps do no harm, though,
since they consume a small fraction of the running time.

With symmetry swaps the Markov chain for the Ising
model runs fast no matter what the parameter values,

provided it is started in the right place: all pixels the
same color. If one chooses a random starting point, and
4 is well above the critical point, it takes a very long
time to get to any likely configuration.

Symmetry swaps solve all difficulties of simulating
Ising models (and other lattice processes with only a
few colors). Hence Metropolis-coupling is not needed.
To avoid introducing another model, however, let us also
solve the Ising model difficulties using Metropolis cou-
pling. At values of 3 well below the critical value, a sin-
gle chain runs fast, the distribution 1s unimodal, and the
region of high probability is rapidly explored. For very
high 4 the chain runs arbitrarily slowly; the waiting time
for a transition between modes can be arbitrarily long.
If low and high G chains are coupled with a sequence
of intermediate 3 chains, swaps will occur frequently if
adjacent 3’s are close enough, and all of the chains will
mix rapidly. Thus Metropolis coupling can produce an
arbitrarily large speed up in some situations. This so-
lution to problems of slow mixing is completely general,
it does not even require knowledge of a good starting
point (as did symmetry swapping). All that is required
is that some of the coupled chains mix rapidly.

It is possible to get an infinite speed up from coupling
chains. If one couples a chain that is not ergodic (so
that it would never get the right answer) with one that
is, this can make both chains ergodic. Thus coupling can
be used to solve difficult problems of finding a Markov
chain that is ergodic as well as problems of slow mixing.

7 Monte Carlo Maximum Likelihood

Consider a family of probability densities {fy} with re-
spect to some measure u, where the densities are known
only up to a normalizing constant

fo(z) = hg(z)

z(0)
where hg is a known function for each # but nothing is
known about z except that

40) = [ ho(z) du(a),

the integral being analytically intractable. The Ising
model serves as an example with hg(z) = e{*#)#) Other
examples include spatial lattice and point processes,
Markov graphs, logistic regression with dependent re-
sponses (see Geyer and Thompson, 1992).

The unknown normalizing constant z i1s no bar to
Markov chain Monte Carlo which can provide a sam-
ple X1, X,, ... from any ¢ in the parameter space. This
can be used to estimate the log likelihood ratio for an



observation x
fo(z)
fo(@)

og @) 20y

ho(z)  2(6)

1(0) = log

as follows. Since
z2(0) 1 . 2y =
Z(¢)_Z(¢)/h€( )d/’L( )_E¢ h¢(X)

we have the natural estimate
1 s ho(X5)

log (n Z_; h¢(Xi)) (15)
of the last term in (14). Let [,(#) denote (14) with the
last term replaced by (15). By the ergodic theorem we
have that 1,,(9) — [(0) simultaneously for all § in any
countable set, which if the parameter takes values in R?
may be chosen to be dense. This along with the “usual”
regularity conditions may be enough to ensure that if 0,
is any maximizer of [,, and 6 the maximizer of [, then
g, 2= é, 1. e., the Monte Carlo MLE converges to the
true MLE as the size of the Monte Carlo sample goes to
infinity. For the Ising model no regularity conditions are
needed because both [ and [,, are concave functions. Sec-
ond order theory, \/ﬁ(én — é) converging to some normal
distribution is also available, again under the “usual”
regularity conditions, when the asymptotic variance of
/nV1,(0) can be shown to be finite, since this can then
be estimated empirically using the methods of Section 4.
Details will appear elsewhere.

This method can be generalized to use Monte Carlo
samples from distributions other than those in the para-
metric family, in particular to mixtures of distributions
in the family. This improves performance when @ is far
from ¢, and is the method used for the example in Fig-
ure 1. Details of the theory and the calculation of this
example are given in Geyer (1991a).

Given that maximum likelihood can be done, how well
does it compare with other methods? Is it worth the ef-
fort of the elaborate Monte Carlo calculations? What is
analytically tractable about the Ising model (and other
Markov spatial processes) is the conditional distribu-
tions pg(x; = 1|x_;) defined by (13). The pseudolike-
lihood is the product of these conditionals. This is not,
of course, a likelihood, since these conditionals do not
combine in the right way to make a probability. The
MPLE is found by maximizing the log pseudolikelihood

() = Z log p (x;|x_;)

(Besag, 1975). For the Ising model this is computation-
ally equivalent to doing a logistic regression of each pixel
on its neighbors. The estimate takes negligible time to
compute compared to Monte Carlo MLE.
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Figure 1: Comparison of MLE and MPLE. Top MLEs,
bottom MPLE for sample of 500 points from Ising model
with & = 0 and G = 0.425.

Furthermore, it is a good estimate for small de-
pendence, when pg(x;|x_;) ~ pg(x;) when it well ap-
proximates maximum likelthood. For high dependence,
MPLE can do much worse than MLE, as shown in Fig-
ure 1. The true parameter value is where the solid lines
cross. Both estimators cluster around the truth, but
MPLE has much wider scatter. Moreover, maximum
likelihood “senses” the critical point, shown by the dot-
ted line, in a way that MPLE does not. Of the 500 points
in the sample, only six are above the critical point, only
two appreciably so. The dotted line in the figure is like
a chiff of the likelihood surface. These samples from a
process below the critical point do not look at all like
they came from a process above the critical point.

Pseudolikelihood is oblivious to the critical point,
which 1s not surprising, since it only looks at local de-
pendence and the critical point phenomenon is a global
property. There are 134 of the MPLE lying above
the critical point. Some so high that true realizations



from such parameter values would be hard frozen, not
remotely resembling the observation from which the
MPLE was calculated.

8 Discussion

Though consistency and asymptotic normality of MPLE
has been proved in a variety of situations, these results
do not guarantee good behavior at finite sample sizes. It
has never been claimed that MPLE would provide good
estimates for parameters of a frozen (or nearly frozen)
Markov random field, so the message that in some cases
MLE behaves well when MPLE does poorly 1s no sur-
prise. That MPLE can be inefficient had been noted
for Gaussian random fields on lattices (Besag, 1977),
where the efficiency goes to zero at the boundary of the
parameter space where stationarity is lost. Moderately
large efficiency is maintained, however, for fairly large
dependence, which gives the impression that MPLE is a
reasonable method of estimation for Gaussian fields so
long as the true parameter value is not near the bound-
ary of the parameter space.

Ising models and other non-Gaussian random fields
can have critical parameter values not on the boundary
of the parameter space at which the qualitative behav-
ior of the field changes. Near such values, and for high
dependence in general, MPLE can give bad results. One
Ising model example is given here; a more complex ex-
ample is given in Geyer and Thompson (1992). This
does not say MPLE is bad in all problems; it seems that
comparisons must be made problem by problem.
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