
ISC-4221
ALGORITHMS for SCIENTIFIC APPLICATIONS II	

(Discrete Algorithms in Scientific Computing)

1

1

Syllabus	

2

2

ISC4221-1 ALGORITHMS for SCIENTIFIC APPLICATIONS II
Instructor

Peter Beerli
Office: 150-T DSL
Email: beerli@fsu.edu
Phone: (850) 559-9664

Teaching Assistant

Haleh Ashki
Office: 150-S DSL
Email: ha09c@my.fsu.edu

Lectures (Beerli):

Monday, Wednesday, Friday 10:10am - 11:00am
Dirac Science Library Room 152

Lab-session (Ashki):

Monday 3:30pm - 6:00pm
Dirac Science Library Room 152

Office Hours

Monday 1:00pm-2:00pm
Friday 1:00-2:00pm or by appointment.

Textbook

No textbook required

Objectives

This course provides the student with an introduction to algorithms used for solving discrete prob-
lems such as sorting or searching an array, scheduling, determining an optimal path (such as
the well-known traveling salesman problem), extracting and interpreting data, etc. In addition to
introducing the student to common algorithms for various problems, this course also provides the
student with tools to analyze algorithms so that algorithms which solve the same problem can be
compared.

Content

The course is divided into eight parts:

• Part I - Introduction to Algorithm Design and Analysis
• Part II - Random Processes
• Part III - Graph Theory
• Part IV - Data Mining
• Part V - Clustering
• Part VI - Optimization
• Part VII - Feature Extraction and Pattern Recognition
• Part VIII - Computational Geometry

Grading

The grade for the course will be based upon labs, homework, a midterm and a final project. This
work is weighted as follows:
Midterm Exam - 15%
Final Project - 15%
Homework - 45%
Labs - 25%

ISC4221-1 ALGORITHMS for SCIENTIFIC APPLICATIONS II
Instructor

Peter Beerli
Office: 150-T DSL
Email: beerli@fsu.edu
Phone: (850) 559-9664

Teaching Assistant

Haleh Ashki
Office: 150-S DSL
Email: ha09c@my.fsu.edu

Lectures (Beerli):

Monday, Wednesday, Friday 10:10am - 11:00am
Dirac Science Library Room 152

Lab-session (Ashki):

Monday 3:30pm - 6:00pm
Dirac Science Library Room 152

Office Hours

Monday 1:00pm-2:00pm
Friday 1:00-2:00pm or by appointment.

Textbook

No textbook required

Objectives

This course provides the student with an introduction to algorithms used for solving discrete prob-
lems such as sorting or searching an array, scheduling, determining an optimal path (such as
the well-known traveling salesman problem), extracting and interpreting data, etc. In addition to
introducing the student to common algorithms for various problems, this course also provides the
student with tools to analyze algorithms so that algorithms which solve the same problem can be
compared.

Content

The course is divided into eight parts:

• Part I - Introduction to Algorithm Design and Analysis
• Part II - Random Processes
• Part III - Graph Theory
• Part IV - Data Mining
• Part V - Clustering
• Part VI - Optimization
• Part VII - Feature Extraction and Pattern Recognition
• Part VIII - Computational Geometry

Grading

The grade for the course will be based upon labs, homework, a midterm and a final project. This
work is weighted as follows:
Midterm Exam - 15%
Final Project - 15%
Homework - 45%
Labs - 25%

3

3

4

4

ISC4221-1 Spring 2012

to their pledge to “... be honest and truthful and ... [to] strive for personal and institutional

integrity at Florida State University. (Florida State University Academic Honor Policy, found at
http://dof.fsu.edu/honorpolicy.htm.)

Americans With Disabilities Act

Students with disabilities needing academic accommodation should: (1) register with and provide
documentation to the Student Disability Resource Center; and (2) bring a letter to the instructor
indicating the need for accommodation and what type. This should be done during the first week
of class. This syllabus and other class materials are available in alternative format upon request.
For more information about services available to FSU students with disabilities, contact the:
Student Disability Resource Center
874 Traditions Way 108
Student Services Building
Florida State University
Tallahassee, FL 32306-4167

voice: (850) 644-9566
TDD: (850) 644-8504
sdrc@admin.fsu.edu
http://www.disabilitycenter.fsu.edu/

Free Tutoring from FSU

For tutoring and writing help in any course at Florida State University, visit the Academic Center for
Excellence (ACE) Tutoring Services comprehensive list of tutoring options - see http://ace.fsu.edu/tutoring
or contact tutor@fsu.edu for more information. High-quality tutoring is available by appointment
and on a walk-in basis. These services are offered by tutors trained to encourage the highest level
of individual academic success while upholding personal academic integrity.

Syllabus Change Policy

Except for changes that substantially affect implementation of the evaluation (grading) statement,
this syllabus is a guide for the course and is subject to change with advance notice.

3

ISC4221-1 Spring 2012

Assignments

The assignments consist of homeworks, lab-reports and a final project.

• Homework: Each homework assignment must be sent as a PDF to beerli@fsu.edu. The
subject line MUST consist of ISC-4221: homework homeworknumber, the attached PDF
MUST have a filename with your lastname and the homework-number, for example beerli1.pdf,
ashki2.pdf. I will deduct 10 points (out of 100) for not following these submission guidelines.
Contents for each homework will be graded for correctness and being concise, but wordy
enough that I can follow your thought-process.

• Lab reports: Each labreport must be sent to ha09c@my.fsu.edu. The subject line MUST
consist of ISC-4221: lab labnumber, the labreport must be formatted as a PDF and has a
filename with your lastname and the lab-number, for example beerli1.pdf, ashki2.pdf. The
report and the programming source used to generate the results must be packaged into a
single zip or tar.gz archive and attached as a single attachment to the email. Deviations,
such as submitting multiple attachments, submitting the report as word file, or packaging
both as a rar file will be penalized by 10 points out of 100.

• Final report: During the semester you will choose a topic, you will then research this topic
and present these results to the class in a short 5 minute presentation during the finals
week. For grading of your presentation, I will use your presentation performance and your
slides (you need the send to me the day before the presentation); I may ask you for the
programming source code of your final project to refine your grade, if I cannot establish what
or how you found your results.

Late Assignments

You can turn in one laboratory assignment and one home- work late with no questions asked and
no penalty; however, the assignment must be turned in no later than 1 week after its due date.
Additional late assignments will be penalized by applying a graded scale which terminates with
a 25% reduction at the end of one week; no assignments will be accepted more than a week
past the due date. Exceptions to these rules are made only if extenuating circumstances (such as
illness, etc.) arise which can be documented.

University Attendance Policy

Excused absences include documented illness, deaths in the family and other documented crises,
call to active military duty or jury duty, religious holy days, and official University activities. These
absences will be accommodated in a way that does not arbitrarily penalize students who have a
valid excuse. Consideration will also be given to students whose dependent children experience
serious illness.

Academic Honor Policy

The Florida State University Academic Honor Policy outlines the Universitys expectations for
the integrity of students academic work, the procedures for resolving alleged violations of those
expectations, and the rights and responsibilities of students and faculty members throughout
the process. Students are responsible for reading the Academic Honor Policy and for living up

2

5

5

Questions, Concerns?

6

6

Websites

7

7

Tour of Class

8

8

What is an Algorithm

9

9

10

10

What is an Algorithm

 An algorithm is a description of a procedure which terminates with a
result.	

 An algorithm is a step-by-step problem-solving procedure,
especially an established, recursive computational procedure for
solving a problem in a finite number of steps.	

 An algorithm is a sequence of unambiguous instructions for solving
a problem by obtaining a required output for any legitimate input in a
finite amount of time.

11

11

What is an Algorithm

An algorithm is a sequence of unambiguous instructions for solving a
problem by obtaining a required output for any legitimate input in a
finite amount of time.

The term unambiguous can not be stressed enough - we must be precise!
For example, consider the following description of multiplying two n x n
matrices, A, B. 	

!
Why is it not clear? 	

What should we add?

!
Multiply each row of matrix A times each column of matrix B	

12

12

multiply each row of matrix A times each column of matrix B

This doesn’t tell someone what the input or output is, how to form the
multiplication, etc. It would be much clearer to write it as the following

Input: n× n matrices A, B
Output: an n× n matrix C which contains the product of A and B

for i = 1, n
for j=1, n

c(i,j) =

n
∑

k=1

a(i,k)*b(k,j)

– Note that we add the caveat that it must work for any legitimate input.
For example, if we are writing a routine for calculating the square root of
a real number, we don’t expect it to work for a negative number. Usually
we code a test to make sure that the input is legitimate so we have a
“nice” error message.

• Why do we need to study algorithms?

Algorithms are the basis of computer programs and the computations gener-

This doesn't tell someone what the input or output is, how to form the
multiplication, etc. It would be much clearer to write it as the following

13

!
Multiply each row of matrix A times each column of matrix B	

13

multiply each row of matrix A times each column of matrix B

This doesn’t tell someone what the input or output is, how to form the
multiplication, etc. It would be much clearer to write it as the following

Input: n× n matrices A, B
Output: an n× n matrix C which contains the product of A and B

for i = 1, n
for j=1, n

c(i,j) =

n
∑

k=1

a(i,k)*b(k,j)

– Note that we add the caveat that it must work for any legitimate input.
For example, if we are writing a routine for calculating the square root of
a real number, we don’t expect it to work for a negative number. Usually
we code a test to make sure that the input is legitimate so we have a
“nice” error message.

• Why do we need to study algorithms?

Algorithms are the basis of computer programs and the computations gener-

14

Note that we add the caveat that it must work for any legitimate input.
For example, if we are writing a routine for calculating the square root
of a real number, we don't expect it to work for a negative number.
Usually we code a test to make sure that the input is legitimate so we
have a "nice" error message.

14

15

Algorithms are the basis of computer programs and
the computations generated by them are now used
throughout society. For example, airplane wings are
now designed using computers, decisions made
concerning global issues such as climate change,
groundwater contamination, etc. all rely on computer
simulations. 	

!
In fact, computations have joined theory and
experimental as the pillars of scientific discovery.

Why do we need to study algorithms?

http://davidebenjamin.com/wp-content/uploads/2011/09/cat_with_rubix_cube.jpg

15

What are the goals we are setting for Algorithms I & II?

To learn a standard set of algorithms from different areas of computational
science;	

To see how these algorithms can be used to solve standard problems in
scientific computing;	

To be able to analyze algorithms as to efficiency, accuracy, and convergence;	

Be able to compare algorithms as to efficiency and accuracy;	

To begin to see how to design new algorithms.	

To understand the difference between continuous and discrete problems.

16

16

What is the main difference between the courses
Algorithms I & II?

17

In Algorithms I we are concerned with numerical problems which typically
involve mathematical objects of a continuous nature such as approximating
an integral, solving a system of linear equations, finding the roots of a
function, solving a differential equation, etc.	

!
In Algorithms II we are mainly interested in problems of a discrete nature
such as searching for a text string, sorting a list of objects, finding the
optimal path between cities, finding the point from a list which is closest
to a given point, simulating a random process, etc.

17

Discrete vs. Continuous

18

The main distinction between Algorithms I and II is that the first deals with
continuous problems and the second mainly deals with discrete problems. What do
we mean by this?	

Real numbers have the property of varying smoothly so when we integrate a
function f(x) from x=a to x=b we expect f to take on all values between a and b.	

In contrast, the objects studied in discrete mathematics (such as integers, graphs,
logical statements, etc.) do not vary smoothly in the same way that real numbers do.
In fact they have distinct, separated values.	

Classic examples of discrete problems are sorting, searching, optimization using a set
of discrete objects, operations dealing with images, etc. Graphs are often used to
analyze discrete problems.

18

Discrete vs. Continuous

19

However, with today's technology the distinction between continuous and discrete
sometimes becomes blurred. For example display monitors are an array of dots and are
therefore discrete. However, the dots are so tiny that the depiction of a continuous
function such as sin x looks like a continuous function on the screen. Another example is
the number of colors available to view your photos on a screen. The number is so large
that for all practical purposes it looks like we are using a continuous color spectrum.	

We will see that the algorithms to solve discrete problems are different from those for
solving continuous problems but some of them have aspects in common with algorithms
for continuous problems.	

As is the case for continuous problems, there will be several algorithms to solve a
particular problem. Usually no one algorithms works for all instance of the problem.

19

Some important types of problems

1.Sorting  
Examples include	

a list of names which we have to sort alphabetically;	

a vector consisting of numbers which must be rearranged to appear
in ascending order;	

a deck of n cards to be shuffled;	

sorting a list of students by their GPA;	

sorting a list of TVs by cost.	

20

Sorting algorithms often require extra memory.	

There is no single sorting algorithm that is best in all
cases.

20

Some important types of problems

2.Searching  
Examples include	

searching a DNA string to find genes or repeats etc 
 
TGTAGAACTGTGTGTCACACACACATACACATACCTATATGAG	

searching for a given value x in a numerical array a(1 : n);	

given a set of points X, find the point z in X which is closest to some
given point,	

determining if any two elements in an array are equal

21

If we are searching a list and it is already sorted, then our algorithm
should take advantage of this.	

There is no single searching algorithm that is best in all cases.

21

Some important types of problems

3.Randomness 
Examples include	

Generating pseudorandom number	

Random walks - stock market, path of a foraging animal, allele frequences
through time,  
 
 
 

Brownian motion

22

22

Some important types of problems

4.Graph problems 
Examples include	

Königsberg Bridge Problem (1735)  
 
 
 
 
 

Minimum spanning tree: An example would be a cable TV company laying
cable to a new neighborhood. If it is constrained to bury the cable only
along certain paths then there would be a graph representing which
points are connected by those paths. Some of those paths might be
more expensive, because they are longer, or require the cable to be
buried deeper; these paths would be represented by edges with larger
weights. A spanning tree for that graph would be a subset of those paths
that has no cycles but still connects to every house. There might be
several spanning trees possible. A minimum spanning tree would be one
with the lowest total cost. 	
 23

1/5/13 5:25 PMKönigsberg Bridge Problem -- from Wolfram MathWorld

Page 1 of 2http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13,131 entries
Last updated: Thu Dec 20 2012

Created, developed, and
nurtured by Eric Weisstein
at Wolfram Research

Discrete Mathematics > Graph Theory > Circuits >

Königsberg Bridge Problem

The Königsberg bridge problem asks if the seven bridges of the city of Königsberg (left figure; Kraitchik 1942), formerly
in Germany but now known as Kaliningrad and part of Russia, over the river Preger can all be traversed in a single trip
without doubling back, with the additional requirement that the trip ends in the same place it began. This is equivalent
to asking if the multigraph on four nodes and seven edges (right figure) has an Eulerian cycle. This problem was
answered in the negative by Euler (1736), and represented the beginning of graph theory.

On a practical note, J. Kåhre observes that bridges and no longer exist and that and are now a single
bridge passing above with a stairway in the middle leading down to . Even so, there is still no Eulerian cycle on the
nodes , , , and using the modern Königsberg bridges, although there is an Eulerian path (right figure). An
example Eulerian path is illustrated in the right figure above where, as a last step, the stairs from to can be
climbed to cover not only all bridges but all steps as well.

SEE ALSO:
Eulerian Cycle, Graph Cycle, Multigraph, Traceable Graph, Unicursal Circuit

REFERENCES:
Biggs, N. L.; Lloyd, E. K.; and Wilson, R. J. Graph Theory 1736-1936. Oxford, England: Oxford University Press, 1976.
Bogomolny, A. "Graphs." http://www.cut-the-knot.org/do_you_know/graphs.shtml.
Chartrand, G. "The Königsberg Bridge Problem: An Introduction to Eulerian Graphs." §3.1 in Introductory Graph Theory. New
York: Dover, pp. 51-66, 1985.
Euler, L. "Solutio problematis ad geometriam situs pertinentis." Comment. Acad. Sci. U. Petrop. 8, 128-140, 1736. Reprinted in
Opera Omnia Series Prima, Vol. 7. pp. 1-10, 1766.
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 1-2, 1994.
Kåhre, J. "K:)nigsberg Bridges Solved." http://www.matheory.info/konigsberg/.
Kraitchik, M. §8.4.1 in Mathematical Recreations. New York: W. W. Norton, pp. 209-211, 1942.
Newman, J. "Leonhard Euler and the Königsberg Bridges." Sci. Amer. 189, 66-70, 1953.
Pappas, T. "Königsberg Bridge Problem & Topology." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 124-
125, 1989.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-
Wesley, p. 192, 1990.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 256-259, 1999.
Wilson, R. J. "An Eulerian Trail through Königsberg." J. Graph Th. 10, 265-275, 1986.

CITE THIS AS:
Weisstein, Eric W. "Königsberg Bridge Problem." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html

Search MathWorld

THINGS TO TRY:
königsberg bridge problem
aleph1 + bet 4
d/dz am(z, m)

The Königsberg bridge problem asks if the seven bridges of the
city of Königsberg (left figure; Kraitchik 1942), formerly in
Germany but now known as Kaliningrad and part of Russia,
over the river Preger can all be traversed in a single trip without
doubling back, with the additional requirement that the trip ends
in the same place it began. This problem was answered in the
negative by Euler (1736), and represented the beginning of
graph theory.

23

Some important types of problems

5.Optimization problems  
Examples include	

Traveling salesman problem 
 

24

24

Some important types of problems

5.Optimization problems  
Examples include	

Knapsack problem 

25

$4 12 kg

$2 2 kg

$1 1 kg

$2 1 kg

$10 4 kg

?
15 kg

25

Some important types of problems

6.Data mining and clustering problems  
Examples include	

Fraud/Crime detection (e.g. dentist-girl-friend HIV murder attempt)	

Census data	

Medical statistics	

Stock market 

26

26

Some important types of problems

7.Computational Geometry  
Examples include	

Grid generation	

Convex hull: given a set of points, find the smallest convex polyhedron/
polygon containing all the points.	

Voronoi diagrams 

27

7. Computational Geometry Problems

Examples include

• Grid generation

• Convex Hull Problem - given a set of points, find the smallest convex
polyhedron/polygon containing all the points.

• Voronoi Diagrams

27

Some important types of problems

8.Image processing  
Examples include	

Feature extraction	

Edge detection	

Image enhancement	

Printing 

28

8. Image Processing Problems

Examples include

• Feature extraction - facial recognition, fingerprint matching, etc.

• Edge detection - medical imaging

• Image enhancement

• Printing

28

29

29

