
Introduction to Algorithms

• What is an algorithm?

Here are some definitions:
An algorithm is a description of a procedure which terminates
with a result.

An algorithm is a step-by-step problem-solving procedure, espe-
cially an established, recursive computational procedure for solv-
ing a problem in a finite number of steps.

An algorithm is a sequence of unambiguous instructions for solv-
ing a problem by obtaining a required output for any legitimate
input in a finite amount of time.

– The term unambiguous can not be stressed enough - we must be precise!
For example, consider the following description of multiplying two n× n
matrices, A, B. Why is it not clear? What should we add?

Thursday, September 5, 13

multiply each row of matrix A times each column of matrix B

This doesn’t tell someone what the input or output is, how to form the
multiplication, etc. It would be much clearer to write it as the following

Input: n× n matrices A, B
Output: an n× n matrix C which contains the product of A and B

for i = 1, n
for j=1, n

c(i,j) =

n
∑

k=1

a(i,k)*b(k,j)

– Note that we add the caveat that it must work for any legitimate input.
For example, if we are writing a routine for calculating the square root of
a real number, we don’t expect it to work for a negative number. Usually
we code a test to make sure that the input is legitimate so we have a
“nice” error message.

• Why do we need to study algorithms?

Algorithms are the basis of computer programs and the computations gener-

Thursday, September 5, 13

ated by them are now used throughout society. For example, airplane wings
are now designed using computers, decisions made concerning global issues
such as climate change, groundwater contamination, etc. all rely on com-
puter simulations. In fact, computations have joined theory and experimental
as the pillars of scientific discovery.

Thursday, September 5, 13

• What are the goals we are setting for Algorithms I & II?

– to learn a standard set of algorithms from different areas of computational
science;

– to see how these algorithms can be used to solve standard problems in
scientific computing;

– to be able to analyze algorithms as to efficiency, accuracy, and conver-
gence;

– be able to compare algorithms as to efficiency and accuracy;

– to begin to see how to design new algorithms.

– to understand the difference between continuous and discrete problems.

Thursday, September 5, 13

• What is the main difference between the courses Algorithms I & II?

In Algorithms I we are concerned with numerical problems which typically
involve mathematical objects of a continuous nature such as approximat-
ing an integral, solving a system of linear equations, finding the roots of a
function, solving a differential equation, etc.

In Algorithms II we are mainly interested in problems of a discrete nature
such as searching for a text string, sorting a list of objects, finding the optimal
path between cities, finding the point from a list which is closest to a given
point, simulating a random process, etc.

Thursday, September 5, 13

Discrete vs. Continuous

The main distinction between Algorithms I and II is that the first deals with
continuous problems and the second mainly deals with discrete problems. What
do we mean by this?

• Real numbers have the property of varying smoothly so when we integrate
a function f(x) from x = a to x = b we expect f to take on all values
between a and b.

• In contrast, the objects studied in discrete mathematics (such as integers,
graphs, logical statements, etc.) do not vary smoothly in the same way
that real numbers do. In fact they have distinct, separated values.

• Classic examples of discrete problems are sorting, searching, optimization
using a set of discrete objects, operations dealing with images, etc. Graphs
are often used to analyze discrete problems.

• However, with today’s technology the distinction between continuous and

Thursday, September 5, 13

discrete sometimes becomes blurred. For example display monitors are an
array of dots and are therefore discrete. However, the dots are so tiny that
the depiction of a continuous function such as sin x looks like a continuous
function on the screen. Another example is the number of colors available to
view your photos on a screen. The number is so large that for all practical
purposes it looks like we are using a continuous color spectrum.

• We will see that the algorithms to solve discrete problems are different from
those for solving continuous problems but some of them have aspects in
common with algorithms for continuous problems.

• As is the case for continuous problems, there will be several algorithms to
solve a particular problem. Usually no one algorithms works for all instances
of the problem.

Thursday, September 5, 13

Describing algorithms using pseudocode

• We need a clear and concise way to describe an algorithm which is not
language dependent.

• Here we will use something called pseudocode which is a combination of
common language and terminology typically used in computer languages
such as loops and conditionals.

• It does NOT contain correct syntax for any language because it is language
independent.

• However, we will often use Matlab syntax in this class for clarity.

• For a loop we will use the terminology do and for interchangeably.

• The following is an example of an algorithm written in pseudocode. Note
that it does not use correct Matlab syntax and it uses common terms like
“swap”. The goal of writing the algorithm in pseudocode is to allow you to
understand precisely what the steps of the algorithm are.

Thursday, September 5, 13

Example of pseudocode

for i=1, n-1

for j=1,n-i

if (a(j+1) > a(j)) swap a(j) and a(j+1)

end for loop over j

end for loop over i

Thursday, September 5, 13

Some Important Types of Problems

1. Sorting

Examples include

• a list of names which we have to sort alphabetically;

• a vector consisting of numbers which must be rearranged to appear in
ascending order;

• a deck of n cards to be shuffled;

• sorting a list of students by their GPA;

• sorting a list of TVs by cost.

Sorting algorithms often require extra memory.

There is no single sorting algorithm that is best in all cases.

Thursday, September 5, 13

2. Searching

Examples include

• searching a protein string to identify the amino acid sequence that defines
the protein

ATCGTATTGCACATTCTACGGGTAAATGCA

• searching for a given value x in a numerical array a(1 : n);

• given a set of points X , find the point z in X which is closest to some
given point,

• determining if any two elements in an array are equal

If we are searching a list and it is already sorted, then our algorithm should
take advantage of this.

There is no single searching algorithm that is best in all cases.

Thursday, September 5, 13

3. Randomness

Examples include

• Generating pseudorandom numbers

• Random walks - stock market, path of a foraging animal

• Brownian motion

Thursday, September 5, 13

4. Graph Problems

• Königsberg Bridge Problem (1735)

• Minimum spanning tree

An example would be a cable TV company laying cable to a new neigh-
borhood. If it is constrained to bury the cable only along certain paths,
then there would be a graph representing which points are connected by
those paths. Some of those paths might be more expensive, because they
are longer, or require the cable to be buried deeper; these paths would be
represented by edges with larger weights. A spanning tree for that graph
would be a subset of those paths that has no cycles but still connects to
every house. There might be several spanning trees possible. A minimum
spanning tree would be one with the lowest total cost.

Thursday, September 5, 13

5. Optimization Problems

Examples include

• Traveling Salesman Problem

Fig. 0.1. Shortest route visiting 15 cities among approximately 44 billion choices

Thursday, September 5, 13

• Knapsack Problem

Fig. 0.2. Maximize cost and minimize weight

Thursday, September 5, 13

6. Data Mining & Clustering Problems

Examples include

• Law enforcement - fraud detection, criminal profiling

• Census data

• Medical statistics

• Stock market

Thursday, September 5, 13

7. Computational Geometry Problems

Examples include

• Grid generation

• Convex Hull Problem - given a set of points, find the smallest convex
polyhedron/polygon containing all the points.

• Voronoi Diagrams

Thursday, September 5, 13

8. Image Processing Problems

Examples include

• Feature extraction - facial recognition, fingerprint matching, etc.

• Edge detection - medical imaging

• Image enhancement

• Printing

Thursday, September 5, 13

9. Numerical Problems

These problem involve mathematical objects of a continuous nature and were
studied in Algorithms I. Examples include

• solving systems of linear equations;

• computing a definite integral;

• solving a differential equation;

• finding the roots of a function (i.e., where it is zero);

• obtaining a simple function (such as a polynomial) to approximate a more
complicated function

Thursday, September 5, 13

Common Types of Approaches for Designing Algorithms

1. Brute Force

• a straightforward approach to solving a problem

• usually it is not the best way to solve a problem but it has the advantage
that it is conceptually simple

• If we have an array of names and we want to find the first occurence of
a particular name, say “smith”, then we compare “smith” with the first
entry and if they are not equal we move to the second entry and compare
it, etc. This is a brute force approach to searching.

• If we have an array of real numbers then a brute force approach to sorting
it in ascending order would be to look through the array and find the small
entry and exchange it with the first entry in array; then search the second
through last entries and find the smallest entry and exchange it with the
second entry, etc.

Thursday, September 5, 13

• Find all possible combinations of feasible solutions and pick the one which
satisfies the given criteria.

Example Use a brute force approach to sorting the array a = {17, 31, 6, 4}

– On the first step we find that the smallest entry is in a(4) so we exchange
a(1) and a(4) to get {4, 31, 6, 17}

– On the second step we look at entries two through four of the new
array and see that the smallest is in position 4 so we exchange to get
{4, 6, 31, 17}

– On the third step we see that the fourth entry is larger than the third
so we exchange to get the final sorted array {4, 6, 17, 31}.

Thursday, September 5, 13

• If we wanted to compute an then a brute force algorithm is the following

Brute Force algorithm for calculating an

Given a, n

value = 1.

for k = 1:n

value = value * a

Thursday, September 5, 13

2. Divide and Conquer

• Probably the best known general algorithm design technique

• The basic idea is to divide the problem into several smaller problems of
the same type; each subproblem may be divided further.

• As an example consider again the problem of searching an array. A brute
force approach was the exhaustive approach of checking the first entry,
then the second, etc.

However, if the array is ordered (say in ascending order or alphabetical
order) then we could check the middle entry in the array and if it was not
equal then we would know whether it was in the first half of the array
or the last half because the array was ordered; so we have divided the
problem into a smaller problem. You probably encountered this approach
in a continuous setting if you used the Bisection Method to find the root
of f(x) on [a, b].

Thursday, September 5, 13

Example.

Find the location where 17 occurs in the sorted array a0 = {1, 4, 7, 9, 17, 31, 33}.

– first we compare 17 with a0(4) and see that 17 > 9 so we know that
17 ∈ a1 = {17, 31, 33}.

– next we compare 17 with a1(2) and see that 17 < 31 so 17 is in
a2 = {17} and we have located the element.

• This approach is called a Binary Search and is a common example of a
divide and conquer approach.

Thursday, September 5, 13

3. Decrease and Conquer

• This strategy is based on exploiting the relationship between a solution to
a problem of size n and a solution to a smaller problem.

• As an example, consider calculating π8.

Recall that the brute force approach was to compute π∗π∗π∗π∗π∗π∗π
which required 7 multiplications.

A decrease and conquer approach would be to note that π8 = π4π4. To
compute π4 we note that it is equal to π2π2. Consequently we form π2

(1 multiplication), then π4 = π2π2 (1 multiplication) and π8 = π4π4 (1
multiplication); thus we have computed the work in three multiplications
rather than seven.

Of course we would have to modify the algorithm slightly if we wanted to
compute π9. In this case we would simply write π9 = π8 ∗π and compute
π8 as above and then perform one additional multiplication to get π9.

Thursday, September 5, 13

4. Transform and Conquer

• In this approach we transform the problem into one which is more amenable
to solution.

• This is a technique that is used throughout mathematics too. For example,
when you calculate the integral

∫

D(x2 + y2) dxdy where D is the unit
circle it is much easier to transform the integral to polar coordinates using
the transformation x = cos θ, y = sin θ to obtain the equivalent integral
∫ 2π

0

∫ 1
0 r2r drdθ.

• In Algorithms I you studied Gaussian elimination (GE) for solving a linear
system. For GE you transform the linear system into an equivalent upper
triangular system and we know that solving upper triangular systems is
“easy”.

• Suppose you wanted to see if any two elements of an array are equal. The
brute force approach is to check the first entry with the second through
last entries. Then we check the second entry with the third through last
entries, etc.

An alternate approach which uses the transform and conquer approach

Thursday, September 5, 13

is to first sort the array (i.e., transform the problem). Now all we must
check is to see if two adjacent entries of the sorted array are equal.

If we use an efficient sorting routine then this approach will be faster than
the brute force approach.

Example. Determine if any two entries of the array {61, 17, 32, 4, 17}
are equal.

The Brute Force approach checks the following:

– Is 61 =17? Is 61 = 32? Is 61 = 4? Is 61 = 17?
– Is 17 = 32? Is 17 = 4? Is 17 = 17?
– Is 32 = 4? Is 32 =17?
– Is 4 = 17?

The Transform and Conquer algorithm first sorts the array into {4, 17, 17, 32, 61}
and then checks

– Is 4 = 17? Is 17=17? is 17=32? Is 32=61?

Thursday, September 5, 13

5. Greedy Algorithms

• The strategy for these algorithms is to construct a solution through a
sequence of steps where at each step the choice is made based upon the
criteria that

(i) it is the best local choice among all feasible choices available at that
step and

(ii) the choice is irrevocable, i.e., it cannot be changed on subsequent
steps of the algorithm.

• This technique is not as broad as the others and is used for optimization
problems.

• An example of where a greedy algorithm might be useful is the “change
problem” faced by cashiers all over the world where one wants to give
the change using the criteria that we use as small a number of coins as
possible.

Thursday, September 5, 13

Example. Use a greedy algorithm to determine the smallest number of
coins needed to give the change of 43 cents assuming that the available
coins are quarters, dimes, nickels and pennies.

– On the first step the available coins are quarter, dime, nickel and penny
because all are less than 43 cents. We choose the largest one (we are
greedy after all!), a quarter and we now have 43-25=18 cents.

– On the second step the feasible coins are dime, nickel and penny and
we choose the largest, a dime; we now have 18-10 = 8 cents

– On the third step the feasible coins are a nickel and a penny. We choose
the largest which is a nickel and we have 8-5=3 cents.

– On the fourth step the only feasible coin is a penny.

– The optimal number of coins is 6 - a quarter, a dime, a nickel and three
pennies.

What is a brute force approach to this problem?

Thursday, September 5, 13

How can we compare algorithms?

If we have two different algorithms that solve the same problem then how can
we determine if one is “better” than the other?

• We can compare the storage (e.g., the size of the arrays required).

• If we run both algorithms for a particular problem and Algorithm A runs
faster (i.e., it takes less wall clock time) than Algorithm B then we might
conclude that Algorithm A is better. However, this might not be the case.
When we do the comparison we are performing the calculations for a specific
value of the problem size (for example, searching an array of length 100).
However, if we run the same algorithms for a different problem size (such
as searching an array of length 100,000) then we might find that Algorithm
B runs faster. We also have to be concerned about how each algorithm is
implemented and how issues like initialization, etc. are handled.

Thursday, September 5, 13

• Then what can we use to compare the efficiency of two algorithms?

Typically we would like to estimate the work, i.e., the number of operations
performed as a function of a parameter that characterizes the size of the
problem.

• What do we mean by the size of the problem?

Usually a problem size is a function of some parameter n. Some examples
include:

– When we multiply a square matrix times a vector than the parameter is
the size of the matrix, i.e., n where the matrix is n×n. We know that as
n increases the number of arithmetic operations increases and you may
have seen last semester that the leading term in the number of operations
is n2.

– Another example would be sorting or searching a string of length n.

• In the next lecture we want to see how we can quantify the efficiency of
algorithms so that we can compare them.

Thursday, September 5, 13

Analysis of Algorithm Efficiency

• If we are solving a small instance of a problem then it probably doesn’t matter
whether we use the most efficient algorithm. However, if we want to solve
large problems (i.e., for large N) or we need to perform the calculation many
times, then we have to be concerned about storage and the growth rate of
the work in terms of N .

• If we want to develop efficient algorithms then we must be able to state
mathematically what we mean by “efficient”; we need to be able to say
something more than “it runs quickly.”

The wall clock time that an algorithm takes to execute for a specific problem
can depend on a lot of factors; for example, the actual implementation
(coding), the language used, the computer used, etc.

• We want a definition of efficiency that is platform-independent, instance-
independent and of predictive value as the input size is increased.

• Analyzing algorithms involves thinking about how their resource requirements

Thursday, September 5, 13

– the amount of time and space they use – will scale with increasing input
size.

• In most cases, the value of one particular input quantity is a measure of how
hard the calculation is going to be.

• Often this quantity is an integer, perhaps N , which might measure the
length of an input vector, the dimension of a square matrix (i.e., N × N),
the number of iterative steps to take, or some other quantity that affects the
amount of work.

• It is sometimes possible to estimate the work W , the number of operations
performed, as a function of an input parameter such as N .

• We look at situations where we can estimate the work required based upon
an input parameter N and see how we can use this to compare algorithms.
We need to return to calculus to help us understand how different formulas
for work scale with N . When we encounter specific algorithms we will see
how we can, in some cases, obtain an explicit formula for the work.

• Suppose we were able to determine an explicit formula involving N for the
work required to use each of two methods (Algorithm A and Algorithm B)

Thursday, September 5, 13

to solve a problem and found these formulas to be

WA = 3N + 21 WB = N 2 + 10N + 5

where WA denotes the work for Algorithm A and WB denotes the work for
Algorithm B.

• We want to investigate the implications of these two formulas remembering
that we are concerned with how the work grows as N increases; if we are
performing calculations with small values of N then it probably doesn’t
matter which algorithm we use.

• The first thing to note in formulas like these is that as N grows the term
which has the highest power of N dominates; for example, in WA it is 3N
and in WB it is N 2. To see this, look at the following tables.

Thursday, September 5, 13

N 3N 3N + 21 N 2 10N N 2 + 10N + 5

10 30 51 100 100 205
100 300 321 10,000 1000 11,005

1000 3000 3021 1,000,000 10,000 1,010,005
100,000 300,000 300,021 1010 106 10,001,000,005

Thursday, September 5, 13

• We say that WA is linear in N and WB is quadratic in N . Here is a plot
of the two formulas for the work as a function of N . Note that this means
that if N is doubled (say 1000 to 2000) then the work WA increases by
approximately two (from 3021 to 6021, i.e., from

3N + 21 to to3(2N) + 21

However for WB the work increases by approximately four; i.e., from

N 2 + 10N + 5 to (2N)2 + 10(2N) + 5 = 4N 2 + 10N + 5

This gives us a measure of how complex the problem is in terms of N .

Thursday, September 5, 13

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250
graphs of 3x+21, x2+10x+5

Terminology

• When the leading term in the work is a constant times N we say the method

Thursday, September 5, 13

– has linear growth in N or equivalently

– is order N or equivalently

– is O(N)

• When the leading term in the work is a constant times N 2 we say the method

– has quadratic growth in N or equivalently

– is order N 2 or equivalently

– is O(N 2)

Thursday, September 5, 13

Polynomial Growth

• We have seen two examples of polynomial growth, linear which is O(N),
and quadratic which is O(N 2).

• Clearly we could have work which has a leading term of N 3 and we would
call this method cubic and say it is O(N 3).

• So, in general, if a method has polynomial growth then we say it is O(Np)
for some p > 0 which is typically an integer but doesn’t have to be.

• Remember that O(Np) means that the leading term in the work is c ∗ Np

for some positive constant c.

• If the value of N increases from N to 2N then the amount of work increases
by 2p because we compare cNp and c(2N)p = c2pNp.

• These methods are easy to compare because the larger the value of p the
more work required. We can compare these to the plots of the continuous
monomials x, x2, x3, . . . We know that as the power of x increases the plot
goes to infinity faster and faster.

Thursday, September 5, 13

Are there methods which have work which don’t have polynomial growth?

• Suppose we determined that an algorithm has a formula for work which is

log N + 5

• First of all we might wonder what this means because there is no base for the
log function. Oftentimes in logarithmic growth formulas the base is omitted;
this is because we can always change between bases by using the formula

loga x =
logb x

logb a
.

The denominator in this formula is a constant so if the method is O(loga N)
then it is also O(logb N).

The function log N + 5 is clearly not a polynomial but we might want to
compare it to an algorithm which has polynomial growth. For example, does
it require more work or less work than a method with linear or quadratic
growth?

• Other examples of logarithmic growth formulas are

N log N N 2 log N N(log N)2

Thursday, September 5, 13

• We can also have exponential growth formulas such as

2N 1.5N 5N

• We can also have a factorial growth N !. Note that N ! ≈ NN due to
Stirling’s formula which for all practical purposes means it’s impossible!

• We want to compare these formulas with polynomial growth. One way to
do this is to plot the corresponding continuous function (if appropriate). For
example, for ln N + 5 we could plot ln x + 5 and compare with polynomial
growth. In the following plot we graph ln x + 5 and x. What can you
conclude from this plot?

• Another way to compare the growth is to use limits from calculus and in
particular l’Hôptial’s rule. Remember in calculus that you were asked to
evaluate limits like

lim
x→∞

ln x

x
lim

x→∞

2x

x5

In both of these limits you get an indeterminant form∞/∞ and so you can

Thursday, September 5, 13

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10
graphs of x, ln x

apply l’Hôptial’s rule to get

lim
x→∞

ln x

x
= lim

x→∞

1
x

1
= lim

x→∞

1

x
= 0

Thursday, September 5, 13

which says that x approaches infinity faster than ln x does. This means that
a method which is linear in growth requires more work than a method which
has logarithmic growth. This is exactly what we concluded from our graph
above. For the other limit we have

lim
x→∞

2x

x5
= lim

x→∞

2x ln 2

4x4
= · · · = lim

x→∞

2x(ln 2)5

24
=∞

which says that 2x grows faster than x5. Note that this is also true for xp for
any p ≥ 0. We say that 2x has exponential growth. Exponential functions
growth faster than any polynomial.

• To compare two exponential growth formulas, such as aN and bN we simply
look at the base; if a > b then aN grows faster.

• In the homework you will be asked to make a table of values for polynomial
growth, logarithmic growth, exponential growth, etc.

• It is important to realize that what we are interested in is the rate of growth.If
we have two algorithms which have work 3N 2 + 4 and 4N 2 + 4 it is true
that for any N the work for the first is less than for the second but the rate
at which they grow is the same. For example, for N = 104 they both have

Thursday, September 5, 13

O(108) operations.

Thursday, September 5, 13

N N log2 N N 2 N 3 1.5N 2N N !
N = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4sec
N = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 yrs
N = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11min 36 yrs ∞
N = 100 < 1 sec < 1 sec < 1 sec 1 sec 12892 yrs 1017 yrs ∞
N = 103 < 1 sec < 1 sec 1 sec 18 min ∞ ∞ ∞
N = 104 < 1 sec < 1 sec 2 min 12 days ∞ ∞ ∞
N = 105 < 1 sec 2 sec 3 hrs 32 yrs ∞ ∞ ∞

Estimated running times of different algorithms on inputs of increasing size for a
processor performing a million high-level instructions per second. In cases where
the running time exceeds 1025 the time is listed as ∞. Reference: Algorithm
Design by Kleinberg & Tardos

Thursday, September 5, 13

• If we break our algorithm into two parts and Part I is linear in N and Part
II is linear in N then the algorithm is linear.

• If we break our algorithm into two parts and Part I is linear in N and Part
II is quadratic in N then the algorithm is quadratic.

Thursday, September 5, 13

Worst Case & Best Case Scenarios

• Sometimes it is informative to consider what is the worst (or best) case
scenario for your algorithm.

• It could be the case that your algorithm performs well on most instances of
the input but has a few pathological inputs on which it is very slow. However,
in general, this will not be the case.

• For example consider a scalar array of length N which we want to search to
see if any element is equal to a given value, say 17. If the first element in
the array happens to be 17, then the algorithm is complete in one step (best
case scenario) but if the last element, or no element, is 17 then we have to
check all N elements so we will perform N comparisons. We say that this
“exhaustive search” is linear in N even though there may be some instances
of input where it performs faster.

Thursday, September 5, 13

Examples of calculating a formula for the growth rate.

Scalar or dot product of two vectors.

Given two n-vectors !u and !v, the scalar dot product is denoted by

!uT!v = !u · !v =
n

∑

i=1

uivi

where ui denotes the ith entry of the vector !u.

This can be computed in approximately n operations:

• 1 initialization and 2n “fetches” from memory
• n multiplies
• n− 1 adds
• 1 write to memory

If we count only the n+(n-1) computational operations, we have 2n−1 operations
or a linear algorithm, i.e., O(n) algorithm.

Thursday, September 5, 13

Plot of the time to compute a dot product versus the size of the vector. Clearly
the growth is linear in the size of the vector because as the size is doubled, the
work is also doubled.

Thursday, September 5, 13

Shortest path

Suppose we have N cities, and we are interested in determining the shortest
driving time st(i, j) to drive from each city i to each city j.

• We assume that we start with a table that gives the driving time dt(i, j) for
a direct trip from city i to each city j.

• If there is a direct route from city i to city j then it is easy. However many
cities may not have a direct link. Usually there are many routes from one
city to another and we want to find the shortest of all possible routes.

• Between city i and city j there are N − 2 other cities, so theoretically there
are (N − 2)! routes to check for each city combination. This seems like an
O(N!) problem, also known as ”impossible”!

Thursday, September 5, 13

Floyd’s algorithm for shortest path problem

Instead of being impossible, Floyd’s algorithm shows a simple way to compute
the entire table of possible distances in just a few lines of code:

set st = dt

for k = 1 : n

for j = 1 : n

for i = 1 : n

st(i,j) = min (st(i,j), st(i,k) + st(k,j))

end end

end

Don’t worry about why this algorithm works right now but simply calculate
the work required. What is the growth as a factor of n?

Thursday, September 5, 13

Plot of time versus number of cities for Floyd’s algorithm.

Thursday, September 5, 13

Brute Force Algorithms

• These are algorithms which take a straightforward and often the most
obvious approach to solving a problem.

• The basic idea is often to try all possibilities and see if any of them
works.

• These algorithms are rarely called clever or efficient but should not be
overlooked as an important design strategy.

• This approach is applicable to a very wide range of problems.

• Sometimes we only need to solve a small problem for an educational purpose
or to verify some theoretical result and in this case a brute force approach
may be the quickest to implement.

Thursday, September 5, 13

Example Determine the greatest common divisor (gcd) of two integers, m, n

• In middle school you were probably asked to find the largest integer that
divides two number evenly; for example, determine gcd(54, 99).

• A brute force approach to determining this would be to check consecutive
integers; e.g., check 54, then 53, then 52, etc. until we find the largest that
divides both numbers.

• How would we implement such a method? We could start with 2 and
increase our test divisor by one until we reach either m and n (the smallest
one) but it would probably be better to start with the largest possible
divisor and decrease.

– We know that the gcd has to be ≤ min{m, n}.

– So we set our guess for the gcd to be t = min{m, n}.

– If t divides both m and n (i.e., the remainder is zero) we are done;

– If the remainder is not zero (for either m or n) then we reduce t by one
and continue

Thursday, September 5, 13

Consecutive integer checking algorithm:

Input: two integers, m and n

Output: integer t which is gcd(m, n)

Step 1. Set t = min{m, n}

Step 2. Divide m by t; if the remainder is 0, go to Step 3; otherwise go to Step
4.

Step 3. Divide n by t; if the remainder is 0, return the value of t as the gcd;
otherwise go to Step 4.

Step 4. t = t− 1; go to Step 2

This is a description of the code but it is not really written in pseudocode
format. However, it is a format that is often used in books and papers.

Thursday, September 5, 13

Example Use this brute force algorithm to find gcd(16,24).

t = min{16, 36} = 16

t = 16 16/16 has remainder 0 , 36/16 does not have remainder 0

t = 15 16/15 does not have remainder 0

t = 14 16/14 does not have remainder 0
...

t = 8 16/8 has remainder 0, 36/8 does not have remainder 0

t = 7 16/7 does not have remainder 0
...

t = 5 16/5 does not have remainder 0

t = 4 16/4 has remainder 0 36/4 has remainder 0; return gcd=4

Of course this is definitely not the most efficient approach to finding the greatest
common divisor. The worst case scenario would be when we have to check all
numbers from min{m, n} to 2. At each step we have to do one or two divisions
so the work for the worst case scenario is < 2 min{m, n} so it is linear.

Thursday, September 5, 13

Example Sorting a list.

Suppose we have a list of n orderable items (names, numbers, etc.) and we
want to sort these based upon some criteria. Dozens of algorithms have been
developed to perform such a task. Clearly it is a task that is prevalent today;
e.g., sorting a list of students by GPA, sorting a list of employees by years of
service, ordering a list of items such as TVs that you want to purchase by price,
etc.

You may already know some methods to do this, but for now, pretend you don’t
and let’s look at a couple of brute force approaches. We want a straightforward
approach but remember what one person may view as straightforward, another
may not so we consider two candidates here.

For simplicity of exposition, we will assume that we are sorting a list of n
numbers in ascending order.

In your first lab you will implement both of these algorithms and apply them
to a problem.

Thursday, September 5, 13

Selection Sort Algorithm

This algorithm works by putting the smallest entry in the first position of the
array, then putting the second smallest in the second position, etc.

• Scan list to find smallest entry and exchange first entry of list with this
smallest entry.

• Scan second through n entries in list to find smallest entry and exchange
this with the second entry.

• Scan third through n entries in list to find smallest entry and exchange this
with the third entry.

• Continue until you are scanning entries n−1 through n to find the smallest
entry and exchange it with (n− 1)st entry

• The result is the sorted list.

• An equivalent algorithm would be to start with scanning the array to find
the largest entry and putting it in the nth position, then the second largest
in the (n− 1)st entry, etc.

Thursday, September 5, 13

Example Apply the Selection Sort algorithm to the array of numbers

(49, 61, 19, 12)

For the first sweep we locate the smallest entry in the entire array (the fourth
entry) and exchange it with the first entry to get (12, 61, 19, 49.)

For the second sweep we locate the smallest entry in positions 2 through 4 (the
third entry) and exchange it with the second entry to get (12, 19, 61, 49).

For the third and final sweep we find the smallest entry in positions three and
four (the fourth entry) and exchange to get (12, 19, 49, 61).

The algorithm is complete.

Thursday, September 5, 13

Selection sort for real array:

Input: array a(1:n) of numbers and its length n

Output: the array a(1:n) sorted in ascending order

for i=1, n-1

min loc = i

for j=i+1, n

if (a(j) < a(min loc)) min loc = j

end for loop over j

swap a(i) and a(min loc)

end for loop over i

Thursday, September 5, 13

How much work does this algorithm take?

• Clearly the amount of work depends upon the length of the array n. We
want to determine precisely how it depends upon n.

• For determining formulas for the work the following results from calculus
are useful.

m
∑

i=1

i =
m(m− 1)

2

m
∑

i=1

i2 =
m(m + 1)(2m + 1)

6

• The key work that has to be done is the comparison of two elements of the
array. Looking at our algorithm description we see that the outer loop is
from 1 to n − 1 and the inner loop is from i + 1 to n and we have to do
one comparison in the inner loop. Consequently we have

n−1
∑

i=1

n
∑

j=i+1

1 =
n−1
∑

i=1

[

n− (i + 1) + 1
]

=
n−1
∑

i=1

n−
n−1
∑

i=1

i

= n
n−1
∑

i=1

1−
n−1
∑

i=1

i = n(n− 1)−
(n− 1)n

2
=

n2

2
−

n

2

+

Thursday, September 5, 13

• So we say the algorithm is quadratic in n and is O(n2).

• Of course we have to swap elements but this is only done n− 1 times.

• Recall that an algorithm which has quadratic growth increases the work
by a factor of four when n is doubled. In the next class we will see an
algorithm for sorting which is O(n log n) and thus more efficient.

Thursday, September 5, 13

Bubble Sort

A second brute force approach to sorting is the Bubble Sort which gets its
name from the fact that the largest entry “bubbles up” to the top. Recall that
Selection sort started by finding the smallest entry. In the first sweep of Bubble
sort the largest entry is moved until it reaches the last position in the array. In
the next sweep the second largest entry makes its way to the n − 1 position,
etc.

• In the first sweep getting the largest entry to the last position is accom-
plished by first checking the first and second entries; if the first is larger
than the second then they are interchanged.

• Next, the second and third entries are checked and if the second is larger
than the third then they are interchanged; if not, then nothing is done.

• This continues until the (n − 1)st and nth entries are compared and in-
terchanged if the (n − 1)st is larger than the nth entry; the first sweep is
completed.

• Then one starts over but we only have to compare entries in the first

Thursday, September 5, 13

through (n− 1)st components because we have already moved the largest
component to the last entry. This procedure is continued until the entire
array is sorted.

Example Apply the Bubble Sort algorithm to the array of numbers

(49, 61, 19, 12)

For the first sweep we have the following steps

49 < 61 so do nothing
61 > 19 so interchange to get (49, 19, 61, 12)
61 > 12 so interchange to get (49, 19, 12, 61)

For the second sweep

49 > 19 so interchange to get (19, 49, 12, 61)
49 > 12 so interchange to get (19, 12, 49, 61)

Note that we do not have to compare the third and fourth entries because in

Thursday, September 5, 13

the first sweep we have moved the largest entry to the fourth position.

For the third sweep

19 < 12 so interchange to get (12, 19, 49, 61)

Note that we do not have to compare the second and third or third and fourth
entries because in the first sweep we have moved the largest entry to the fourth
position and in the second sweep we have moved the second largest to the third
position.

Algorithm is complete.

Thursday, September 5, 13

Bubble Sort for real array:

Input: array a(1:n) of numbers and its length n

Output: the array a(1:n) sorted in ascending order

for i=1, n-1

for j=1,n-i

if (a(j+1) > a(j)) swap a(j) and a(j+1)

end for loop over j

end for loop over i

Thursday, September 5, 13

How much work does this algorithm take?

Remember that the Selection Sort Algorithm took O(n2) operations. It turns
out that the Bubble Sort Algorithm takes the same amount of work. We have

n−1
∑

i=1

n−i
∑

j=1

1 =
n−1
∑

i=1

(n− i) = n
n−1
∑

i=1

−
n−1
∑

i=1

i

= n(n− 1)−
(n− 1)n

2
=

n2

2
−

n

2

and thus the algorithm is O(n2).

Thursday, September 5, 13

Sequential Search

• Suppose that we want to search elements in a list or array with a given
value called a search key. For example, we might want to find the element
in an array that equals 17 or ’miami’.

• The brute force approach is to be given a list say a and a search key say
K.

– Check if a(1) = K; if so terminate, otherwise continue.

– Check if a(2) = K; if so terminate, otherwise continue.

– Continue until one finds i such that a(i) = K or the list is exhausted.

Thursday, September 5, 13

Sequential Search Algorithm

Input: an array a(1 : n) and a search key K

Output: the index of the first element of a that matches K or 0 if no match

i=0

while i < n and a(i) != K do

i ← i+1

if i < n return i

else return 0

As we discussed last time, the worst case scenario is that we have to check all n
elements in the array so we have linear growth whereas the best case scenario is
O(1) when the first entry of the array equals the key.

Thursday, September 5, 13

Exhaustive Searches

This brute force approach determines all possible combinations of every feasible
solution and picks the one which satisfies the given criteria. This approach is
impractical for all but the smallest problems because the work is n!.

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is to find the shortest tour through n
cities with known distances between them. It was first formulated as a math-
ematical problem in 1930 and is one of the most intensively studied problems
in optimization. Even though the problem is computationally difficult, a large
number of heuristics and exact methods are known, so that some instances with
tens of thousands of cities can be solved.

Recall the problem of finding the shortest route to travel to 15 cities in Germany
as depicted in the figure.

Thursday, September 5, 13

The brute force approach/exhaustive search would be to find all possible routes
and then pick the shortest.

It has applications in planning, logistics, microchip design and even DNA se-
quencing.

Shortest route between 15 cities.

Thursday, September 5, 13

Example Consider 4 cities A, B, C, and D and suppose we are given the fol-
lowing direct distances between cities which we denote, e.g., d(A, B). Use the

Thursday, September 5, 13

brute force approach to find the minimum distance to travel to all cities if we
have the constraint that we want to start and end at city A.

d(A,B) = 10 d(A,C) = 70 d(A, D) = 110

d(B,C) = 40 d(B,D) = 60 d(C,D) = 30

We determine the distances for all possible routes and take the smallest

A→ B → C → D → A =10+40+30 +110=190

A→ B → D → C → A=10+ 60+30+70=160

A→ C → D → B → A=70+30+60+10=170

A→ C → B → D → A=70+40+60+110=280

A→ D → B → C → A=110+60+40+70=280

A→ D → C → B → A=110+30+40+10=190

So the shortest path is A→ B → D → C → A.

Thursday, September 5, 13

Knapsack Problem

In this problem, we are given a set of items, each with a weight and a value and
we want to determine the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the total value is as
large as possible.

In the example illustrated we are trying to keep the total weight under 15 kg
while maximizing the dollar amount.

Thursday, September 5, 13

As with the traveling salesman problem, the brute force approach/exhaustive
search is to find all possible combinations which are feasible ones (within the
restriction given on total weight) and choose the one which has the largest value.

For example, for the case illustrated we look at all possible combinations such as

1 green =⇒ 12 kg and $4 value

1 green + 1 blue =⇒ 14 kg and $6 value

1 green + 1 blue + 1 brown =⇒ 15 kg and $7 value

1 green + 1 red =⇒ 13 kg and $5 value

etc.

Thursday, September 5, 13

Example Suppose our limit to the weight of the knapsack is 10 kg. We have
four items

item #1 weighs 7 kg and has a value of $42

item #2 weighs 3 kg and has a value of $12

item #3 weighs 4 kg and has a value of $40

item #4 weighs 5 kg and has a value of $25

Make a table of all possible combinations, their weight and total value; then
determine the solution. If a combination weighs more than 10 kg indicate that
it is not feasible.

Thursday, September 5, 13

Describe a brute force algorithm for the following problems:

• The change problem - given an amount of change, e.g., 61 cents, determine
the smallest number of coins one can use where the possibilities are quarter,
dime, nickel and penny

• Closest pair problem - given a set X of n points we want to find the two
points in X that are closest using the standard Euclidean distance formula

√

(xi − xj)2 + (yi − yj)2

where the points are denoted (xk, yk).

Thursday, September 5, 13

Divide and Conquer Algorithms

A popular approach to algorithm design is divide and conquer. The basic idea is
to

• divide the problem into several smaller problems of the same type where
ideally the smaller problems are of the same size;

• solve each smaller problem;

• combine solutions of smaller problems to form desired solution.

Divide and conquer algorithms are ideally suited for parallel computations.

As an example, consider the problem of summing 100 numbers a1, a2, . . . , a100.
The brute force approach is, of course, to add a1 and a2 then add the result to
a3, etc. A divide and conquer approach might be to sum the first fifty numbers,
a1, . . . , a50 and then sum the last fifty numbers a51, . . . , a100 and then add the

Thursday, September 5, 13

result of summing the first fifty numbers and the last fifty numbers.

α = a1 + a2 + · · · + a50 β = a51 + a52 + · · · + a100

answer = α + β

However, there doesn’t appear to be any advantage for this approach compared to
the brute force approach (on a serial machine). So not every divide and conquer
algorithm is more efficient than a brute force approach.

However, there are divide and conquer algorithms which are more efficient than
brute force approaches.

Thursday, September 5, 13

Sorting Algorithms using Divide and Conquer

We saw two brute force approaches to sorting an array – Selection Sort and Bubble
Sort. Both algorithms were O(n2). We now want to look at two important sorting
routines which take the divide and conquer approach and are O(n log n).

MergeSort

The basic idea is simple.

• We divide the array a(1 : n) into two smaller arrays a(1 : n/2), a(n/2+1, n).

• Each of the two smaller arrays is divided again; continue this procedure until
you have arrays of length one.

• Merge smaller arrays into a sorted array of length n.

Thursday, September 5, 13

As an example consider the array

(45, 12, 61, 19, 71, 22, 4, 33)

We divide it into two arrays

(45, 12, 61, 19) (71, 22, 4, 33)

Now each of these arrays of length 4 is divided into two arrays of length two

(45, 12) (61, 19) (71, 22) (4, 33)

and finally we have

(45) (12) (61) (19) (71) (22) (4) (33)

We merge each array to form sorted arrays of length two

(12, 45) (19, 61) (22, 71) (4, 33)

Now we continue to reassemble the array by merging to form two sorted arrays
of length 4

(12, 19, 45, 61) (4, 22, 33, 71)

and finally merge these two sorted arrays to form the final sorted array

(4, 12, 19, 33, 45, 61, 71)

Thursday, September 5, 13

We can summarize the steps before the merge in the table below.

Level Problem Size # Problems

0 8 1
1 4 2
2 2 4
3 1 8

Before we present the algorithm and argue that it is indeed more efficient than
Selection Sort or Bubble Sort we need to clarify how to perform the merge.

The shortcoming of this approach is that the merge requires an extra array of
length n.

Lets consider the last step where we want to merge the two sorted arrays of
length 4 above. Let u = (12, 19, 45, 61), v = (4, 22, 33, 71). We set up an
array of length 8, call it w, for the merged array.

• Lets use the pointer i to indicate the next u value to select; j to indicate
the next v value to select and k to indicate the next w value to fill. Initially

Thursday, September 5, 13

i = j = k = 1.

• At each step we check:

– if u(i) <= v(j) then we set w(k) = u(i) and increment i, k;

– otherwise w(k) = v(j) and increment j, k;
• For our problem we have the following steps

– i = j = k = 1, u(1) > v(1) implies w(1) = v(1) = 4,j = 2, k = 2

– i = 1, j = k = 2, u(1) < v(2) implies w(2) = u(1) = 12, i = 2, k = 3

– i = j = 2, k = 3 u(2) < v(2) implies w(3) = u(2) = 19, i = 3, k = 4

– i = 3, j = 2, k = 4 u(3) > v(2) implies w(4) = v(2) = 22, j = 3, k = 5

– etc.
• When i = n or j = n then we copy the rest of the remaining array into w.

Mergesort

Input: u,v, two sorted arrays of length n

Thursday, September 5, 13

Output: w, an array of length 2n which is the sorted array formed by merging u
and v

Set i=j=k=1

while i< n and j<n

if u(i) < v(j)

w(k) ←u(i); k ←k+1; i ←i+1

else

w(k) ←v(j); k ←k+1; j ←j+1

end while

if i=n

copy v(j:n) into w(k:2n)

else

copy u(i:n) into w(k:2n)

Note that we could easily modify this routine so that the input arrays had different
lengths.

Why do we think that Mergesort is more efficient that Selection or Bubble sort
which are O(n2). Recall that if an algorithm if O(n2) then when n is doubled,
then the work is increased by a factor of 4. Is that the case for Mergesort?

Consider the example we had an array of length 8; we divided it into arrays of
length 4 then of length 2 and finally of length 1 and then merged the arrays of
length 2 and finally the arrays of length 4. What if our original array was of
length 16? Then basically we have to first divide into two arrays of length 8 and
then proceed as before except we have one additional merge – the two arrays of
length 8. So when n is doubled we do not increase the work by a factor of 4 but
rather we simply added one more level of work. This is indicative of logarithmic
growth.

Thursday, September 5, 13

copy u(i:n) into w(k:2n)

Note that we could easily modify this routine so that the input arrays had different
lengths.

Why do we think that Mergesort is more efficient that Selection or Bubble sort
which are O(n2). Recall that if an algorithm if O(n2) then when n is doubled,
then the work is increased by a factor of 4. Is that the case for Mergesort?

Consider the example we had an array of length 8; we divided it into arrays of
length 4 then of length 2 and finally of length 1 and then merged the arrays of
length 2 and finally the arrays of length 4. What if our original array was of
length 16? Then basically we have to first divide into two arrays of length 8 and
then proceed as before except we have one additional merge – the two arrays of
length 8. So when n is doubled we do not increase the work by a factor of 4 but
rather we simply added one more level of work. This is indicative of logarithmic
growth.

Thursday, September 5, 13

Binary Search

Suppose you have an array and you want to search with a key K. The brute
force or sequential approach is to check the first entry, then the second, then the
third, etc. until you have found the desired entry.

However, if the list is sorted then we can use this fact to create a more efficient
sort routine. If you had an unsorted array which you need to search many times
(such as a phone book) it is advantageous to first sort the array and then use a
more efficient search algorithm than sequential search.

Binary Search has some similarity to the Bisection Method which you studied for
finding the roots of a function f(x) in [a, b] where f(a)f(b) < 0.

Suppose we are given an array a(1 : n) already sorted in ascending order to search
using the key K.

Thursday, September 5, 13

• Check if K > a(n) or K < a(1) then not in array.

• Set iL = 1, iR = n.

• First check the middle value of the list, say m = n/2 = (iL + iR)/2. If
a(m) = K then we are done; if a(m) < K then K must be in the smaller
list a(m : n) so set iL = m; otherwise it is in a(1 : m) so set iR = m. We
now know that K ∈ a(iL, iR).

• Set m = (iL + iR)/2. (Recall that in Matlab we have to make sure this is
an integer; the correct Matlab command is m=floor((iL+iR)/2).) If
a(m) = K then we are done; if a(m) < K then K must be in the smaller
list a(m : n) so set iL = m; otherwise it is in a(1 : m) so set iR = m. We
now know that K ∈ a(iL, iR).

• Continue in this manner until K is found.

Thursday, September 5, 13

Example Use Binary Search to search the array

a = {5, 9, 12, 17, 21, 45, 81, 109, 122}

for the element 17.

- set iL = 1, iR = 9 and m = 5

- 17< a(5) = 21 so set iR = 5; key is in a(1 : 5)

- m = (iL + iR)/2 = 3

- 17 > a(3) = 12 so set iL = 3; key is in a(3, 5)

- m = (iL + iR)/2 = (3 + 5)/2 = 4

- 17 = a(4) so we are done; return 4

Thursday, September 5, 13

Binary Search Input: sorted array a of length n, search key K

Output: index of the array element = K or 0 if not in array

if K < a(1) or K > a(n) return 0

left=1; right =n

while left ≤ right do

m=(left+right)/2

if a(m)=K return m

if a(m) > K

set right=m

else

set left = m

end while

Thursday, September 5, 13

What about the efficiency of Binary Search? Is it O(n)? Recall that if it is
O(n) then when we double n the work should be increased by two. However, in
this case if we double the length of the array we only increase the work by one
level which is indicative of logarithmic growth. One can show that the method
is O(log n).

Thursday, September 5, 13

Multiplying Large Integers

• Some applications, such as modern cryptology require multiplying integers
which are over 100 digits long. These integers are too long to fit into a single
word of a computer so they require special treatment.

• What is the brute force approach (the usual method we were taught in
elementary school) to multiplying two integers A and B of length n? We
simply take the first digit of A and multiply it by all n digits of B (n
multiplications). Then we take the second digit of A and multiply it by all n
digits of B. Continuing in this manner we see that we have n2 multiplications
followed by fewer (n− 1) additions so the method is O(n2).

• Can we design an algorithm which has fewer operations than O(n2)? The
answer is yes, using the Divide and Conquer strategy.

• The easiest way to see how to do this is to look at an example.

Thursday, September 5, 13

Example Multiply 29 by 13 (=377) using a Divide and Conquer approach.

We first note that

29 = 2 ∗ 101 + 9 ∗ 100 13 = 1 ∗ 101 + 3 ∗ 100

so that

29 ∗ 13 =
(

2 ∗ 101 + 9 ∗ 100
)

∗
(

1 ∗ 101 + 3 ∗ 100
)

= (2 ∗ 1) ∗ 102 + (9 ∗ 3) ∗ 100 + (9 ∗ 1 + 2 ∗ 3) ∗ 101 = 200 + 27 + 150 = 377

But if we multiplied the two numbers by the usual approach we would have 4
multiplications and that’s exactly what we have here!

The idea is to compute the coefficient (9*1+2*3) of 101 by taking advantage of
the two multiplications we have already done which are 2*1 and 9*3; if we can
do the computation 9*1+2*3 in one multiplication then we have improved upon
the brute force approach. We note that this can be done if we write the

(9 ∗ 1 + 2 ∗ 3) = (9 + 2) ∗ (1 + 3)− (2 ∗ 1)− (9 ∗ 3)

Now because we have already computed 2*1 and 9*3 we are only performing one
multiplication but of course we have added some additions.

Thursday, September 5, 13

In general, if we have two two-digits numbers a = a1a0, b = b1b0 then

c = a ∗ b = c2 ∗ 102 + c1 ∗ 101 + c0 ∗ 100

where c2 = a1 ∗ b1 (the product of the tens digits), c0 = a0 ∗ b0 (the product of
the ones digits) and c1 = (a1 + a0) ∗ (b1 + b0) − (c0 + c2), the product of the
sum of the digits minus c0 and c2 which were previously computed.

Where is the divide and conquer strategy in this algorithm?

Well, it’s not there yet! We want to use this idea of multiplying two two-digit
integers to integers with more digits.

Suppose we want to multiply two 6-digits integers,

a = a5a4a3a2a1a0 b = b5b4b3b2b1b0

We now divide each in half (here’s the divide part)

α1 = a5a4a3 α0 = a2a1a0 β1 = b5b4b3 β2 = b2b1b0

The resulting product a ∗ b can be formed using the ideas above

c = a ∗ b = (α1 ∗ 103 + α0) ∗ (β1 ∗ 103 + β0)

Thursday, September 5, 13

= (α1 ∗ β1) ∗ 106 + (α1 ∗ β0 + α0 ∗ β1) ∗ 103 + (α0 ∗ β0)

= c2 ∗ 106 + c1 ∗ 103 + c0

where c2 is the product of their first halves; c0 is the product of their second
halves and c1 = (α1 + α0) ∗ (β1 + β0)− (c2 + c0) as before.

If n/2 is even (not in this case) we can apply the algorithm recursively until the
integers are deemed small enough to multiply in the usual way.

Example Use the Divide and Conquer approach to multiply

4127 ∗ 3456 = 14, 262, 912.

4127 = 41 ∗ 102 + 27, 3456 = 34 ∗ 102 + 56

4127 ∗ 3456 =
(

41 ∗ 102 + 27
)

∗
(

34 ∗ 102 + 56
)

= (41 ∗ 34) ∗ 104 + (27 ∗ 34 +
41 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

The cross term is computed as (27 ∗ 34 + 41 ∗ 56) = (41 + 27) ∗ (34 + 56) −
41 ∗ 34− 27 ∗ 56

We apply the algorithm recursively to compute the products 41*34, 27*56 and

Thursday, September 5, 13

68*90 and then substitute into the formula (41 ∗ 34) ∗ 104 + (68 ∗ 90− 41 ∗
34− 27 ∗ 56) ∗ 102 +

(

27 ∗ 56
)

To form 41*34 we write 41 ∗ 34 = (4 ∗ 101 + 1) ∗ (3 ∗ 101 + 4) = 4 ∗ 3 ∗ 102 + 4 ∗
1+(1∗3+4∗4)∗101 = 1200+4+(1∗3+4∗4)∗101. Again the cross term
is written as (1 ∗ 3 + 4 ∗ 4) = (1 + 4) ∗ (3 + 4)− 4− 12 = 5 ∗ 7− 16 = 19.
Thus 41 ∗ 34 = 1204 + 19 ∗ 101 = 1204 + 190 = 1394.

Similarly 27 ∗ 56 = 1512 and 68*90=6120.

We now return to our formula and substitute these values in (41∗34)∗104+(68∗
90−41∗34−27∗56)∗102+

(

27∗56
)

= 1394∗104+(6120−1394−1512)∗
102 + 1512 = 13, 940, 000 + 3214(100) + 1512 = 13, 941, 512 + 321, 400 =
14, 262, 912

Thursday, September 5, 13

Matrix Multiplication

Suppose we want to multiply two n × n matrices A and B. The standard way
we have learned to do this, is to dot each row of A into each column of B. For
each dot product of a row and column we perform n multiplications and (n− 1)
additions. So when we dot the first row of A into all n columns of B we have
n2 multiplications and n(n − 1) additions. Now there are n rows of A to use
so we have n(n2) multiplications and n(n(n − 1)) additions. Consequently the
method grows with n like n3.

Is it possible to obtain an algorithm that does it in less than O(n3)? The answer
is actually yes; the approach parallels that of the integer multiplication. The
first algorithm to be developed was the Strassen Matrix Multiplication algorithm
(1969) which is approximately O(n2.8); there are modifications to it that have a
growth rate of O(n2.376). The algorithms are not widely used because there is
some instability for some matrices.

Thursday, September 5, 13

Strassen’s algorithm is an application of Divide and Conquer strategy. We will
just look at the result (similar to the one of multiplying two 2-digits integers)
which allows us to perform less multiplications. The algorithm will be applied
recursively as we did with integer multiplication.

The algorithm is based upon the following observation about multiplying two
2× 2 matrices, A, B with entries aij.

C =

(

c11 c12

c21 c22

)

=

(

a11 a12

a21 a22

)(

b11 b12

b21 b22

)

=

(

m1 + m4 −m5 + m7 m3 + m5

m2 + m4 m1 + m3 −m2 + m6

)

where

m1 = (a11 + a22) ∗ (b11 + b22)

m2 = (a21 + a22) ∗ b11, m3 = (b12 − b22) ∗ a11 m4 = (b21 − b11) ∗ a22

m5 = (a11+a12)∗b11, m6 = (b11+b12)∗(a21−a11) m7 = (b21+b22)∗(a12−a22)

Thursday, September 5, 13

Thus there are 7 multiplications required instead of the usual 8. Not much of a
savings but we wouldn’t use the algorithm to multiply 2× 2 matrices. As n goes
to infinity it is asymptotically faster than the straightforward approach.

If we have two 4× 4 matrices to multiply then we divide them into 2× 2 blocks
and use the approach above. If the matrices are of an odd dimension then we
can pad with a row of zeros.

(

C11 C12

C21 C22

)

=

(

A11 A12

A21 A22

) (

B11 B12

B21 B22

)

where each Aij, Bij, Cij is a 2× 2 block.

Thursday, September 5, 13

Decrease and Conquer Algorithms

The next design strategy we encounter is based on exploiting the relationship
between a solution to a given instance of a problem and a solution to a smaller
instance of the same problem.

For example, consider again the problem of computing an for a given scalar a
and integer n. This is the given instance of the problem with n specified. We
now reduce it to a smaller instance of the same problem. One obvious way is to
write

an =
[

an/2]2

Of course this only works if n is even. If n is odd, then (n − 1) is even so we
write an as

an = aan−1 = a
[

a(n−1)/2
]2

Thursday, September 5, 13

So to summarize, we apply the strategy recursively and use the formula

an =

[

an/2
]2

if n is even
[

a(n−1)/2]2 if n is odd and > 1

a if n = 1

In this case we have decreased the problem by a constant each time with constant
1/2 when n is even.

Thursday, September 5, 13

Insertion Sort

• This sorting routine is an example of the paradigm to decrease the size by a
constant (one in this case) whereas in the previous example we reduced the
problem by a factor (1/2 in that case) each time.

• Assume we have a list a(1 : n) which we need to sort. If we reduce it by one
then that means we need to sort the smaller list a(1 : n− 1).

• Assume for now that the smaller list a(1 : n− 1) is sorted. Then to sort the
original list a(1 : n) we just need to determine where a(n) must be inserted
in a(1 : n− 1). There are several ways to do this.

• One way to do this is scan a(1 : n− 1) from left to right and find the first
element which is greater than or equal to a(n); then we simply insert a(n)
before this element.

• Of course we can scan a(1 : n − 1) from right to left and find the first
element which is less than or equal to a(n); then we simply insert a(n) after
this element. These are essentially equivalent but scanning from right to left
is usually the one implemented. This is called (straight) insertion sort.

Thursday, September 5, 13

• We have already encountered another technique to search an array besides
sequential search; remember that binary search was, in general, more effi-
cient. If we use binary search to locate the position to insert a(n) then the
method is called binary insertion sort.

• Of course the algorithm is applied recursively as the following example demon-
strates.

Thursday, September 5, 13

Example Apply the (straight) Insertion sort algorithm to sort the array

a = {56, 43, 48, 22, 67, 29}

Apply the algorithm recursively in a “bottom up” manner, i.e., by starting with
an array of length one. Scan from right to left.

1. Start with the sorted array {56} and we want to insert 43; we see that
56 > 43 so we now have the sorted list {43, 56}.

2. We have the sorted list {43, 56} and we want to insert 48; we scan to see
that 56 > 48 and 43 < 48 so we add 48 before 56 to get {43, 48, 56}

3. We have the sorted list {43, 48, 56} and we want to insert 22; we scan to see
that the all elements including the first element are > 22 so we put 22 at
the beginning to get {22, 43, 48, 56}

4. We have the sorted list {22, 43, 48, 56} and we want to insert 67; we scan to
see that element 56 < 67 so we put 67 at the end to get {22, 43, 48, 56, 67}

5. We have the sorted list {22, 43, 48, 56, 67} and we want to insert 29; we scan
to see that all elements are > 29 and we reach the first 22 < 49 so we put
29 after the first element to get the final sorted array {22, 29, 43, 48, 56, 67}

Thursday, September 5, 13

Straight Insertion Sort

Input: An array a(1 : n) of orderable elements

Output: An array a(1 : n) which is sorted in nondecreasing order

for i = 2:n

v= a(i)

j=i-1

while j ≥ 0 and a(j)> v

a(j+1) ←a(j)

j=j-1

end while

a(j+1) ←v

end for

Thursday, September 5, 13

Fake Coin Problem

There are several versions of this famous problem but the one we consider is that
we are given n coins which look exactly alike but one is fake. For now assume
the fake is slightly lighter than the real coins. The problem is to determine the
fake coin using a balance.

After looking at a Decrease and Conquer by a constant factor approach to solving
this, we will try out the algorithm online.

Even if you didn’t know about the Decrease and Conquer strategy, you would
probably solve the problem using this approach.

- If n is even then we put half the coins on each side of the balance. The side
which is lightest contains the fake coin.

- If n is odd, then (n− 1) is even and we split the (n− 1) coins in half and put
each half on the balance. If both sides are equal weight, then we are done
because the coin we left out is the fake one. If the balance is not even then
we choose the lightest pile of coins to be the one containing the fake.

Thursday, September 5, 13

- We continue in this manner until we have found the fake coin by reducing the
problem to weighing one on each side of the balance or found it by it being
the one we didn’t weigh.

Thursday, September 5, 13

Example Suppose we have 8 coins and we want to find which one is the fake
coin; assume that we know the fake coin is lighter than the real ones. In how
many steps can you guarantee to find the fake coin? What are the steps?

1. Put 4 coins on each side of the balance. Discard the coins on the side that
is heavier because we know the fake coin is on the lighter side.

2. From the 4 put 2 coins on each side of the balance. Discard the coins on the
side that is heavier. We now know that the fake coin is one of two.

3. Put one coin on each side. The coin that is lighter is the fake coin.

Example What is the difference in the strategy if we have 9 coins? Will it take
more steps to do 9 coins?

We start by putting 4 coins on each side of the balance and keep one to the side.
If the balance is level then the fake coin is the one to the side. If the balance is
not level then we know the coin to the side is not fake but rather the fake is on
the side of the balance that is lighter and we proceed as in the previous example.
It should take no more than 3 steps.

Thursday, September 5, 13

Example Suppose we have 12 coins and we want to find which one is the fake
coin; assume that we know the fake coin is lighter than the real ones. In how
many steps can you guarantee to find the fake coin? What are the steps? How
do the number of steps compare with the 8 coin example?

1. Put 6 coins on each side of the balance. Discard the coins on the side that
is heavier because we know the fake coin is on the lighter side.

2. From the 6 put 3 coins on each side of the balance. Discard the coins on the
side that is heavier. We now know that the fake coin is one of three.

3. Put one coin on each side and leave the other off the balance. If one of the
coins on the balance is lighter, then it is the fake. If the balance is level then
the coin to the side is the fake.

Note that this took the same number of steps as the 8 coins.

Example Suppose we have 8 coins and we want to find which one is the fake
coin; assume that we do NOT know whether the fake coin is lighter or heavier
than the real ones. How can we modify our algorithm to handle this case?

1. Put 4 coins on each side of the balance. For now set aside the 4 coins on the

Thursday, September 5, 13

side that is heavier.

2. From the 4 lighter coins put 2 coins on each side of the balance.
- If the balance is level we know that the fake coin is heavier and that it

is one of the four coins we set aside. Thus we have to weigh the four
heavier coins with two on each side to detect which is heavier.

- If the balance is not level then we know the fake coin is lighter and we
choose the 2 lighter coins

3. We now know that the take coin is one of two so we put one coin on each
side. The coin that is lighter/heavier is the fake coin.

It may cost us one additional measurement to determine whether the fake coin
is lighter or heavier so in general it will take 4 steps to decide which is the fake
coin when we start with 8 coins.

Thursday, September 5, 13

Example Use the application at the website

http : //www.mapsofconsciousness.com/12coins/

to try out the coin game. You can choose the number of coins you want to use
and it counts the number of measurements you need to determine the fake coin.
You do NOT know whether the fake coin is lighter or heavier so keep this in
mind. When you put the same number of coins on each side of the balance then
it counts this as a measurement. When you have decided which is the fake coin
put it on one side of the balance and either the feather (for lighter) or the ankh
(for heavier) on the other side and it will tell you whether you are right or wrong.
Make sure you find the coin in the fewest possible steps!

http://www.mathplayground.com/coinweighing.html

Thursday, September 5, 13

http://www.mathplayground.com/coinweighing.html
http://www.mathplayground.com/coinweighing.html

Transform and Conquer Algorithms

A common approach to solving a problem is to transform it into one that is easier
to solve. If the transformation costs are not prohibitive this can be an effective
strategy.

In Gaussian elimination we transform a general linear matrix problem Ax = b
into an equivalent one where the coefficient matrix is upper triangular which is
much simpler to solve.

Checking element uniqueness in an array.

Suppose we have an array of length n and we want to see if any two elements
are equal. The brute force approach is to check all possible pairs; the worst case
scenario for this is O(n2) because we have to check a(1) with a(i), i = 2, n;
then we check a(2) with a(i), i = 3, n. However, if we transform the array into
a sorted array first, then all we have to do is check consecutive elements. Now

Thursday, September 5, 13

the efficiency is determined by the work required for sorting and for the check
of consecutive elements. The later is only (n − 1) comparisons but the former
depends on which sorting routine we choose. If we use Selection Sort or Bubble
Sort these are O(n2) and so the overall performance is O(n2) which is the same
as brute force. However, if we choose Mergesort then it is O(n log n) and the
overall result is O(n log n) which is an improvement over brute force.

Searching in an array.

Suppose we want to search an array of length n using a search key K. The brute
force approach is Sequential Search which just checks the n elements in the array
so it is O(n). However, in the previous problem we found that sorting the list
first improved the growth factor. If we sort the array first then the best we can
do is O(n log n) and if we use Binary Search then it is an additional O(log n)
so overall we have O(n log n). So the result is worse! However, if we want to
search an array multiple times with different keys it will pay to presort the array
if you have enough searches.

Example Suppose we have an array of length 1000 which we want to search

Thursday, September 5, 13

m times. If m = 1 then it is not efficient to first sort the array but if m is large,
then it is better to sort first. Approximately how large should m be so that it is
more efficient to sort first?

If we do m sequential searches of a non-sorted list then the work is approximately
m(n). Sometimes this is written as m(n/2) because on average we will find the
key by the time we have searched half way through the array. However, the 1/2
is just a constant and won’t affect the power of n so we omit it here.

If we sort the list first by Mergesort then that requires O(n log n). Then to
perform m searches of a sorted array of length n using Binary Search requires
mO(log n).

Comparing these we determine when

mn = n log n + m log n = (n + m) log n

for our choice of n = 1000. We have

1000m = (1000 + m)(6.9) = 6900 + 6.9m =⇒ 993m ≈ 6900

where we have chosen base e, i.e., ln n. This says that if we do 7 searches it is

Thursday, September 5, 13

probably better to sort first. (6900/993=6.95)

Thursday, September 5, 13

