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Pruned-enriched Rosenbluth method: Simulations ofu polymers of chain length up to 1 000 000

Peter Grassberger
HLRZ, Kernforschungsanlage Ju¨lich, D-52425 Ju¨lich, Germany

and Department of Theoretical Physics, University of Wuppertal, D-42097 Wuppertal, Germany
~Received 16 December 1996!

We present an algorithm for simulating flexible chain polymers. It combines the Rosenbluth-Rosenbluth
method with recursive enrichment. Although it can be applied also in more general situations, it is most
efficient for three-dimensionalu polymers on the simple-cubic lattice. There it allows high statistics simula-
tions of chains of length up toN5106. For storage reasons, this is feasable only for polymers in a finite
volume. For freeu polymers in infinite volume, we present very high statistics runs withN510 000. These
simulations fully agree with previous simulations made by Hegger and Grassberger@J. Chem. Phys.102, 6681
~1995!# with a similar but less efficient algorithm, showing that logarithmic corrections to mean field behavior
are much stronger than predicted by field theory. But the finite volume simulations show that the density inside
a collapsed globule scales with the distance from theu point as predicted by mean field theory, in contrast to
claims in the work mentioned above. In addition to the simple-cubic lattice, we also studied two versions of the
bond fluctuation model, but with much shorter chains. Finally, we show that our method can be applied also to
off-lattice models, and illustrate this with simulations of a model studied in detail by Freireet al. @Macromol-
ecules19, 452 ~1986! and later work#. @S1063-651X~97!10308-7#

PACS number~s!: 36.20.2r, 83.20.Jp
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I. INTRODUCTION

Although chain polymers were among the first obje
simulated on electronic computers, they still present a c
lenge both because of their importance in chemistry and
ology, and because of the particular structure of the probl
The latter implies that straightforward algorithms@such as
simple sampling~SS! @1## are often inefficient, and that
host of methods have been proposed, all with their stren
and weaknesses@1#. Today it seems that the pivot algorithm
is the most popular@2,3#, since it is the fastest for relativel
open~dilute! systems. But it is less easy to estimate entrop
with the pivot algorithm, and it becomes inefficient in den
or constrained systems where most of the global mo
~which make it fast in open and dilute systems! are forbid-
den.

In the present problem we will deal specifically withu
polymers, i.e., with self-avoiding walks~SAW’s! with an
additional nearest neighbor attractive interaction. On la
scales it overrides the repulsion, so that the typical confi
ration changes then from an open ‘‘coil’’ to a dense ‘‘glo
ule.’’ In order to squeeze very long chains into finite com
puter memory, and in order to get rid of globular surfa
effects, we shall study the longest chains in a finite cube w
periodic boundary conditions. For this system the pivot al
rithm would be practically useless. But as we shall see, e
if we consider open systems, our present algorithm is su
rior for accessible chain lengths ('104)—in particular since
it easily allows one to compute free energies.

Our results confirm that theu-point collapse is a tricritical
phenomenon with upper critical dimensiondc53, whence
the asymptotic behavior is mean-field-like@4#. But it also
confirms recent claims@5# that corrections to this are muc
stronger than the logarithmic corrections predicted from
field theoretic renormalization group@6#. Moreover, we will
show that this holds also for off-lattice and for a lattice w
561063-651X/97/56~3!/3682~12!/$10.00
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very high coordination number, suggesting thus that the p
nomenon is not a lattice artifact.

In the next section we will present general features of
algorithm. Specific aspects of the implementation and its
ficiency will be dealt with in Sec. III. Applications to lattice
models of theu-point collapse will be presented in Sec. IV
In Sec. V, a stochastic variant of our algorithm is given th
is suitable for off-lattice models. Finally, Sec. VI contains
discussion and an outlook.

II. ALGORITHM

The algorithm we propose is based on two ideas go
back to the very first days of Monte Carlo simulations, t
Rosenbluth-Rosenbluth~RR! method@7# and enrichment@8#.
Both are modifications of SS. In SS, a chain is built
adding one new monomer after the other, placing it a
random neighbor site of the last placed monomer. In orde
obtain correct statistics, an already occupied neighbor sho
not beavoided, but any attempt to place a monomer at su
a place is punished by discarding the entire chain. This le
to an exponential ‘‘attrition,’’ which makes the method us
less for long chains.

In the RR method, occupied neighbors are avoided n
ertheless without discarding the chain, but the bias indu
thereby is counterbalanced by giving different weights to
chains produced. More precisely, assume that we work o
lattice, and that there aremn allowed positions for thenth
monomer. Compared to SS, an allowed configuration will
chosen with a relative frequency}()nmn)21. Thus, in order
to obtain an unbiased sample, each chosen configura
should be weighted with a factor

WN} )
n51

N

mn . ~1!
3682 © 1997 The American Physical Society
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56 3683PRUNED-ENRICHED ROSENBLUTH METHOD: . . .
Typical chains are more dense than typical SAW’s, and
compensate this, open chains have, in general, a la
weight. This renders the RR method useless for the sim
tion of very long ordinary~athermal! SAW’s @9#, but not for
u polymers. In the latter, the above weights are largely c
celed by Boltzmann factors. If we choose each free neigh
k (51, . . . ,mn) at the nth step with the same probabilit
pk51/mn , Eq. ~1! has to be replaced by

WN} )
n51

N

wn
~kn! , ~2!

with

wn
~k!5mne2Ek /kBT. ~3!

As an alternative we can include the Boltzmann fac
in the probability for choosing a site,pk5e2Ek /kBT/
(

k851

mn e2Ek8 /kBT, in which casewn
(k) becomes independent o

k ~‘‘importance sampling’’!,

wn
~k!5 (

k851

mn

e2Ek8 /kBT. ~4!

The} signs in Eqs.~1! and~2! are to remind us that we ca
choose freely the constants in front of the right-hand sid
reflecting the freedom in choosing a statistical ensemble
these constants are justNth powers,WN}zN, then the expec-
tation value of(NWN is directly proportional to the grand
canonical partition sum with fugacityz. In the following we
shall call Eq.~3! ‘‘method A,’’ and Eq. ~4! ‘‘method B.’’
Indeed, we have an even larger choice for splitting the to
weight between the probabilitiespk and the weightswn

(k)

@10#. All we need is that the total weight of thekth choice at
stepn is equal to

pkwn
~k!5cne2Ek /kBT, ~5!

with a factorcn independent ofk. If cn is also independent o
n, then the sample expectation value gives directly the gr
canonical ensemble. Otherwise, one has to do a~trivial! re-
weighting. More sophisticated choices ofpk are planned to
be discussed in a forthcoming paper@11#.

Precisely at theu point the bulk of the chosen configura
tions more or less exactly agree with the typical configu
tions. Thus both versions of the RR method are efficient
u polymers, provided the chains are not too long@1#. The
critical length depends on the lattice, and for the simp
cubic lattice it isNc'1000 for methodA @12#. For N.Nc
theaverageconfigurations are still all right, but the distribu
tion of WN is so wide that~rare! chains with largeWN domi-
nate the sample nevertheless. More precisely, assume th
want to measure an observableA whose value is fluctuating
o
er
a-

-
or

r

s,
If

al

d

-
r

-

we

but uncorrelated withWN . In each single event, the varianc
of A is sA

2 , and successive events are also uncorrelated.
easily shown that in this case the variance of a sample m
Ā5( i 51

M WN,iAi /( i 51
M WN,i is given by

s Ā
2

5
^WN

2 &
M ^WN&2 sA

2 . ~6!

Thus the error of the sample mean increases with the w
of the WN distribution. In the extreme case, the samp
averge is dominated by a single event, and its error is in
pendent of the sample size.

In addition, we would like to avoid the simulation o
chains withvery lowweights, since they just cost CPU tim
Obviously, we need a trick to reduce the variance of theWN
distribution, if we want to use the RR method for long
chains.

The main idea in enrichment looks completely different
first sight. Here, we start from SS and counterbalance a
tion by adding copies of allowed configurations at a fix
rate. Assume that we know already that the attrition wo
make the sample size shrink asCn;e2na. If a'k21ln2, we
would get a sample of fixed (n-independent! size if we
double all surviving chains after everykth iteration. This can
be done breadth first or depth first@13#. In the former case,
all chains of the entire sample are simulated up to a comm
length n, then the entire sample is doubled, and the nexk
iterations are performed. In a depth-first implementation
each time only a single configuration is dealt with, and t
handling of the copies is done by recursion. This is mu
faster since there are much less memory accesses, a
requires much less memory, but one has to know the attri
in advance. In a breadth-first implementation, on the ot
hand, the attrition can be learned ‘‘on the fly,’’ by readjus
ing the sample to a prefixed size at each enrichment ste
attrition is not knowna priori, one can still use some learn
ing strategy in a depth-first algorithm@14#.

As described above, enrichment is used so that each c
contributes with the same weight, or with fixed prescrib
weights. This is natural for athermal chains, and it allo
perfect importance sampling in thermal systems. The diff
ent approach of the present algorithm is to use enrichm
implemented recursively, to avoid large weights in the R
method. Thus we implement the RR method by mea
of a recursion, and whenever the partial weightWn

5)n851
n w

n8

(kn8)
exceeds some upper threshold valueWn

. we
double the configuration by calling the subroutine twice.
the same time, the weight of each copy is taken as half
original weight. To eliminate configurations with too sma
weights, we define similarly a lower thresholdWn

, andprune
the sample by eliminating every second configuration w
Wn,Wn

,, doubling the weights of the other half. We ca
this the pruned-enriched Rosenbluth method~PERM!. Notice
that attrition can be included in the formal definition of pru
ing if we use methodB ~we just have to setE5` for for-
bidden sites!, and need not be treated separately.

The limits Wn
. andWn

, can be chosen in advance, but
general~except very close to theu point! it is better to adapt
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3684 56PETER GRASSBERGER
them at each call of the subroutine. Notice thatWn
. andWn

,

can be changed arbitrarily at any time without impeding
correctness of the algorithm. But the effectivity will depe
on them. Optimally they should be fixed such that the sam
size will be independent ofn, as this gives in general th
smallest statistical errors. A good strategy is the followin
we first putWn

,50 andWn
. very large number~say 10100).

This prevents pruning and enrichment; i.e., it correspond
the original Rosenbluth method. After the first chain of fu
length has been obtained~which will not take very long!, we
switch toWn

.5c.Zn andWn
,5c,Zn , whereZn is the cur-

rent estimate of the partition sum, andc. and c, are con-
stants of order unity. Their optimal values are easily fou
by small test runs. We found thatc./c,'10 gave in genera
good results. A pseudocode showing the main recursive
routine of this algorithm is given in the Appendix.

With PERM we do not haveexact importance sampling
~which would mean thatWn is a unique function ofn). In-
stead, small fluctuations of the weights are tolerated si
they allow the enrichment and pruning events to be kept
small rate. To understand this crucial point, notice that
algorithm essentially corresponds to a random walk in ch
length with reflecting boundaries atn50 and atn5N. For
an algorithm to be efficient, we have to go fast towards la
N and fast back, so that we create many independent
figurations. Thus we need a large diffusion coefficientD, and
we do not want any bias in this random walk. If we could
without any pruning, any started chain would be finish
i.e., any walk would continue untiln5N is reached, andD
would be infinite. On the other hand, since we do not w
any bias, the frequency of pruning has to match exactly
of enrichment events. Thus both pruning and enrichm
should be as small as possible for efficiency. Once we h
decided that we want to start a particular chain, we sho
not waver and should finish it.

Thus the efficiency of the method depends on a comp
mise between two antagonistic aspects: the method is
more efficient the smaller is the variancesWn

2 of Wn , and the

larger is the diffusion coefficientD. For u polymers on the
simple-cubic ~sc! lattice we found D.1000 with
sWn

/^Wn&,1. This means that our method is roughly 10

times faster than other recursive methods withD'1, such as
incomplete enumeration@15,14# or the Beretti-Sokal~BS!
@16# algorithm. The algorithm used in@5# corresponds to the
largest value ofD ('15 on the sc lattice! possible with
sWn

50.

III. IMPLEMENTATION AND PERFORMANCE
OF THE ALGORITHM

We used the above method to simulate chains near thu
point on the simple-cubic lattice, and two versions of t
bond fluctuation model@17,18#.

On the sc lattice, we assume an attractive energy2e for
each occupied nearest neighbor pair. For a monomer pla
nearm neighbors, we have thus a Boltzmann factor
e
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e2E/kBT5eme/kBT5qm, q[ee/kBT. ~7!

Whenever we quoteu temperatures, we will assume units
which e/kB51.

In the bond fluctuation model, monomers are also on
sites of a simple-cubic lattice. The hard core repulsion n
excludes any pairs with distance,2 lattice units. Any bond
along the chain can be one of the 108 vectors formed
rotations and reflections from the set~2,0,0!, ~2,1,0!, ~2,1,1!,
~3,0,0!, ~3,1,0!. This set is mainly motivated by being sui
able for dynamic Monte Carlo algorithms@19#. For the
present algorithm it is not particularly suitable. We chose
simulate it because of two recent papers@17,18# with which
we wanted to compare our method.

In @17# the same attractive energy2e was given to each
pair with distance 4<r 2<6. Pairs with larger distances d
not contribute to the energy, as do also all bonded pairs

In @18#, in contrast, the potential was much more comp
cated. For each bonded pair of monomers there is an en
Vb(r ). For each nonbonded pair with distance 2<r<9 there
is a different energyV(r ). These energies are given in Tab
I. Notice that bonded pairs do not get a contribution fro
V(r …, but exclusively fromVb(r … ~this is not very clearly
stated in@18#; I am indebted to the authors of@18# for send-
ing me the values quoted in Table I!. These energies are suc
that nonbonded interactions are strongest for the nea
pairs, while bonded interactions prefer large and interme
ate distances. This will make short chains~where most inter-
actions are bonded! more extended than long ones whe
nonbonded interactions dominate. For a motivation of
potential we refer to@18#.

In both versions, the variance ofE/kBT ~whereE is the
monomer energy in the field of previously placed monome!
is much larger than in the sc lattice. This might be one rea
why the algorithm is less effective for them. For very lo
energies, the variance is so big that enriching with a facto
is not always enough for keepingWn below Wn

. . In this
case, we found it necessary to make many more copie
with their weight correspondingly reduced—ifWn@Wn

. .
For verifying the self-avoiding constraint and for compu

ing energies we have to store the chain configurations s
that we have immediate access to neighboring sites. For
bond fluctuation model we simulated only chains w
N<900, since our method there is not extremely efficie
~we should say, however, that the largest previous sim

TABLE I. Potentials between bonded (Vb) and unbonded (V)
monomer pairs used in Ref.@18#.

r Vb(r ) V(r …

~2,0,0! 14.461 23.177
~2,1,0! 12.021 22.275
~2,1,1! 20.504 21.594
~2,2,0! 20.771
~3,0,0! 23.275 20.319
~2,2,1! 23.478 20.521
~3,1,0! 21.707 0
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56 3685PRUNED-ENRICHED ROSENBLUTH METHOD: . . .
tions there hadN<260). For such chain lengths it is sti
feasible to store the states of all sites in a large cubic ar

For longer chains this is no longer feasible, if the cha
are to be free. Thus, if we want to simulate free chains,
have to use hashing. In runs withN510 000 on the sc lattice
we used a simple hashing method where two of the th
coordinates are used as keys, and linked lists are use
resolve collisions@5#.

As an alternative we can keep a direct image of the ch
but we then cannot consider the chains as free any m
Instead we used periodic boundary conditions, and simula
in this way very long chains that fill the available volume
a nonzero mean density~‘‘dense limit’’ !. We used cubes o
sizeL3 with L up to 256, and chain lengths up to 106.

All simulations were done on 64-bit workstations~DEC
ALPHA!, and we used a congruential random number g
erator with multiplier 1313 as also used in the NAG library

In most simulations the recursions were implemented
recursive function calls inFORTRAN77. In contrast to Ref.
@20#, this is possible~on all work stations I know of! and
efficient, and it keeps the code readable and simple. Only
the very longest chains we hand coded the recusion. T
gives modest speed improvements~typically 15–25%!, and
it saves much memory. The latter was indeed the main
son for doing it. With recursive function calls we could on
go to N'23105 on our machines, which had up to 32 M
of stack. The total CPU time was roughly 3500 h.

For free chains we measured the end-to-end radiusRn ,
the radius of gyrationRn

(g) , and the partition sumZn . On the
sc lattice we measured also the mean energy, and the
ance of the energy distribution~which is proportional to the
specific heat!. For chains in the dense limit, we only me
suredZn . In addition to these physically relevant obser
ables, we also monitored some observables that were o
terest for the efficiency of the method, such as the diffus
coefficient D and the number of independent chains
lengthsn51, . . . ,N. Due to the very long chains involved
making histograms and reweighting them would have b
impractical. Thus we either used a different run for ea
different temperature~for free chains!, or we computed ‘‘on
the fly’’ thermal averages for several~typically 7! different
temperatures. The latter was done for the dense limit.

As a first result we verify the diffusional characteristics
n for method A on the sc lattice, precisely a
T5Tu(53.717). For this we used chains of leng
N5300 000 on a lattice withL5512 ~this was affordable
since we did not need very high statistics for this!. We mea-
sured the average squared length difference^(n22n1)2& af-
ter t function calls. To avoid end effects, the averaging w
done only over chains withn2P@50 000,250 000#. We ex-
pect

^~n22n1!2&'Dt ~8!

for large t. For small values oft ~more precisely, for
t,D) we might expect deviations since the evolution is n
diffusive. Instead, the lengthincreaseis essentially linear in
time, while thedecreasehappens in jumps of size'D. But
no such deviations were observed. In Fig. 1 we see a ne
y.
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perfect straight line with unit slope on a log-log plot, ind
cating that Eq.~8! holds in both regimes. The value ofD is
22306100.

The ratioWn
./Wn

, used in Fig. 1 was 5.23. The measur
value ^WN

2 &/^WN&2 for this ratio was 1.1158, whence th
lack of perfect weight balancing has only a very minor e
fect, increasing the error by'6%. Indeed we found thatD
was nearly constant over the range of 4,Wn

./Wn
,,20,

while ^WN
2 &/^WN&2 was slowly increasing with this ratio.

Actually, using the ratiô WN
2 &/^WN&2 as an indicator for

the efficiency of the method is somewhat misleading sin
the chains are not independent. Rather, all chains gener
during one ‘‘tour’’ ~i.e., between two successive returns
the main program! are correlated. To obtain a correct upp

FIG. 2. Normalized second moments of tour weights vs ch
length N. For the RR method, a tour is just a single chain. F
PERM, it is the set of all chains generated between two succes
returns to the main program in a recursive implementation.
PERM, the thresholds were set toW,50.3,W.53, and fugacities
were chosen such that the number of generated chains was rou
independent ofN.

FIG. 1. Log-log plot of the mean square length differen
^(n22n1)2& vs the numbert5t22t1 of function calls in between.
This figure is for methodA on the sc lattice, but similar plots~with
smaller slopes! were found in all other cases. The upper and low
thresholds for enrichment and pruning were 2.3 and 0.44, res
tively.
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3686 56PETER GRASSBERGER
bound on the error of any observable by means of Eq.~6!,
we should thus use weights of entire tours instead of weig
of single chains. Let us denote the weight by which a to
contributes at lengthn by W̃n . In Fig. 2 we show the ratios

^W̃n
2&/^W̃n&

2 for several temperatures, and compare them
the analogous ratios for the RR method without pruning a
enrichment. We see that the ratios are indeed much sm
for PERM than for the RR algorithm, demonstrating there
its greater efficiency. We also see that they are smallest
the u point, and increase strongly at low temperatures. T
points at the main limitation of PERM: like all other know
algorithms it becomes inefficient for long chains and at l
temperatures, since the generated chains are strongly c
lated and state space is no longer evenly sampled.

We performed similar~but less complete! analyses also
for methodB, and for the bond fluctuation model. In all the
cases we foundD to be much smaller (<100, typically!, but
in all cases the behavior was diffusive.

FIG. 3. Logarithms of the swelling factorRN
2 /N for the end-to-

end distance, plotted against 1/lnN. The four continuous curves ar
for Boltzmann factorsq51.315, 1.310, 1.305, and 1.300~bottom to
top!. The slope of the dashed line is the prediction from field theo
The diamonds are from@22#.

FIG. 4. RatiosRN
2 /RN

(g)2 against lnN. The values ofq are the
same as in Fig. 3, with large~small! q at the bottom~top!. The
dashed-dotted line is the field theory prediction.
ts
r

o
d
ler
y
ar
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re-

Surprisingly, we found that in some cases methodA per-
formed better than methodB ~sc lattice!, while in other cases
~bond fluctuation model! the opposite was true. We have n
good explanation for this fact. Obviously, the impressi
performance for the sc lattice depends on the fact thau
chains on this lattice are nearly ideal random walks, and
deviations from the ideal case are taken care of by sm
deviations from uniform weights that do not require mu
pruning or splitting. This is not so for either version of th
bond fluctuation model, where some Boltzmann factors
very large at theu point. For the model of@18#, the best
performance was indeed obtained for an intermediate me
where part of the Boltzmann factor was treated as in met
A, and the rest as in methodB.

IV. RESULTS

A. Simple-cubic lattice, free chains

In a first set of runs we simulated free chains at Boltzma
factorsq[e1/kBT51.300, 1.305, 1.310, and 1.315. These a
the same as studied also in@5#. We performed all measure

.

FIG. 5. Logarithms ofZN
2 /Z2N against 1/lnN. The slope of the

dashed-dotted line is again the field theory prediction.

FIG. 6. Variance of the energy divided by the chain lengthN,
plotted against lnN.
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56 3687PRUNED-ENRICHED ROSENBLUTH METHOD: . . .
ments also made already in@5#, but now with N510 000
instead of 5 000, and with higher statistics. More precise
for each n,5000 the number of generated walks is on
roughly 1/5 of the number of walks generated in@5#, but due
to the much larger value ofD the number ofindependent
walks of length 5000 is roughly 50 times larger. Accor
ingly, the present error bars atN55000 are roughly 3 times
smaller than those in@5#. They were obtained by dividing th
tours into independent bins, and estimating the bin-to-
fluctuations. AtN510 000~were errors are largest! the rela-
tive errors are 0.0014 forRN

2 , 0.001 forRN
(g)2 , and 0.003 for

ZN . The results shown in Figs. 3–6 are based on both
present data and those of@5#.

Results for the average squared end-to-end distanceRN
2

are shown in Fig. 3. More precisely, we plot thereRN
2 /N

versus 1/lnN, since the field theoretic renormalization grou
predicts a behavior@6#:

RN
2 /N5const3S 12

37

363lnND . ~9!

As already found in@5#, our data do not agree with thi
prediction. Thus there are strong corrections to the lead
asymptotic behavior, most likely due to weak effective thre
body forces, and strong effectiven-body forces forn.3
@21#.

The ratioRN
2 /RN

(g)2 , whereRN
(g) is the gyration radius, is

shown in Fig. 4. Again the theoretical prediction@6# is
shown as a dashed-dotted line, and again we find no g
agreement forN,500—as was found already in@5#. But the
present data do agree with@6# for N.1000 within the error
bars. In particular—and in spite of the nonmonotonic beh
ior for smaller N—RN

2 /RN
(g)2 seems to approach it

asymptotic value 6~for T5Tu) from below, in agreement
with the prediction.

In Fig. 5 we show the ratioZN
2 /Z2N. We have chosen this

as it is independent of the chemical potential, and thu
prediction similar to Eq.~9! exists for it from field theory
@6,5#. As already found in@5#, the disagreement with th
prediction is less severe than forRN

2 /N, but now we defi-
nitely find that there is a disagreement, and nonleading te
are important.

Finally, the specific heat~or rather the variance of th
energy! per monomer is plotted in Fig. 6. Again we confir
the trend seen already at smaller chain lengths@22,5#: the
specific heat increases much faster withN than predicted by
field theory. The latter givesc;(lnN)3/11, while the simula-
tions show ratherc; lnN. But we now see that the latter i
not quite correct, andc increases indeed slower than linear
with lnN. Thus it seems not unlikely that finally the fiel
theory prediction is reached, but only atvery long chains.

The results shown in Figs. 3–6 support fully the previo
estimatequ'1.308. In spite of the longer chains and t
higher statistics, they do not give a much more precise e
mate. The reason is the same as that which also preve
more definite conclusions in@5#: we cannot rely on field
theory for the extrapolation toN5`, and this extrapolation
is nontrivial.
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B. Simple-cubic lattice, dense limit

In @5# we had found even more embarrassing results
T,Tu . From simulations of free chains it was virtually im
possible to exclude the possibility that theu point is first
order in the sense that the monomer density in a large g
ule jumps discontinuously to a finite nonzero value wh
passingTu . Notice that there exist indeed models in whic
the u-point collapse is first order@21#, but it is generally
believed that this is not true for real polymers.

To decide this question, we had simulated in@5# very long
chains in finite volumes~‘‘dense limit’’ !. From these we had
concluded that the transition is indeed smooth, but the mo
mer density in the interior of a blob is not governed by t
mean field exponent:

r~T!;~Tu2T!0.7 ~10!

instead ofr;(Tu2T)1.
In order to investigate this problem further we ma

simulations with the present improved algorithm. In contr
to the simulations in@5# we now usedn-dependent thresh
olds Wn

. and Wn
, so that the samples had rough

n-independent sizes. In this way it was possible to gene
tours with extremely long chains, which were neverthele
finished within reasonable CPU times. We thereby av
completely the bias discussed in detail in@5,23#. We used
helical boundary conditions, which should give results ind
tinguishable from periodic ones.

In Fig. 7 we show the free energies~or, more precisely,
the logarithms of the partition sums! for 5 different tempera-
tures as functions ofN. The common lattice size for all 5
curves isL352563. All temperatures are slightly less tha
Tu , and fugacities were chosen such that the two maxim
N5O(1) and atN5O(L3) had the same height. Assumin
that plots of this type scale withL, we can take the position
of the latter maxima to estimate the densities in a press
free medium in the limitN→`, i.e., in the central region o
an infinitely large free globule. From Fig. 7 and similar plo

FIG. 7. Logarithms of the partition function versus chain leng
at 5 equally spaced values ofq5ee/kBT, 1.309, 1.310,. . . ,1.313.
The lattice had 2563 sites with helical boundary conditions.
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for different values ofL we obtain in this way the estimate
shown in Fig. 8. In this figure we see slight violations
scaling since the estimates do depend slightly onL. But these
scaling violations seem to decrease withL. We see unam-
biguously thatr[N/L3→0 for T→Tu . Indeed, these simu
lations give our most precise estimate for the collapse t
perature:

qu51.308760.0003, Tu53.71760.003. ~11!

But it is still not easy to decide whether or notr increases
linearly with (Tu2T). A least square fit to the data of Fig.
would be compatible with the power law~10!. But a closer
inspection shows that there are systematic deviations f
such a fit, indicating that the effective exponent increase
1 asT→Tu . Thus we suggest that Eq.~10! doesnot repre-
sent the true asymptotic behavior, and mean field theory d
become correct forT→Tu ~although the numerical evidenc
for this is rather shaky!.

The same conclusion is reached when studying the
energyF52 lnZN at fixed temperature. As discussed in@5#,
mean field theory assumes thatF is a cubic function ofr,
with the linear term vanishing at the critical fugacity and t
quadratic vanishing in addition atTu . Thus at the critical
fugacity and atT5Tu it is predicted thatF;L3r3. In Fig. 9
we show 2 lnZN againstN/L2 for q51.3085. Within the
statistical error this is theu point, and the above argumen
suggests that the curves should collapse to a cu
lnZN5const3(N/L2)3 if mean field theory is exact. We se
that this is not quite correct, but the discrepancies dimin
with increasingL. Even more importantly, while each of th
curves can be fitted by a power law, the powers decre
from 3.65 forL564 to 3.22 forL5256. This suggests tha
the exponent does indeed converge to 3 forL→`, and mean
field theory does predict the correct power laws albeit w
very large finite size corrections.

C. The Bond fluctuation model

We have studied this model since there have been sug
tions in the literature@18# that the very large logarithmic

FIG. 8. Monomer densities at the transition fromr50 to
r.0 on finite but large lattices, plotted againstq.
-
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to
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ic
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corrections found in@5# are an artifact of the simple-cubi
lattice, and would not show up in off-lattice models or
lattice models with very high coordination number.

In Figs. 10 and 11 we show the ratiosRN
(g)2/N and

RN
2 /RN

(g)2 , respectively, against 1/lnN, for the model of Wit-
tkopp et al. @18#. The estimatedu temperature is given by
these authors ase/kBTu50.21460.008, i.e., Tu54.67
60.17 for e/kB51. This was obtained from simulations u
to N5100. Comparing this with Figs. 10 and 11 where w
used chains withN<900, we see that this estimate would b
correct if the behavior ofRN

(g)2/N would not change for
N.100, but this is not the case. Thus,Tu is definitely larger
than 4.7, andRN

(g)2/N increases considerably at the trueu
point. Our best estimate of the latter isTu55.0460.03,
about 2 standard deviations higher than the estimate of@18#.

In view of the claim of@18# that conventional mean field
scaling holds good in their model~see Fig. 5 in the second
paper of@18#!, we also simulated at lower temperatures, a
plotted (Tu2T)(RN

(g)2/N)3AN against (Tu2T)AN; see Fig.
12. We found indeed much better data collapse than in th

FIG. 9. F52 lnZN againstN/L2 for q51.3085, and for the
same 4 lattice sizes as in Fig. 8. According to mean field theory,
data should collapse onto a cubic curve.

FIG. 10. Gyration radius swelling factorsRN
(g)2/N against

1/lnN for the model of@18#.
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lattice model, but this is easily explained as a finiteN effect.
The potential in@18# was chosen such that the average bo
length increases at low temperatures. This suppresses th
crease ofRN

(g)2 with T for short chains and for very low
temperatures, leading thereby to improved scaling. But
should have a smaller effect for long chains close toTu , and
we see indeed indications in Fig. 12 that the scaling vio
tions increase as we approach the scaling limit~where they
should decrease, of course, if mean field scaling woul
hold!.

A similar analysis was made for the version of the bo
fluctuation model used in@17#. Ratios RN

(g)2/N and
RN

2 /RN
(g)2 against 1/lnN ~with N up to 600! are now plotted in

Figs. 13 and 14. These plots again look very much like th
counterparts for the model of@18# and for the sc lattice. We
do not show the scaling plot analogous to Fig. 12 since
did not perform systematic simulations far belowTu . But
already the data shown in Fig. 13, when plotted as in Fig.
show much larger scaling violations, similar to those fou

FIG. 11. RatiosRN
2 /RN

(g)2 against 1/lnN. The model and the val-
ues ofT are the same as in Fig. 10.

FIG. 12. Scaling plot of (Tu2T)(RN
(g)2/N)3AN against

(Tu2T)AN for the model of@18#. If mean field theory were exact
the data would collapse onto a single curve. We see very s
violations indeed, which seem to increase, however, as we appr
the u point.
d
in-

is

-

ir

e

2,
d

in @5#. This was to be expected according to the discussio
the previous paragraph, since the potential between bon
monomers chosen in@17# does not depend on the bon
length. Our estimate for the collapse temperature from F
13 and 14 isTu52.1060.01, as opposed to the valu
2.0260.02 obtained in@17# from chains of length<150.
Again we see the strong effect of corrections to mean fi
scaling.

V. STOCHASTIC PERM: APPLICATIONS
TO OFF-LATTICE CHAINS

As described above, PERM is applicable only to latti
chains. More precisely, for implementing the Rosenblu
Rosenbluth trick, we have to know the weights for all po
sible next moves. This is in general only possible when th
is a finite number of such moves. For off-lattice models, it
only feasible in very simple two-dimensional models@24#,
and even then it is not clear that the effort is worthwhile.

But it is rather straightforward to put forward a stochas
version of the Rosenbluth-Rosenbluth trick, where the
weights are estimated from finite samples. In order to ad
monomer, we thus first choose randomlys sites. For maxi-
mal efficiency, these sites should be distributed accordin

ll
ch

FIG. 13. Analogous to Fig. 10, but for the interactions of@17#.

FIG. 14. Analogous to Fig. 11, but for the interactions of@17#.
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a measure~‘‘guiding field’’ ! that is not too different from the
estimated true Boltzmann weight@25–27#. For each of them
we estimate an acceptance factor, either including the B
zmann factor~methodB) or not ~methodA). The actual site
of the next monomer is then chosen among these sites,
the actual weight is computed so that the total sample
unbiased. Finally, the enrichment and pruning steps are d
exactly as before.

We have implemented this for a model studied ext
sively by Freire and others@28–32#. In this model, non-
bonded monomers interact with a Lennard-Jones pote
with strengthe and ranges, V(r )54e@(s/r )122(s/r )6#.
Bonded monomers do not feel any mutual hard or soft c
repulsion. Instead, they interact exclusively through a Gau
ian potential whose strength is proportional toT, so that its
associated Boltzmann factor is independent ofT, and whose
range is such that the average squared bond length is 1.
lowing Refs. @28–32#, the Lennard-Jones~LJ! range was
kept fixed ats50.8, and it was not truncated at large d
tances.

We do not consider this model as particularly realistic~in
view of the absence of any repulsion between bonded ne
bors! nor convenient~due to the absence of truncation of th
LJ potential!. We chose it solely because of claims in@31,32#
that it does not show the large logarithmic corrections fou
in @5#. It was claimed there that logarithmic correctio
found in this model are fully in agreement with a finite-N
extrapolations of the asymptotic results of@6#. For instance,
the equation for the gyration radius analogous to Eq.~9! is
replaced by

RN
~g!2/N5A0S 12

148p

33
h~N! D , ~12!

with

A0511
16

33
pz3 , h~N!5

z3

1144pz3ln~N/n0!
~13!

and withz350.458 andn0511.5.
In stochastic PERM, the main parameter is the numbes

of trials at each monomer insertion. We have trieds51, 2,
and 3. All gave nearly the same efficiency. Clearly, the eff
increases withs, but the efficiencyper added monomerin-
creases also, so that the overall efficiency per unit CPU t
was the same within statistical errors. The results were
course also the same for alls; i.e., we checked that the
method did not induce systematic errors.

In Figs. 15 and 16 we show again results forRN
(g)2/N and

RN
2 /RN

(g)2 , respectively, against 1/lnN. Chain lengths were
N<500, and we useds52. In Fig. 15 we also plotted the
modified prediction~12!, and the simple asymptotic predic
tion obtained by puttingn051 and lnN@1. We see that our
data indeed coincide roughly with Eq.~12! for N.100 ~this
was also the range used in@31#!, providede/kBTu50.240.
This is also the estimate of@31#. Thus our simulations agre
at this coarse level. But Fig. 15 should not leave any do
lt-

nd
is
ne

-

ial

e
s-

ol-

h-

d

t

e
of

t

that Eq.~12! doesnot give the asymptotic behavior. This i
also confirmed by Fig. 16, although we should be carefu
the interpretation of this figure: as found for the sc latti
~Fig. 4!, RN

2 /RN
(g)2 can have a maximum at some finite valu

of N, and approach its asymptotic value from below nev
theless. Both figures suggest thate/kBTu50.23260.002.
Accepting this, we conclude that also the analysis of
second virial coefficient in@32# is misleading~since it was
based on a wrong value ofTu), and that logarithmic correc
tions are indeed much larger than predicted by the field th
retic renormalization group.

VI. SUMMARY AND OUTLOOK

As far as the physics of theu-point collapse is concerned
the results of the present paper are easy to summarize: w
we fully confirm the conventional view that theu point is a
tricritical point and thus mean-field-like in three dimension
we also confirm the very large corrections to mean field
havior found in@5#. The only point where we deviate from

FIG. 15. Analogous to Fig. 10, but for the off-lattice model
Freireet al. The smooth lines are the asymptotic~‘‘naive’’ ! predic-
tion from field theory@6# and its finite-N modification given in Eqs.
~12! and ~13!.

FIG. 16. Analogous to Fig. 11, but for the off-lattice model
Freireet al.
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@5# is in theT dependence of the monomer density insid
large globule forT,Tu . Although we see also there larg
deviations from mean field behavior, it seems now that th
corrections are nonleading, and the asymptotic behavio
r;Tu2T.

We derived this from simulations of very long chains wi
very high statistics on the sc lattice, but we verified that
same qualitative behavior holds also for off-lattice cha
and for chains on lattices with very high coordination nu
bers. This rules out speculations that the large correct
found in @5# might be lattice artifacts. As a side result w
found thatTu was underestimated inall previous papers.

Maybe more interesting is the algorithmic aspect of
present work. Although the general structure of the algorit
is similar to other recent chain growth algorithms for po
meric systems@15,16,25,26,5#, the details are quite differen
At least in one case—theu-point collapse on the sc lattice—
this has boosted the efficiency enormously. In the other ca
studied in the present paper the method is also more effic
than other known methods, but not by very large margin

A non-negligible advantage of the present method o
those of@15,16,5# is that the parameters steering the grow
of the sample can now be adapted automatically at any ti
while they had to be carefully chosen in advance for
previous algorithms. Making good choices had not alwa
been easy. We should mention that also breadth-first im
mentations@25,26# have no problem with choosing these p
rameters. But they are much slower and/or storage dem
ing on single-processor machines since a large numbe
chains ~typically .104) must be kept simultaneously i
memory. Breadth-first implementations could, however,
efficient on massively parallel systems@33#.

But we should point out that we have not yet pushed
method to its very limits. In particular, we have used on
very simple guiding fields: we have either selected from
allowed moves with the same probability, or we have cho
them according to some Boltzmann weights. More alter
tives are possible and rather straightforward to impleme
For stretched polymers, i.e., we could implement a dir
tional bias. The same could be useful for polymers in sh
flow or for polyelectrolytes.

Another possibility would be to look ahead as in the sc
ning method@22#. There, the likely ‘‘success’’ of a move i
estimated by trying all combinations ofk future moves in-
stead of only the next one. Although this can lead to la
improvements in terms of efficiency per added monome
also leads to a much larger numerical effort per monom
An alternative that gives similar efficiency without any su
stantial increase in effort is to lookback instead. More pre-
cisely, during a short test run one puts up a histogram
success probabilities of next moves, conditioned on thk
previous moves. We implemented this for two-dimensio
athermal SAW’s on the square and honeycomb lattices.
ing histograms of depthk510 and 15 we obtained roughl
one order of magnitude in speedup. Details of this ‘‘Marko
ian guide PERM’’ will be presented elsewhere@11#.

We should point out that the applicability of PERM is n
restricted to single polymer chains. The most straightforw
extension is to semi-dilute solutions of long polymers.
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study of the critical behavior of such systems on the sc lat
is in progress@34#. A rather unusual aspect of our method
this context is that it does not allow us too many chains~the
maximal number is'200), but it puts hardly any constrain
on their lengths. This results simply from the fact that t
critical temperature approachesTu whenN→`, whence our
method becomes increasingly efficient in this limit. Test ru
with 128 chains of length 512 were very encouraging.

Basically, PERM uses the fact that the space of confi
rations is given a rooted tree topology, and moves are p
formed only along the branches of the tree~‘‘tree moves’’!.
No direct moves between branches~‘‘off-tree moves’’! are
allowed. Thus no loops are possible, and detailed balanc
trivially satisfied. In principle this can always be done f
any problem with discrete configuration space~for continu-
ous space, the stochastic method of Sec. V can be used!, but
in general the method will not be efficient. Obviously th
efficiency depends on the importance of tree moves ve
off-tree moves. While the latter are very restricted and th
less important for single chains, they are more important
multichain systems and even more so for systems of in
pendent particles.

An important aspect that explains the efficiency of PER
is the fact that it isnot Markovianon the space of configu
rations. In a Markov process on a tree, the decisions whe
a branch is to be pruned or not, and whether an enrichm
step is inserted~i.e., whether more than one daughter node
the tree is visited! has to be independent of the previo
history. For polymers, the resulting algorithm is the Bere
Sokal algorithm@16#. As we have seen in Sec. III, on the s
lattice it is less efficient than PERM by about 3 orders
magnitude. Roughly, in an algorithm without memory abo
previous moves we have to start many new directions, si
we make each time a random decision as to whether this
direction should be continued or not.

This aspect of PERM seems to be in contrast toall other
Monte Carlo methods for equilibrium systems. Indeed, u
ally the first requirement for any Monte Carlo algorithm
that it is Markovian, since otherwise it would be hard
verify detailed balance. As we have seen, we do not have
problem in PERM. Maybe the most interesting challenge
to devise non-Markovian Monte Carlo algorithms that ha
the same ‘‘inertia’’ as PERM but that do not require a tr
structure. In a loose sense, such algorithms would be sim
to cluster algorithms@35# since moves would be correlate
instead of being done independently. They could be
tremely efficient for virtually all equilibrium problems.
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APPENDIX

Here we show a pseudocode for the central subroutine:

subroutine STEP(x,n)

choosex8 nearx with densityr(x2x8) in the simplest case,r(x)51/mnd uxu,1

wn5cnr(x2x8)21exp(2E(x8)/kBT) if cn5const→grand canonical
Wn5Wn21wn

do statistics:
Zn5Zn1Wn partition function
R2n5R2n1x82Wn end-to-end distance sums
t5t11 total number of subroutine calls
etc.

end do
if n,Nmax andWn.0 then

W.5c.Zn /Z1 adaption ofW. ~optional!
W,5c,Zn /Z1 adaption ofW, ~optional!
if Wn.W. then

Wn5Wn/2
call STEP(x8,n11)

call STEP(x8,n11) enrichment
else if Wn,W, then

Wn52Wn

draw j uniformly P@0,1#
if j,1/2 call STEP(x8,n11) prune with probability 1/2

else
call STEP(x8,n11) normal Rosenbluth step

end if
end if
return

end
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It is called from the main routine with argumentsx50,
n51. To compute the energyE(x8) of the newly placed
monomer in the field of the earlier ones, one can use ei
bit maps~in lattice models with small lattices!, hashing, or
neighborhood lists. If none of these is suitable,E(x8) has to
be computed as an explicit sum over all earlier monom
Wn , cn , Zn , andR2n are global arrays, whilec., c,, Nmax,
and t are global scalar variables. In easy cases, the l
involving c. andc, can be dropped, andW., W, are glo-
bal scalars. In more sophisticated implementations,r, c.,
andc, will depend onn and/or on the configuration of th
monomers with indicesn8,n. Good choices for these func
tions may be crucial for the efficiency of the algorithm, b
are not important for its correctness.

The last statement should be qualified more precisely
er

s.

s

t

if

the subroutine is called once from the main routine, the
turned variableZn is a random variable whose average val
is exactly equal to the partition sum; and if the algorithm
repeated sufficiently often, the sample average of any m
sured observable~such asRn

25R2n /Zn) converges towards
its true average. But the fluctuations at finite sample si
can be extremely non-Gaussian for large systems and for
choices ofr, W., and W,. In particular, they are skewe
with a long tail of rare events with large statistical weigh
In extreme cases, most of the statistical weight could be c
centrated in events that are so rare that no such even
observed at all in the sample at hand. Unless sufficient ca

taken, this can easily lead to serious underestimation of
tition sums and of statistical errors.
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