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Pruned-enriched Rosenbluth method: Simulations of@ polymers of chain length up to 1 000 000
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We present an algorithm for simulating flexible chain polymers. It combines the Rosenbluth-Rosenbluth
method with recursive enrichment. Although it can be applied also in more general situations, it is most
efficient for three-dimensiona polymers on the simple-cubic lattice. There it allows high statistics simula-
tions of chains of length up tdl=1CF. For storage reasons, this is feasable only for polymers in a finite
volume. For freef polymers in infinite volume, we present very high statistics runs With10 000. These
simulations fully agree with previous simulations made by Hegger and Grassb&r@drem. Physl02 6681
(1999] with a similar but less efficient algorithm, showing that logarithmic corrections to mean field behavior
are much stronger than predicted by field theory. But the finite volume simulations show that the density inside
a collapsed globule scales with the distance frométmint as predicted by mean field theory, in contrast to
claims in the work mentioned above. In addition to the simple-cubic lattice, we also studied two versions of the
bond fluctuation model, but with much shorter chains. Finally, we show that our method can be applied also to
off-lattice models, and illustrate this with simulations of a model studied in detail by Feemk [Macromol-
eculesl9, 452(1986 and later work [S1063-651X97)10308-7

PACS numbds): 36.20-r, 83.20.Jp

I. INTRODUCTION very high coordination number, suggesting thus that the phe-
nomenon is not a lattice artifact.

Although chain polymers were among the first objects In the next section we will present general features of the
simulated on electronic computers, they still present a chalalgorithm. Specific aspects of the implementation and its ef-
lenge both because of their importance in chemistry and bificiency will be dealt with in Sec. IlI. Applications to lattice
ology, and because of the particular structure of the problenimodels of theg-point collapse will be presented in Sec. IV.
The latter implies that straightforward algorithrfsuch as In Sec. V, a stochastic variant of our algorithm is given that
simple sampling(SS [1]] are often inefficient, and that a is suitable for off-lattice models. Finally, Sec. VI contains a
host of methods have been proposed, all with their strengthdiscussion and an outlook.
and weaknessd4]. Today it seems that the pivot algorithm
is the most populalr2,3], since it is the fastest for relatively
open(dilute) systems. But it is less easy to estimate entropies
with the pivot algorithm, and it becomes inefficient in dense  The algorithm we propose is based on two ideas going
or constrained systems where most of the global moveback to the very first days of Monte Carlo simulations, the
(which make it fast in open and dilute systgnase forbid-  Rosenbluth-RosenbluiiRR) method[7] and enrichmenit8].
den. Both are modifications of SS. In SS, a chain is built by

In the present problem we will deal specifically with  adding one new monomer after the other, placing it at a
polymers, i.e., with self-avoiding walkéSAW'’s) with an  random neighbor site of the last placed monomer. In order to
additional nearest neighbor attractive interaction. On largebtain correct statistics, an already occupied neighbor should
scales it overrides the repulsion, so that the typical configunot beavoided but any attempt to place a monomer at such
ration changes then from an open “coil” to a dense “glob- a place is punished by discarding the entire chain. This leads
ule.” In order to squeeze very long chains into finite com-to an exponential “attrition,” which makes the method use-
puter memory, and in order to get rid of globular surfaceless for long chains.
effects, we shall study the longest chains in a finite cube with In the RR method, occupied neighbors are avoided nev-
periodic boundary conditions. For this system the pivot algoertheless without discarding the chain, but the bias induced
rithm would be practically useless. But as we shall see, evethereby is counterbalanced by giving different weights to the
if we consider open systems, our present algorithm is supezhains produced. More precisely, assume that we work on a
rior for accessible chain lengths=(L0*)—in particular since lattice, and that there an®,, allowed positions for thenth
it easily allows one to compute free energies. monomer. Compared to SS, an allowed configuration will be

Our results confirm that thé-point collapse is a tricritical  chosen with a relative frequeney(IT,m,) . Thus, in order
phenomenon with upper critical dimensiolh=3, whence to obtain an unbiased sample, each chosen configuration
the asymptotic behavior is mean-field-likd]. But it also  should be weighted with a factor
confirms recent claimp5] that corrections to this are much

II. ALGORITHM

stronger than the logarithmic corrections predicted from the N
field theoretic renormalization groyg]. Moreover, we will Wyoc H m. . (1)
show that this holds also for off-lattice and for a lattice with AT
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Typical chains are more dense than typical SAW's, and tdut uncorrelated wittWy . In each single event, the variance
compensate this, open chains have, in general, a largef A is af\, and successive events are also uncorrelated. It is
weight. This renders the RR method useless for the simulaeasily shown that in this case the variance of a sample mean
tion of very long ordinaryathermal) SAW’s [9], but not for A:EilewN,iAi /Eile\NN,i is given by

0 polymers. In the latter, the above weights are largely can-

celed by Boltzmann factors. If we choose each free neighbor

k (=1,...m,) at thenth step with the same probability ) (W) ,

px=1/m,, Eq. (1) has to be replaced by UFWUA. (6)
N

N
Wy [ ] wf:‘”), (2)  Thus the error of the sample mean increases with the width
n=1 of the Wy distribution. In the extreme case, the sample
. averge is dominated by a single event, and its error is inde-
with pendent of the sample size.

In addition, we would like to avoid the simulation of
chains withvery lowweights, since they just cost CPU time.
Obviously, we need a trick to reduce the variance of\tfje
distribution, if we want to use the RR method for longer
) ) chains.

As an alternative we can include the BOHZ”J%H,T( Tfactor The main idea in enrichment looks completely different at
n the probability for choosing a sitepy=e "8/ £t sight. Here, we start from SS and counterbalance attri-
s e BT in which casen(” becomes independent of tion by adding copies of allowed configurations at a fixed
k (“importance sampling’, rate. Assume that we know already that the attrition would
make the sample size shrink @~e ™ "*. If a~k In2, we
would get a sample of fixednfindependent size if we
@ [ B T double all surviving chains after evekyh iteration. This can
wil= > e Ew/keT, (49 be done breadth first or depth fifst3]. In the former case,
k=1 all chains of the entire sample are simulated up to a common
lengthn, then the entire sample is doubled, and the rext

The = signs in Eqs(1) and(2) are to remind us that we can iterations are performed. In a depth-first implementation, at
each time only a single configuration is dealt with, and the

choose freely the constants in front of the right-hand side di £ ios is d b ) This i h
reflecting the freedom in choosing a statistical ensemble. Tran Ing of In€ Copies 1S done by recursion. This 1S much
aster since there are much less memory accesses, and it

these constants are justh powersWye:z", then the expec- requires much less memory, but one has to know the attrition

tation value ofZ\ Wy is directly proportional to the grand . qul u y, bu Know '

canonical partition sum with fugacit. In the following we in advance. In a breadth-first implementation, on the 'other
hand, the attrition can be learned “on the fly,” by readjust-

shall call Eq.(3) “method A,” and Eq. (4) “method B.” . . . i
: - ng the sample to a prefixed size at each enrichment step. If
Indeed, we have an even larger choice for splitting the total .7 .. ~ * o s
attrition is not knowna priori, one can still use some learn-

i iliti i (k)
weight between the probabilitigg, and the weightsvy ing strategy in a depth-first algorithfi4].

[10]. All we need is that the total weight of thieh choice at As described above, enrichment is used so that each chain
stepn is equal to contributes with the same weight, or with fixed prescribed
weights. This is natural for athermal chains, and it allows
perfect importance sampling in thermal systems. The differ-
ent approach of the present algorithm is to use enrichment,
implemented recursively, to avoid large weights in the RR
method. Thus we implement the RR method by means

with a factorc, independent ok. If ¢, is also independent of 8f a recursion, and whenever the partial weight
l n
d n (kn")

n, then the sample expectation value gives directly the gran
canonical ensemble. Otherwise, one has to duieial) re-  — Lin-1W,~ €xceeds some upper threshold valifg we
weighting. More sophisticated choices pf are planned to double the configuration by calling the subroutine twice. At
be discussed in a forthcoming pagpéd]. the same time, the weight of each copy is taken as half the
Precisely at the point the bulk of the chosen configura- original weight. To eliminate configurations with too small
tions more or less exactly agree with the typical configuraWweights, we define similarly a lower threshoM; andprune
tions. Thus both versions of the RR method are efficient fothe sample by eliminating every second configuration with
6 polymers, provided the chains are not too Idig. The W,<W;, doubling the weights of the other half. We call
critical length depends on the lattice, and for the simplethis the pruned-enriched Rosenbluth metkBBERM). Notice
cubic lattice it isN,~1000 for methodA [12]. For N>N, that attrition can be included in the formal definition of prun-
the averageconfigurations are still all right, but the distribu- ing if we use method (we just have to seE= for for-
tion of Wy, is so wide thatrare chains with largéwV, domi-  bidden sites and need not be treated separately.
nate the sample nevertheless. More precisely, assume that we The limits W, andW, can be chosen in advance, but in
want to measure an observaflevhose value is fluctuating general(except very close to thé point) it is better to adapt

wH = m, e Ex/kaT, )

pw =c e Ex/keT, (5)
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them at each call of the subroutine. Notice tiéf andW,; TABLE |. Potentials between bondedy) and unbonded\()
can be changed arbitrarily at any time without impeding theMonomer pairs used in ReffL8].

correctness of the algorithm. But the effectivity will depend

on them. Optimally they should be fixed such that the sample ' Vi(r) v

size will be independent ofi, as this gives in general the (2,0,0 +4.461 -3.177
smallest statistical errors. A good strategy is the following: (2,1,0 +2.021 —2.275
we first putW; =0 andW, very large numbefsay 16%). 2,1,) —0.504 -1.594
This prevents pruning and enrichment; i.e., it corresponds to (2,2,0 -0.771
the original Rosenbluth method. After the first chain of full (3,0,0 —3.275 -0.319
length has been obtainédhich will not take very long we (2,2, —3.478 —-0.521
switch toW, =¢”~Z, andW; =c~Z,,, whereZ, is the cur- (3,1,0 —1.707 0

rent estimate of the partition sum, and andc= are con-
stants of order unity. Their optimal values are easily found
by small test runs. We found that /c=~ 10 gave in general e ElkeT—gmelkeT—qm  gq=g*/kaT, )
good results. A pseudocode showing the main recursive sub-
routine of this algorithm is given in the Appendix.

With PERM we do not havexactimportance sampling
(which would mean thatV, is a unique function of). In-  Whenever we quoté temperatures, we will assume units in
stead, small fluctuations of the weights are tolerated sincehich e/kg=1.
they allow the enrichment and pruning events to be kept at a In the bond fluctuation model, monomers are also on the
small rate. To understand this crucial point, notice that ousites of a simple-cubic lattice. The hard core repulsion now
algorithm essentially corresponds to a random walk in chairgxcludes any pairs with distanee2 lattice units. Any bond
length with reflecting boundaries at=0 and atn=N. For ~ along the chain can be one of the 108 vectors formed by
an algorithm to be efficient, we have to go fast towards largéotations and reflections from the €€0,0, (2,1,0, (2,19,
N and fast back, so that we create many independent cot3:0.0, (3,1,0. This set is mainly motivated by being suit-

figurations. Thus we need a large diffusion coefficipand ~ 2Ple for dynamic Monte Carlo algorithmil9]. For the
we do not want any bias in this random walk. If we could doPresent algorithm it is not particularly suitable. We chose to

without any pruning, any started chain would be finished simulate it because of two recent papgts, 1§ with which

i.e., any walk would continue untit=N is reached, an® We wanted to compare our method. .

\;vdfjld be infinite. On the other hand, since we dé not want In [17] the same attractive energye was given to each
. ' . ' air with distance 4&r?<6. Pairs with larger distances do

any bias, the frequency of pruning has to match exactly thq[ﬁot contribute to the energy, as do also all bonded pairs

of enrichment events. Thus both pruning and enrichment ’ :

houl I bl f Hici h In [18], in contrast, the potential was much more compli-
should be as small as possible for efficiency. Once we havg,ieq For each bonded pair of monomers there is an energy
decided that we want to start a particular chain, we shoul

not waver and should finish it p(r). For each nonbonded pair with distance 2<9 there

> is a different energy/(r). These energies are given in Table
Thus the efficiency of the method depends on a comproy ngtice that bonded pairs do not get a contribution from

mise be_tV\_/een two antag_onistic agpects: the method is ﬂ\?(r), but exclusively fromV,(r) (this is not very clearly
more efficient the smaller is the vanan@é,n of W,, and the  gi5teq in[18]; | am indebted to the authors fE8] for send-
larger is the diffusion coefficierid. For 6 polymers on the ing me the values quoted in Table These energies are such
simple-cubic (s¢ lattice we found D>1000 with that nonbonded interactions are strongest for the nearest
an/<Wn><1- This means that our method is roughly 1000 pairs, while bonded interactions prefer large and intermedi-

times faster than other recursive methods vilitv 1, such as ~ ate distances. This will make short chaiméhere most inter-
incomplete enumeratiofil5,14 or the Beretti-SokalBS)  actions are bondgdmore extended than long ones where
[16] algorithm. The algorithm used {5] corresponds to the honbonded interactions dominate. For a motivation of the

largest value ofD (~15 on the sc latticepossible with ~ potential we refer t§18].
ow =0. In both versions, the variance &/kgT (whereE is the

monomer energy in the field of previously placed monomers
is much larger than in the sc lattice. This might be one reason
why the algorithm is less effective for them. For very low
energies, the variance is so big that enriching with a factor 2
is not always enough for keeping/, below W, . In this
case, we found it necessary to make many more copies—
with their weight correspondingly reduced—W,> W, .
We used the above method to simulate chains nearfthe  For verifying the self-avoiding constraint and for comput-
point on the simple-cubic lattice, and two versions of theing energies we have to store the chain configurations such
bond fluctuation moddl17,18. that we have immediate access to neighboring sites. For the
On the sc lattice, we assume an attractive energyfor ~ bond fluctuation model we simulated only chains with
each occupied nearest neighbor pair. For a monomer placédi=<900, since our method there is not extremely efficient
nearm neighbors, we have thus a Boltzmann factor (we should say, however, that the largest previous simula-

lll. IMPLEMENTATION AND PERFORMANCE
OF THE ALGORITHM
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tions there hadN<260). For such chain lengths it is still 10 ' ' ' '
feasible to store the states of all sites in a large cubic array.

For longer chains this is no longer feasible, if the chains W' E 7
are to be free. Thus, if we want to simulate free chains, we
have to use hashing. In runs with= 10 000 on the sc lattice 0| 3

we used a simple hashing method where two of the three
coordinates are used as keys, and linked lists are used to
resolve collisiong5].

0 | 4

< (Np- NP>

As an alternative we can keep a direct image of the chain, 0}
but we then cannot consider the chains as free any more.
Instead we used periodic boundary conditions, and simulated 100000 |

in this way very long chains that fill the available volume to
a nonzero mean densitydense limit”). We used cubes of 10000 s . . .
sizeL3 with L up to 256, and chain lengths up t0®10 1 o0 1000 L, 1D 00000 tevod

All simulations were done on 64-bit workstatio(BEC
ALPHA), and we used a congruential random number gen- rg 1 | og.log plot of the mean square length difference
erator with multiplier 13° as also used in the NAG library. ((n,—n,)2) vs the numbet=t,—t, of function calls in between.

In most simulations the recursions were implemented byrhis figure is for method on the sc lattice, but similar plotsvith
recursive function calls iFORTRAN7Z In contrast to Ref.  smaller slopeswere found in all other cases. The upper and lower
[20], this is possiblglon all work stations | know 9fand  thresholds for enrichment and pruning were 2.3 and 0.44, respec-
efficient, and it keeps the code readable and simple. Only fofively.
the very longest chains we hand coded the recusion. This
gives modest speed improvemeftgpically 15-25%, and  yerfect straight line with unit slope on a log-log plot, indi-
it saves much memory. The latter was indeed the main re ating that Eq(8) holds in both regimes. The value bf is
son for doing it. With recursive function calls we could only 5534 100

go toN~2x 10> on our machines, which had up to 32 MB The ratioW- /W, used in Fig. 1 was 5.23. The measured

of stack. The total CPU time was roughly 3500 h. value (WZ)/(Wy)? for this ratio was 1.1158, whence the

For free cham; we(g;neasured the-(.and-to-end ragtyis lack of perfect weight balancing has only a very minor ef-
the radius of gyratioRy"’, and the partition surd, . On the fect, increasing the error by 6%. Indeed we found thdd

sc lattice we measured also the mean energy, and the varl-

> <
ance of the energy distributiofvhich is proportional to the W;ﬁ n\e/:'/azrh; \(;\(/)nsztant 0\;er Ith_e range Oﬁm‘tlhv.v“ <t'20’
specific heat For chains in the dense limit, we only mea- while (Wy)/(Wy)® was slowly increasing wi IS ratio.

. . 2 2 . .
suredZ,. In addition to these physically relevant observ- Actually, using the ratiqWy)/(Wy)* as an indicator for

ables, we also monitored some observables that were of ifh€ €fficiency of the method is somewhat misleading since

terest for the efficiency of the method, such as the diffusiori® chains are not independent. Rather, all chains generated
coefficient D and the number of independent chains ofduring one “tour” (i.e., between two successive returns to

lengthsn=1, ... N. Due to the very long chains involved, the main programare correlated. To obtain a correct upper
making histograms and reweighting them would have been
impractical. Thus we either used a different run for each 100000 L A U '

pruned-enriched Rosenbluth:

different temperaturéfor free chaing or we computed “on
the fly” thermal averages for severélypically 7) different
temperatures. The latter was done for the dense limit.

loxx +
P

plain Rosenbluth:

W
-tk
WWWwhWLWE
SKORSE®N

coanoono 4

i
10000 |- !
‘

As a first result we verify the diffusional characteristics in i #
n for method A on the sc lattice, precisely at ) P £ |
T=T,=3.717). For this we used chains of length %
N=300 000 on a lattice witi. =512 (this was affordable )
since we did not need very high statistics for jhi&/e mea- f% _

sured the average squared length differef(ce —n,)?) af-
tert function calls. To avoid end effects, the averaging was
done only over chains witim, €[50 000,250 000 We ex-
pect

1
0 1000 2000 3000 4000 5(;\?0 6000 7000 8000 9000 10000

((np—ny)?)~Dt (8)
FIG. 2. Normalized second moments of tour weights vs chain
length N. For the RR method, a tour is just a single chain. For

for large t. For small values oft (more precisely, for pgRrpw, itis the set of all chains generated between two successive
t<D) we might expect deviations since the evolution is Notreturns to the main program in a recursive implementation. In

diffusive. Instead, the lengtimcreaseis essentially linear in  PERM, the thresholds were set\W~=0.3, W~ =3, and fugacities
time, while thedecreaséhappens in jumps of sizeD. But  were chosen such that the number of generated chains was roughly
no such deviations were observed. In Fig. 1 we see a nearlyidependent oN.
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FIG. 3. Logarithms of the swelling factd®%/N for the end-to- FIG. 5. Logarithms ofZ3/Z,y against 1/IN. The slope of the

end distance, plotted against MinThe four continuous curves are dashed-dotted line is again the field theory prediction.

for Boltzmann factorgj=1.315, 1.310, 1.305, and 1.30@ottom to

top). T_he slope of the dashed line is the prediction from field theory. Surprisingly, we found that in some cases methoper-

The diamonds are frorf@2]. formed better than methdgl (sc latticd, while in other cases
(bond fluctuation modeglthe opposite was true. We have no

bound on the error of any observable by means of B. good explanation for this fact. Obviously, the impressive

we should thus use weights of entire tours instead of weightperformance for the sc lattice depends on the fact that

of single chains. Let us denote the weight by which a tourchains on this lattice are nearly ideal random walks, and the

contributes at length by W,,. In Fig. 2 we show the ratios deviations from the ideal case are taken care of by small

(Wﬁ)/(\'ﬂlnf for several temperatures, and compare them téjevir?\tions fror.n'uniform \(veights that dp not reqyire much

the analogous ratios for the RR method without pruning an runing or sp_httmg. This is not so for either version of the

enrichment. We see that the ratios are indeed much small ond fluctuation mOd?I’ where some Boltzmann factors are

for PERM than for the RR algorithm, demonstrating therebyvery large at theQ point. For.the modeI.0[18], the best

its greater efficiency. We also see that they are smallest neR€/formance was indeed obtained for an intermediate method

the 6 point, and increase strongly at low temperatures. Thidvhere part of the B_oltzmann factor was treated as in method

points at the main limitation of PERM: like all other known A, and the rest as in methdsl

algorithms it becomes inefficient for long chains and at low

temperatures, since the generated chains are strongly corre- IV. RESULTS

lated and state space is no longer evenly sampled.

We performed similarbut less complefeanalyses also
for methodB, and for the bond fluctuation model. In all these
cases we foun® to be much smaller£100, typically, but Ina first set of runs we simulated free chains at Boltzmann
in all cases the behavior was diffusive. factorquellkBTZ 1.300, 1.305, 1.310, and 1.315. These are

the same as studied also[iB]. We performed all measure-

A. Simple-cubic lattice, free chains

3 T T T T

n
N (5.}
y :
Lao0a0
Hoonn
§wmm
Quw
oo,

. |

o

Y

\

RyZ / Ry 92

(specific heat))((kT)2 / monomer
P
T

0.5 -

3 '
10 100 N 1000 10000

1 10 1?\? 1000 10000

FIG. 4. RatiosRZ/R{)? against IIN. The values ofy are the

same as in Fig. 3, with largssmal) g at the bottom(top). The FIG. 6. Variance of the energy divided by the chain leniyth
dashed-dotted line is the field theory prediction. plotted against IN.



56 PRUNED-ENRICHED ROSENBLUTH METHOD: ... 3687

ments also made already [5], but now with N=10 000 2 - . . - '
instead of 5000, and with higher statistics. More precisely,
for eachn<<5000 the number of generated walks is only
roughly 1/5 of the number of walks generated %, but due
to the much larger value dd the number ofindependent 2r
walks of length 5000 is roughly 50 times larger. Accord-
ingly, the present error bars Bt=5000 are roughly 3 times N
smaller than those ifb]. They were obtained by dividing the
tours into independent bins, and estimating the bin-to-bin
fluctuations. AtN=10 000(were errors are largeshe rela-
tive errors are 0.0014 fdR%, 0.001 forR{’?, and 0.003 for '
Zy . The results shown in Figs. 3—6 are based on both the
present data and those [¢F].

Results for the average squared end-to-end distﬁ%ﬁpe

o

In{Zy]

are shown in Fig. 3. More precisely, we plot theR&/N 0 200000 400000 lenann 200000 1er06
versus 1/, since the field theoretic renormalization group
predicts a behavidi6]: FIG. 7. Logarithms of the partition function versus chain length

at 5 equally spaced values g=e*e", 1.309, 1.310, ..,1.313.
The lattice had 256sites with helical boundary conditions.

37
) . 9

2 IN = —
RN/N—constx(l 363N

B. Simple-cubic lattice, dense limit
In [5] we had found even more embarrassing results for
_ . ~ T<T,. From simulations of free chains it was virtually im-
As already found in[5], our data do not agree with this possible to exclude the possibility that tifepoint is first
prediction. Thus there are strong corrections to the leadingrder in the sense that the monomer density in a large glob-
asymptotic behavior, most likely due to weak effective threejje jumps discontinuously to a finite nonzero value when
body forces, and strong effective-body forces forn>3  passingT,. Notice that there exist indeed models in which

[21]. S o _ ~ the #-point collapse is first ordef21], but it is generally
The ratioRy/ RY?, vyhereRNg is the gyration radius, is  believed that this is not true for real polymers.
shown in Fig. 4. Again the theoretical predictidB] is To decide this question, we had simulatedShvery long

shown as a dashed-dotted line, and again we find no googhains in finite volume$‘dense limit”). From these we had
agreement foN<500—as was found already jB]. Butthe  concluded that the transition is indeed smooth, but the mono-
present data do agree wifB] for N>1000 within the error mer density in the interior of a blob is not governed by the
bars. In particular—and in spite of the nonmonotonic behavmean field exponent:
ior for smaller N—RZ/R{{)? seems to approach its
asymptotic value gfor T=T,) from below in agreement
with the prediction. p(T)~(T,—T)%7 (10
In Fig. 5 we show the ratidﬁ,lzz,\,. We have chosen this
as it is independent of the chemical potential, and thus a
prediction similar to Eq(9) exists for it from field theory instead ofp~(T,—T)L.
[6,5]. As already found in5], the disagreement with the In order to investigate this problem further we made
prediction is less severe than fa,z\l/N, but now we defi- Ssimulations with the present improved algorithm. In contrast
nitely find that there is a disagreement, and nonleading termi® the simulations irf5] we now usedh-dependent thresh-
are important. olds W, and W; so that the samples had roughly
Finally, the specific heafor rather the variance of the n-independent sizes. In this way it was possible to generate
energy per monomer is plotted in Fig. 6. Again we confirm tours with extremely long chains, which were nevertheless
the trend seen already at smaller chain lend#&5|: the finished within reasonable CPU times. We thereby avoid
specific heat increases much faster witlihan predicted by completely the bias discussed in detail[5,23]. We used
field theory. The latter gives~ (InN)**%, while the simula- helical boundary conditions, which should give results indis-
tions show rathec~InN. But we now see that the latter is tinguishable from periodic ones.
not quite correct, and increases indeed slower than linearly  In Fig. 7 we show the free energiésr, more precisely,
with InN. Thus it seems not unlikely that finally the field the logarithms of the partition sumtor 5 different tempera-
theory prediction is reached, but only\ary long chains. tures as functions oN. The common lattice size for all 5
The results shown in Figs. 3—6 support fully the previouscurves isL3=256". All temperatures are slightly less than
estimateq,~1.308. In spite of the longer chains and the T4, and fugacities were chosen such that the two maxima at
higher statistics, they do not give a much more precise estN=0(1) and atN=0O(L3) had the same height. Assuming
mate. The reason is the same as that which also preventdit plots of this type scale with, we can take the positions
more definite conclusions if5]: we cannot rely on field of the latter maxima to estimate the densities in a pressure
theory for the extrapolation thl=c, and this extrapolation free medium in the limiN—o, i.e., in the central region of
is nontrivial. an infinitely large free globule. From Fig. 7 and similar plots
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FIG. 8. Monomer densities at the transition frop=0 to FIG. 9. F=—InZ, againstN/L? for q=1.3085, and for the
p>0 on finite but large lattices, plotted agairmgst same 4 lattice sizes as in Fig. 8. According to mean field theory, the

data should collapse onto a cubic curve.
for different values oL we obtain in this way the estimates
shown in Fig. 8. In this figure we see slight violations of corrections found if5] are an artifact of the simple-cubic
scaling since the estimates do depend slightly oBut these lattice, and would not show up in off-lattice models or in
scaling violations seem to decrease withWe see unam- lattice models with very high coordination number.
biguously thatp=N/L3—0 for T—T,. Indeed, these simu-  In Figs. 10 and 11 we show the ratid®{?/N and
lations give our most precise estimate for the collapse temr2/R(9)2 respectively, against 1/ for the model of Wit-
perature: tkopp et al. [18]. The estimatedh temperature is given by
these authors ase/kgT,=0.214+0.008, i.e., T,=4.67
+0.17 fore/kg=1. This was obtained from simulations up
to N=100. Comparing this with Figs. 10 and 11 where we
But it is still not easy to decide whether or netincreases used chains wittN=<900, we see that this estimate would be

linearly with (T,—T). A least square fit to the data of Fig. 8 Correct if the behavior oRP?/IN would not change for
would be compatible with the power la@0). But a closer N>100, but this is not the case. Thus, is definitely larger
inspection shows that there are systematic deviations frorfhan 4.7, andR{’’/N increases considerably at the trée
such a fit, indicating that the effective exponent increases tpoint. Our best estimate of the latter %&=5.04+=0.03,
1 asT—T,. Thus we suggest that E(L0) doesnot repre-  about 2 standard deviations higher than the estimafé&if
sent the true asymptotic behavior, and mean field theory does In view of the claim of{ 18] that conventional mean field
become correct fof — T, (although the numerical evidence scaling holds good in their modésee Fig. 5 in the second
for this is rather shaky paper of[ 18]), we also simulated at lower temperatures, and
The same conclusion is reached when studying the freplotted (T,— T)(R(P’?/N)3\N against T,—T)N; see Fig.
energyF = —InZ, at fixed temperature. As discussed &,  12. We found indeed much better data collapse than in the sc
mean field theory assumes thatis a cubic function ofp,
with the linear term vanishing at the critical fugacity and the 21 . . - . - -
guadratic vanishing in addition &t,. Thus at the critical
fugacity and aff =T, it is predicted thaF ~L3p2. In Fig. 9
we show —InZy againstN/L? for q=1.3085. Within the 191
statistical error this is thé point, and the above argument
suggests that the curves should collapse to a cubic "
InZy=constx (N/L?)? if mean field theory is exact. We see /
that this is not quite correct, but the discrepancies diminish
with increasing.. Even more importantly, while each of the
curves can be fitted by a power law, the powers decrease 15
from 3.65 forL=64 to 3.22 forL=256. This suggests that
the exponent does indeed converge to 3lfer~, and mean [
field theory does predict the correct power laws albeit with 13} .
very large finite size corrections. i

g,=1.3087£0.0003, T,=3.717-0.003. (11
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C. The Bond fluctuation model

We have studied this model since there have been sugges- FIG. 10. Gyration radius swelling factorR{®?/N against
tions in the literaturd 18] that the very large logarithmic 1/InN for the model of(18].
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FIG. 11. RatiosR%/R? against 1/IN. The model and the val-
ues of T are the same as in Fig. 10.

FIG. 13. Analogous to Fig. 10, but for the interactiond o7].

_ o ] . o in [5]. This was to be expected according to the discussion in
lattice model, but this is easily explained as a filteffect. e previous paragraph, since the potential between bonded
The po_tent|al i 18] was chosen such thaf[ the average bon%onomers chosen ifi17] does not depend on the bond
length increases at low temperatures. This suppresses the jgngih. Our estimate for the collapse temperature from Figs.
crease ofR(? with T for short chains and for very low 13 and 14 isT,=2.10+0.01, as opposed to the value
temperatures, leading thereby to improved scaling. But thi$ o+ 0.02 obtained i17] from chains of length<150.

should h_ave a s_ma_ller _effec_t for_Iong chains c|05§$9 and_ Again we see the strong effect of corrections to mean field
we see indeed indications in Fig. 12 that the scaling violagca)ing.

tions increase as we approach the scaling liwitere they
should decrease of course, if mean field scaling would
hold).

A similar analysis was made for the version of the bond
fluctuation model used in[17]. Ratios R{P%N and As described above, PERM is applicable only to lattice
Rﬁle\?)Z against 1/IN (with N up to 600 are now plotted in  chains. More precisely, for implementing the Rosenbluth-
Figs. 13 and 14. These plots again look very much like theifRosenbluth trick, we have to know the weights for all pos-
counterparts for the model §18] and for the sc lattice. We ~Sible next moves. This is in general only possible when there
do not show the Sca"ng p|0t ana'ogous to F|g 12 since Wés a finite number of such moves. For off-lattice mOdels, it is
did not perform systematic simulations far beldyy. But ~ only feasible in very simple two-dimensional modgZs],
a|ready the data shown in F|g 13, when p|otted asin F|g 12§nd even then it is not clear that the effort is worthwhile.
show much larger scaling violations, similar to those found ~But itis rather straightforward to put forward a stochastic
version of the Rosenbluth-Rosenbluth trick, where these
weights are estimated from finite samples. In order to add a
— monomer, we thus first choose randorsigites. For maxi-

o mal efficiency, these sites should be distributed according to

V. STOCHASTIC PERM: APPLICATIONS
TO OFF-LATTICE CHAINS
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FIG. 12. Scaling plot of T,~T)(RW?N)3/N against
(T,—T) N for the model of 18]. If mean field theory were exact, 53 : y 5
the data would collapse onto a single curve. We see very small ' '
violations indeed, which seem to increase, however, as we approach
the 6 point.
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FIG. 14. Analogous to Fig. 11, but for the interactiond o7].
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a measuré¢“guiding field” ) that is not too different from the 031 e S
estimated true Boltzmann weigh25—27. For each of them
we estimate an acceptance factor, either including the Bolt-
zmann factofmethodB) or not(methodA). The actual site

of the next monomer is then chosen among these sites, and

the actual weight is computed so that the total sample is o8 [T
unbiased. Finally, the enrichment and pruning steps are done
exactly as before.

We have implemented this for a model studied exten-
sively by Freire and otherf28-32. In this model, non-
bonded monomers interact with a Lennard-Jones potential 025 -
with strengthe and rangeo, V(r)=4¢[ (o/r)—(o/r)®].
Bonded monomers do not feel any mutual hard or soft core 024 -
repulsion. Instead, they interact exclusively through a Gauss- N
ian potential whose strength is proportionalTtpso that its 0 om o1 o o2 o 0s om 0s os
associated Boltzmann factor is independent pnd whose ?
range is such that the average squared bond length is 1. Fol-
lowing Refs.[28-32, the Lennard-Jone¢lJ) range was
kept fixed atc=0.8, and it was not truncated at large dis-
tances.

We do not consider this model as particularly realigitc
view of the absence of any repulsion between bonded neig
borg nor convenienfdue to the absence of truncation of the
LJ potential. We chose it solely because of claimq &1,32
that it does not show the large logarithmic corrections foun
in [5]. It was claimed there that logarithmic corrections
found in this model are fully in agreement with a finke-
extrapolations of the asymptotic results[6f. For instance,
the equation for the gyration radius analogous to 4.is

03

0.29

0.27

2
Ry /N

0.26 |

FIG. 15. Analogous to Fig. 10, but for the off-lattice model of
Freireet al. The smooth lines are the asymptaotioaive” ) predic-
tion from field theory{6] and its finiteN modification given in Egs.
(12) and(13).

rlhat Eq.(12) doesnot give the asymptotic behavior. This is
also confirmed by Fig. 16, although we should be careful in
he interpretation of this figure: as found for the sc lattice
Fig. 4), R2/RY? can have a maximum at some finite value
of N, and approach its asymptotic value from below never-
theless. Both figures suggest thatkgT,=0.232+0.002.
Accepting this, we conclude that also the analysis of the
second virial coefficient if32] is misleading(since it was

replaced by based on a wrong value dfy), and that logarithmic correc-
tions are indeed much larger than predicted by the field theo-
1487 retic renormalization group.
Rﬁ)z/Non(l—@h(N)), (12)
VI. SUMMARY AND OUTLOOK
with As far as the physics of thé-point collapse is concerned,

the results of the present paper are easy to summarize: while
we fully confirm the conventional view that thepoint is a
tricritical point and thus mean-field-like in three dimensions,

16 Z3
Ag=1+ s5mz3, h(N)= (13 we also confirm the very large corrections to mean field be-
33 1+44mz5n(N/no) havior found in[5]. The only point where we deviate from
and withz;=0.458 andh,=11.5. T T T T T e —

E/KT = .235 ----
E/KT =.240 -----
E/KT = .245 — 4

In stochastic PERM, the main parameter is the nunsber
of trials at each monomer insertion. We have trégdl, 2,
and 3. All gave nearly the same efficiency. Clearly, the effort ;
increases witts, but the efficiencyper added monomen- 1y
creases also, so that the overall efficiency per unit CPU time
was the same within statistical errors. The results were of
course also the same for &l i.e., we checked that the
method did not induce systematic errors.

6.05

595

2 2
Rend / ngr

59

In Figs. 15 and 16 we show again results Ri{)?/N and sos L ]
R2/R®)?, respectively, against 1M Chain lengths were
N=<500, and we used=2. In Fig. 15 we also plotted the ss | ”g-
modified prediction(12), and the simple asymptotic predic- %
tion obtained by puttingnp=1 and IlN>1. We see that our 575 NS I

0 005 01 0.15 03 035 04 0.45

data indeed coincide roughly with E(L2) for N> 100 (this *Friogthy
was also the range used [iB1]), provided e/kgT ,= 0.240.
This is also the estimate §81]. Thus our simulations agree FIG. 16. Analogous to Fig. 11, but for the off-lattice model of

at this coarse level. But Fig. 15 should not leave any doubkFreireet al.
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[5] is in the T dependence of the monomer density inside astudy of the critical behavior of such systems on the sc lattice
large globule forT<T,. Although we see also there large is in progres$34]. A rather unusual aspect of our method in
deviations from mean field behavior, it seems now that thesthis context is that it does not allow us too many chdthe
corrections are nonleading, and the asymptotic behavior imaximal number is=200), but it puts hardly any constraint
p~T,—T. on their lengths. This results simply from the fact that the
We derived this from simulations of very long chains with critical temperature approach&s whenN— o<, whence our
very high statistics on the sc lattice, but we verified that themethod becomes increasingly efficient in this limit. Test runs
same qualitative behavior holds also for off-lattice chainswith 128 chains of length 512 were very encouraging.
and for chains on lattices with very high coordination num- Basically, PERM uses the fact that the space of configu-
bers. This rules out speculations that the large correctionsations is given a rooted tree topology, and moves are per-
found in [5] might be lattice artifacts. As a side result we formed only along the branches of the ti¢&ee moves”).
found thatT, was underestimated iall previous papers. No direct moves between branch@eff-tree moves”) are
Maybe more interesting is the algorithmic aspect of theallowed. Thus no loops are possible, and detailed balance is
present work. Although the general structure of the algorithnirivially satisfied. In principle this can always be done for
is similar to other recent chain growth algorithms for poly- any problem with discrete configuration spaéer continu-
meric system$15,16,25,26,§ the details are quite different. ous space, the stochastic method of Sec. V can be used
At least in one case—thé-point collapse on the sc lattice— in general the method will not be efficient. Obviously the
this has boosted the efficiency enormously. In the other casesfficiency depends on the importance of tree moves versus
studied in the present paper the method is also more efficiemiff-tree moves. While the latter are very restricted and thus
than other known methods, but not by very large margins. less important for single chains, they are more important for
A non-negligible advantage of the present method ovemultichain systems and even more so for systems of inde-
those 0f[15,16,9 is that the parameters steering the growthpendent particles.
of the sample can now be adapted automatically at any time, An important aspect that explains the efficiency of PERM
while they had to be carefully chosen in advance for thds the fact that it isnot Markovianon the space of configu-
previous algorithms. Making good choices had not alwaygations. In a Markov process on a tree, the decisions whether
been easy. We should mention that also breadth-first implea branch is to be pruned or not, and whether an enrichment
mentationg 25,26 have no problem with choosing these pa- step is inserted.e., whether more than one daughter node of
rameters. But they are much slower and/or storage demanthe tree is visitefl has to be independent of the previous
ing on single-processor machines since a large number dfistory. For polymers, the resulting algorithm is the Beretti-
chains (typically >10*) must be kept simultaneously in Sokal algorithm{16]. As we have seen in Sec. Ill, on the sc
memory. Breadth-first implementations could, however, bdattice it is less efficient than PERM by about 3 orders of
efficient on massively parallel systerf&3]. magnitude. Roughly, in an algorithm without memory about
But we should point out that we have not yet pushed theprevious moves we have to start many new directions, since
method to its very limits. In particular, we have used onlywe make each time a random decision as to whether this new
very simple guiding fields: we have either selected from alldirection should be continued or not.
allowed moves with the same probability, or we have chosen This aspect of PERM seems to be in contrasaltoother
them according to some Boltzmann weights. More alternaMonte Carlo methods for equilibrium systems. Indeed, usu-
tives are possible and rather straightforward to implementally the first requirement for any Monte Carlo algorithm is
For stretched polymers, i.e., we could implement a directhat it is Markovian, since otherwise it would be hard to
tional bias. The same could be useful for polymers in sheaverify detailed balance. As we have seen, we do not have this
flow or for polyelectrolytes. problem in PERM. Maybe the most interesting challenge is
Another possibility would be to look ahead as in the scanto devise non-Markovian Monte Carlo algorithms that have
ning method 22]. There, the likely “success” of a move is the same “inertia” as PERM but that do not require a tree
estimated by trying all combinations &f future moves in-  structure. In a loose sense, such algorithms would be similar
stead of only the next one. Although this can lead to larggo cluster algorithmg35] since moves would be correlated
improvements in terms of efficiency per added monomer, iinstead of being done independently. They could be ex-
also leads to a much larger numerical effort per monomertremely efficient for virtually all equilibrium problems.
An alternative that gives similar efficiency without any sub-
stantial increase in effort is to lodkackinstead. More pre-
cisely, during a short test run one puts up a histogram of
success probabilities of next moves, conditioned on khe ACKNOWLEDGMENTS
previous moves. We implemented this for two-dimensional
athermal SAW's on the square and honeycomb lattices. Us- | am indebted to many colleagues for discussions, in par-
ing histograms of deptk=10 and 15 we obtained roughly ticular to U. Bastolla, H. Frauenkron, R. Hegger, T. Len-
one order of magnitude in speedup. Details of this “Markov-gauer, W. Nadler, H. Rieger, K. Schilling, and W. Zimmer-
ian guide PERM” will be presented elsewhdiEl]. mann. This work was supported by the DFG within the
We should point out that the applicability of PERM is not Graduiertenkolleg “Feldtheoretische und numerische Meth-
restricted to single polymer chains. The most straightforwardden in der Elementarteilchen- und Statistischen Physik,”
extension is to semi-dilute solutions of long polymers. Aand within Sonderforschungsbereich 237.
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APPENDIX

Here we show a pseudocode for the central subroutine:

subroutine STEBn)

choosex’ nearx with densityp(x—x’) in the simplest casgy(X)=1/mdjy 1
Wp=C,p(X—x")"texp(—E(X')/kgT) if ¢c,=const-grand canonical
Wp=W,_1W,
do statistics:
Z,=Z,+W, partition function
R2,=R2,+x’ 2w, end-to-end distance sums
t=t+1 total number of subroutine calls
etc.
end do
if N<NmaxandW,>0 then
W =c"2,/Z, adaption ofW> (optiona)
W<=c~2,/Z; adaption ofW= (optiona)
if W,>W" then
W,=W,/2
call STEPK' ,n+1)
call STEPK' ,n+1) enrichment
else if W,<W= then
W,=2W,
draw ¢ uniformly €[0,1]
if £<1/2 call STEPK ,n+1) prune with probability 1/2
else
call STEPK' ,n+1) normal Rosenbluth step
end if
end if
return
end

It is called from the main routine with arguments=0,  the subroutine is called once from the main routine, the re-
n=1. To compute the energE(_X’) of the newly placed turned variableZ,, is a random variable whose average value
monomer in thg field of the garller ones, one can use eithes exactly equal to the partition sum; and if the algorithm is
bit maps(in lattice models with small latticgshashing, or  repeated sufficiently often, the sample average of any mea-
sured observablésuch asRﬁ= R2,/Z,) converges towards
Sits true average. But the fluctuations at finite sample sizes
S .

Wn., Cn, Zy, andR2, are glolr_JaI arrays, while™, ¢, Nmax, . _can be extremely non-Gaussian for large systems and for bad
andt are global scalar variables. In easy cases, the lines, . 3 - :
: . i~ < < < choices ofp, W=, and W=. In particular, they are skewed
involving ¢~ andc™ can be dropped, and/~, W= are glo- . ) . - .

bal scalars. In more sophisticated implementatignsg™ with a long tail of rare events with large statistical weights.
andc= will Hepend onn and/or on the configuration of 'Ehe In extreme cases, most of the statistical weight could be con-
monomers with indices’ <n. Good choices for these func- centrated in events that are so rare that no such event is
tions may be crucial for the efficiency of the algorithm, but observed at all in the sample at hand. Unless sufficient care is
are not important for its correctness. taken, this can easily lead to serious underestimation of par-

The last statement should be qualified more precisely: ifition sums and of statistical errors.

[1] K. Kremer and K. Binder, Phys. Refg, 259 (1988. nell University Press, Ithaca, 1979
[2] M. Lal, Mol. Phys.17, 57 (1969. [5] P. Grassberger and R. Hegger, J. Chem. Phg® 6681
[3] N. Madras and A. D. Sokal, J. Stat. Ph#€, 109 (1988. (1995.

[4] P. G. de Gennesscaling Concepts in Polymer Physi@Sor- [6] B. Duplantier, J. Chem. Phy86, 4233(1987.



56 PRUNED-ENRICHED ROSENBLUTH METHOD: ... 3693

[7] M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Pia8. [21] P. Grassberger and R. Hegger, J. PhyR9A279 (1996.

356 (1955. [22] H. Meirovitch and H. A. Lim, J. Chem. Phy82, 5144(1990.
[8] F. T. Wall and J. J. Erpenbeck, J. Chem. PI83.634(1959;  [23] P. Grassberger and R. Hegger, Ann. Phy=ipzig) 4, 230
ibid. 30, 637 (1959. (1995.
[9] J. Batoulis and K. Kremer, J. Phys. 24, 127(1988. [24] N. C. Smith and R. J. Fleming, J. Phys.8A4929 (1975.
[10] P. Grassberger and R. Hegger, J. Phy27A4069(1994. [25] T. Garel and H. Orland, J. Phys. 28, L621 (1990.
[11] P. Grassbergeunpublished [26] P. G. Higgs and H. Orland, J. Che®5, 4506(1991).
[12] W. Bruns, Macromolecule$7, 2826(1984. [27] P. Grassberger and R. Hegger, J. Phyg, G089(1995.
[13] R. Tarjan, SIAM J. Computl, 146 (1972). [28] J. J. Freire, J. Pla, A. Rey, and R. Prats, Macromoleciges
[14] P. Grassberger, J. Phys.26, 1023(1993. 452 (1986

[15] S. Redner and P. J. Reynolds, J. Physl4A2679(1981.

[16] A. Beretti and A. D. Sokal, J. Stat. Phy40, 483(1985.

[17] N. B. Wilding, M. Mdller, and K. Binder, J. Chem. Phy%05,
802 (1996.

[29] J. J. Freire, A. Rey, M. Bishop, and J. H. R. Clarke, Macro-
molecules24, 6494 (1997).
[30] A. M. Rubio, J. J. Freire, J. H. R. Clarke, C. W. Yong, and M.

[18] M. Wittkopp, S. Kreitmeier, and D. Goeritz, Phys. Rev5E Bishop, J. Chem. Phyd02, 2277(1995'_ i
838(1996; J. Chem. PhysL04 3373(1996; Macromolecules [31] C. W. Yong, J. H. R. Clarke, J. J. Freire, and M. Bishop, J.
29, 4754(1996. Chem. Phys105 9666(1996.

[19] I. Carmesin and K. Kremer, Macromoleculs 2819(1988;  L[32] A- M. Rubio and J. J. Freireunpublishegl
H. P. Deutsch and K. Binder, J. Chem. Ph94, 2294(1992); [33] I am indebted to T. Lengauer for this remark.
W. Paul, K. Binder, D. W. Heermann, and K. Kremer, J. Phys.[34] H. Frauenkron and P. Grassbergenpublishedl
Il (France 1, 37 (1991). [35] R. H. Swendsen and J-S. Wang, Phys. Rev. L88. 86

[20] W. J. Thompson, Comput. Phy0, 25 (1996. (1987).



