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Population growth (two parameters), fluctuations, bottlenecks

Migration among populations (potentially thousands, parameters)

Population splitting (many parameters)

Recombination (parameters)

Shortcut methods

Genomics and the coalescence
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches.
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Populations are rarely completely stable through time,
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growth or shrinkage using linear, exponential or more
general approaches.

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ⇥.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches. For example exponential growth
could be modeled as

dN

dt
= rN

Nt = N0e
�rt

N0 = 80

r = 0.02

Past Present
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For constant population size we found

p(G|⇥) =
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Relaxing the constant size to exponential
growth and using g = r/µ leads to
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Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.

Past

Present
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Past Present

Random fluctuations of the population size are most often ignored. BEAST
(and to some extent MIGRATE) can handle such scenarios. BEAST is using
a full parametric approach (skyride, skyline) whereas MIGRATE uses a non-
parametric approach for its skyline plots that has the tendency to smooth the
fluctuations too much, compared to BEAST.
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Comparison of the skyline
plots of simulated influenza
dynamics analyzed by
MIGRATE and BEAST. The
x-axis is the time in years
and the y-axis is effective
population size. The data
are sequences from 250
individuals sampled at regular
intervals over 5 years. The
dashed curve is the actual
population size deduced from
the true genealogy; black
lines are the mean results of
MIGRATE or BEAST; gray area
is the 95% credibility interval.
BEAST skyline matches
the actual population size
better than all other methods.
Simulation and graphs
courtesy of Trevor Bedford.



Influenza H3N2 word-wide distribution through time

Bedford et al. 2010 Global migrational dynamics underlie evolution and persistence of human influenza A (H3N2).19 of 87 – c�2017 Peter Beerli
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The single population coalescence rate is
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Structured populations Migration
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Bayesian inference Synthetic data

Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.26 of 87 – c�2017 Peter Beerli
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Bayesian inference Synthetic data

Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.30 of 87 – c�2017 Peter Beerli
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Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.31 of 87 – c�2017 Peter Beerli
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Bayesian inference Synthetic data

Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.32 of 87 – c�2017 Peter Beerli
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Obvious migration pattern Frog example 2

Beerli, P. (in print) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? 33 of 87 – c�2017 Peter Beerli
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Population splitting IM

Hey 2010 35 of 87 – c�2017 Peter Beerli

0.41 MYR

central western

 Ancestral Ne (thousands): 8.4

0.41***

0.092**

IM: isolation with migration;
co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.
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Population splitting
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

if we consider only a single individual that is today in population A. We also know
that its ancestor was a member of population B then it will be only a matter of
time to change the population label, but when?

Today Past
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes. In
the coalescence framework we are well accustomed to that thinking: we use the
risk of a coalescent or the risk of a migration event. This risk can be expressed
using the hazard function (or failure rate). Here we use the hazard function of
the Normal distribution.

Today Past
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(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.)

One lineage is easy, but what about the genealogy? Each lineage is at risk
of being in the ancestral population, thus we need to consider coalescences,
migration events, and population label changing events. This results in
genealogies that are realizations of migration and population splitting events.



Estimated versus simulated divergence times
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B A

A

(Beerli, Ashki, and Palczewski [in prep.] Population divergence estimation using individual lineage label switching.)



Estimated versus simulated divergence times
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(Beerli, Ashki, and Palczewski [in prep.] Population divergence estimation using individual lineage label switching.)
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(Beerli, Ashki, and Palczewski [in prep.] Population divergence estimation using individual lineage label switching.)



Population splitting Data: Lisle Gibbs, Ohio (Kubatko et al. 2011)
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Population splitting Wikipedia: Sistrurus
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Population splitting Pygmy rattle snakes
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Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)

 -- 20

Migrate 4.0: (http://popgen.sc.fsu.edu) [program run on 22:12:41]

Bayesian Analysis: Posterior distribution over all loci
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 -- 21

Migrate 4.0: (http://popgen.sc.fsu.edu) [program run on 22:12:41]
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Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)

S. m. miliaris
S. m. barbouri
S. m. streckeri 

S. c. tergeminus
S. c. edwardsii S. c. catenatus
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Programs that analyze recombination: LAMARC (Kuhner et al. 2006). [see also
last section of lecture]



Coalescent and Selection
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balancing selection: We can treat the the observed selection classes as
’populations’ and the migration rate will become a measure of selection
pressure. (Darden, Kaplan, and Hudson 1988)822 N.  L. Kaplan, T. Darden and R. R. Hudson 

coalescent is a two dimensional process. Suppose that 
n genes are chosen at  random  from  the  0th  generation 
and let Q(0) = (i, j )  if the sample consists of i A 1  alleles 
and j A2 alleles, 0 5 i, j 5 n, i + j  = n. For t < 0, Q(t) 
denotes  the  number of A I  and AP ancestral  genes of 
the sample in generation t .  The total  number of 
ancestral  genes in generation t is denoted by I Q(t) 1. 

By its very definition Q is a jump process. We define 
T1, T2, . . . to be the  numbers of generations  between 
successive jumps  and Z1,22, . . . the successive random 
states to which the process moves. The Q process can 
therefore  be  represented  as 

where S k  = T,, k I 1.  An example of an ancestral 
tree  for a sample of size 4 is given in Figure 3. 

It is clear from  the  definition of the Q process that 
I Q(t)  I never increases. Hence, the process eventually 
reaches either of the two states (0, 1) or (1 ,  0). The 
ancestral generation in which this first  occurs is that 
generation which has the most recent  common ances- 
tor of the sample. 

We  now consider the  joint distribution of the (Ti) 
and  the {Z,). Toward this end we study the distribution 
of Q(t - 1)  conditional on Q(t) and X ( t  - 1). There 
are two cases to consider: 

Case 1: I Q(t - 1) I = I Q(t) l .  The only way that 
Q(t - 1) # Q(t) is if the allelic type of at least one of 
the sampled genes is different (as a  result of a selective 
mutation)  than the allelic type of its parental  gene. 
The probability that  a sampled AP allele from  gener- 
ation t has an A I  parental  gene equals 

Since j A2 genes are sampled from  generation t ,  

P(Q(t - 1) = (i + 1 ,  j - 1) I Q(t)  = ( i , j ) ,  X ( t  - 1)) 

Similarly, 

P(Q(t - 1) = ( i - 1 , j  + 1) I Q(t) = (Z,j), X ( t  - 1)) 
(7) 

1 - X ( t  - 1) p 2  
\ I  

=i( X ( t - 1 )  ) Z + O ( $ ) .  

Furthermore, since all the  other possible  cases where 
Q(t - 1) # Q(t)  and 1Q(t - 1)1 = IQ(t)I involve at least 
two selective mutations, these events have probabili- 
ties of order 1/N2. 

Past 

.. . . . . . . . . . . . . .  

A ,  SllOIOS A alleles 

FIGURE 3.-A realization of the coalescent process for a sample 
of size 4. The Q process changes value at the S, = %I T, ancestral 
generations, 1 5 j 5 5. At the Slth ancestral generation, an ancestral 
A? allele mutated to an A I  allele, ie., the Q process moved from (2, 
2) to ( 1 ,  3) at the Snth and Ssth ancestral generations,  common 
ancestors of two ancestral AS alleles occurred and so the Q process 
moved to ( 1 ,  2) and  then to ( 1 ,  1 ) .  At the S4th ancestral generation, 
an ancestral A1 allele mutated to an A2 allele and so the Q process 
moved to (2, 0). Finally at the Ssth ancestral generation, the most 
recent  common ancestor of the sample occurred and the Q process 
moved to the state ( 1 ,  0). 

Case 2: I Q(t - 1) I # I Q(t) I. In this case some of the 
sampled genes have common  parental genes. The 
fraction of the genes of generation t contributed by a 
particular A I  parental  gene equals 

X ( t  - 1)Wll + (1 - X ( t  - 1))W12 
2 N q t  - 1) + o($) 

The probability that two sampled A I  genes  from  gen- 
eration t have the same A I  parental  gene  therefore 
equals 

1 - - 
2 N X ( t  - 1)  + 0 ($). 

Since i A1 genes are sampled from  generation t ,  

=(a) 1 + 0 ($). 2 2NX(t-  1) 

Similarly, 

positive selection:

Frequency

Time



Photo CC Wikimedia Wolfgang Sauber

So many models – so little time



Structured vs non-structured populations
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A single population allows free
interbreeding of all individuals,
mutation accumulate
approximately by N ⇥ µ

where N is the population size,
and µ is the mutation rate per
generation. Highly variable
populations persist longer and
can resist catastrophes better.

A structured population restricts
interbreeding to the subpopulations.
Variability in a subpopulation is gained
about Nsubpop ⇥ (m + µ) where m is
the immigration rate per generation.
With very high immigration rates the
structured population behaves like a single
population. If Nsubpop is small the risk
of extinction is high, but such systems
are often more resistant to extinction
by a parasite/virus/bacteria because the
transmission of these is slowed down
compared to a single population.
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Location ⇡ Population
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Picture:Brian Kot

Location versus Population
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Picture:Brian Kot

Location ?
= Population
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Model comparison
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With a criterium such as likelihood we can compare nested models. In
phylogenetics, we commonly use a likelihood ratio test (LRT) or Akaike’s
information criterion (AIC) to establish whether phylogenetic trees are
statistically different from each other, or which mutation model provides the best
answers among the tested models.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.



Betting and Odds Ratios

57 of 87 – c�2017 Peter Beerlicirca. 1594, by Michelangelo Merisi da Caravaggio

Knew that we ventured on such dangerous seas
That if we wrought out life ’twas ten to one
William Shakespeare (Henry IV).



Bayesian Odds Ratios
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Using Bayes’ theorem:

p(M1|X) =
p(M1)p(X|M1)

p(X)

we can express support of one model over another as a ratio:

p(M1|X)

p(M2|X)
=

p(M1)p(X|M1)
p(X)

p(M1)p(X|M1)
p(X)
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Using Bayes’ theorem:

p(M1|X) =
p(M1)p(X|M1)

p(X)

we can express support of one model over another as a ratio:

Bayes FactorPosterior Odds Prior Odds

p(M1|X)

p(M2|X)
=

p(M1)p(X|M1)
p(X)

p(M1)p(X|M1)
p(X)

p(M1|X)
p(M2|X)

=
p(M1)

p(M2)
⇥ p(X|M1)

p(X|M2)
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Bayes FactorPosterior Odds Prior Odds

p(M1|X)

p(M2|X)
=

p(M1)p(X|M1)
p(X)

p(M1)p(X|M1)
p(X)

p(M1|X)
p(M2|X)

=
p(M1)

p(M2)
⇥ p(X|M1)

p(X|M2)



Bayes factor
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We can use the posterior odds ratio or equivalently the Bayes factors
for model comparison:

BF =
p(X|M1)

p(X|M2)
LBF = 2 lnBF = 2 ln

✓
p(X|M1)

p(X|M2)

◆

The magnitude of BF gives us evidence against hypothesis M2

LBF = 2 lnBF = z

8
>>>><

>>>>:

0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong



Marginal likelihood approximation
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So why are we not all running BF analyses instead of the AIC, BIC, DIC, FIC,
GIC, LRT, ...?



Marginal likelihood
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So why are we not all running BF analyses instead of the AIC, BIC, DIC, FIC,
GIC, LRT, ...?

Typically, it is rather difficult to calculate the marginal likelihoods with good
accuracy, because most often we only approximate the posterior distribution
using Markov chain Monte Carlo (MCMC).
In MCMC we need to know only differences and therefore we typically do not
need to calculate the denominator to calculate the Posterior distribution p(⇥|X):

p(⇥|X,M) =
p(⇥)p(X|⇥)

p(X|M)
=

p(⇥)p(X|⇥)R
⇥ p(⇥)p(X|⇥)d⇥

where p(X|M) is the marginal likelihood.



Thermodynamic integration
Marginal
likelihood
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Thermodynamic integration (Path
sampling) [Gelman and Meng
1997, Lartillot et al. 2006]:
method is tedious to compute
because several MCMC chains
are needed. Results are accurate
and reproducible with small
variance when MCMC runs were
run long enough.

ln p(X|Mi) =

Z 1

0
E(ln pt(X|Mi))dt
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-2800

-2600

-2400

-2200
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-1800

ln L
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Thermodynamic integration
Marginal
likelihood
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Thermodynamic integration (Path
sampling) [Gelman and Meng
1997, Lartillot et al. 2006]:
method is tedious to compute
because several MCMC chains
are needed. Results are accurate
and reproducible with small
variance when MCMC runs were
run long enough.

ln p(X|Mi) =

Z 1

0
E(ln pt(X|Mi))dt

0.0 0.2 0.4 0.6 0.8 1.0
-2800
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Marginal
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Thermodynamic integration (Path
sampling) [Gelman and Meng
1997, Lartillot et al. 2006]:
method is tedious to compute
because several MCMC chains
are needed. Results are accurate
and reproducible with small
variance when MCMC runs were
run long enough.

ln p(X|Mi) =

Z 1

0
E(ln pt(X|Mi))dt

0.0 0.2 0.4 0.6 0.8 1.0
-2800
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-1800
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A simple example Tutorial on MIGRATE website
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We want to establish a direction of geneflow between 2 populations.

We generate 4 hypotheses

&%
'$

-
� &%

'$
&%
'$

-

&%
'$

&%
'$

� &%
'$

&%
'$

We collect data from individuals in the two populations

Analyze the data in MIGRATE



A simple example Tutorial on MIGRATE website
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Recipe: starting with the finished dish

Log Marginal likelihoods [lmL] of the 4 hypotheses:

lmL
&%
'$

-
� &%

'$

-4856.2
&%
'$

-

&%
'$

-4822.5
&%
'$

� &%
'$

-4832.6
&%
'$

-4837.8

Data was simulated using the second model (2) from the left.
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Recipe: starting with the finished dish

Log Marginal likelihoods [lmL] of the 4 hypotheses:

lmL
&%
'$

-
� &%

'$

-4856.2
&%
'$

-

&%
'$

-4822.5
&%
'$

� &%
'$

-4832.6
&%
'$

-4837.8

The best model (highest lmL) is the model second from left (model 2).
We can calculate the log Bayes factor for two leftmost models as

LBF12 = 2(lmL1 � lmL2) = 2(�4856.2��4822.5) = �67.4

The value suggests that we should strongly prefer model 2 over model 1.

Data was simulated using the second model from the left (model 2).



A simple example Tutorial on MIGRATE website

70 of 87 – c�2017 Peter Beerli

Recipe:

1. Pick the hypothesis with largest number of parameters

2. Set priors and run parameters (use heated chains) so that you are
comfortable with the result (converged, etc)

3. Record the log marginal likelihood from the output.

4. Pick next hypothesis, adjust migration model, and run and record the log
marginal likelihood.

5. Repeat (4) until all log marginal likelihoods are calculated

6. Compare the log marginal likelihoods, for example order the hypothesis
accordingly, or calculate the model probability



A simple example Tutorial on MIGRATE website
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Ordered models

lmL
P(model)

&%
'$

-

&%
'$

-4822.5
0.99

&%
'$

� &%
'$

-4832.6
0.01

&%
'$

-4837.8
0.0

&%
'$

-
� &%

'$

-4856.2
0.0

Model probability (Burnham and Anderson 2002) calculation:

P(Mi) =
exp(lmLi)P
j
exp(lmLj)

=
mLiP
j
mLj



Robustness of the coalescence Population model



Violating assumptions
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Required samples

Recombination

Selection



Required samples is small Single population
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0.01 0.02 0.03 0.04 0.05

0.02

0.04

0.06

0.08

0.1

Fr
eq

ue
nc

y

Depth of tree

samplesize=50
samplesize=10 Felsenstein (2005)

Pluzhnikov and Donnelly
(1996)

The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.



Required number of samples is small Multiple populations
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Medium variability DNA dataset: Mutation-scaled population size ⇥ and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ⇥T = 0.01 is marked with the dotted gray line; M = 100



Ignoring recombination 0.0
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Ratio of recombination rate versus mutation rate R

⇠500 simulated datasets
sc

al
ed
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pu

la
tio

n
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ze
⇥̂

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.



Ignoring recombination 0.0
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Ratio of recombination rate versus mutation rate R

⇠500 simulated datasets
sc

al
ed

po
pu

la
tio
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ze
⇥̂

Upward bias

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.



⇠500 simulated datasets

Ratio of recombination rate versus mutation rate R

sc
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Ignoring recombination
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⇠500 simulated datasets

Ratio of recombination rate versus mutation rate R
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te
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Downward bias

Ignoring recombination
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Breaking up long sequences
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Calculate the log marginal likelihoods lnmL of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

H0: 1 locus lnmL = �1938

H1: 2 loci lnmL = �1878

H2: 3 loci lnmL = �1934



Breaking up long sequences
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Calculate the log marginal likelihoods lnmL of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

H0 : lnmL = �1938

H1a : lnmL = �1878

H1b : lnmL = �1918

H2 : lnmL = �1934

Sorting the log marginal likelihoods: H1a > H1b > H2 > H0

Suggests: Pick a two-locus model.



Chopping a real dataset
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D. melanogaster Chr2L

position: 5 ⇥ 106 + 10, 000bp
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Chopping a real dataset
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Chopping a real dataset
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D. melanogaster Chr2L

position: 5 ⇥ 106 + 10, 000bp
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Ignored selection
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets. In the allele
frequency spectrum literature recently there is a strong push on looking at
signals of selection, which seems still very difficult in ’traditional’ coalescence
approaches.

A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not well studied.



Outlook
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We will have a lab tonight where you will differentiate between 8 simple
population models that include ”speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.

(On the http://popgen.sc.fsu.edu website, check out “Bayes factors” and
“Parallel migrate”, there is also a Google support group to look up answers,
ask questions and receive answers [mostly by me])


