

Coalescence theory as a tool for population genetics

```
co•a•lesce | kōə'les |
verb [intrans.]
come together and form one mass or whole : the puddles had
coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
```

• [trans.] combine (elements) in a mass or whole : to help coalesce the community, they established an office.

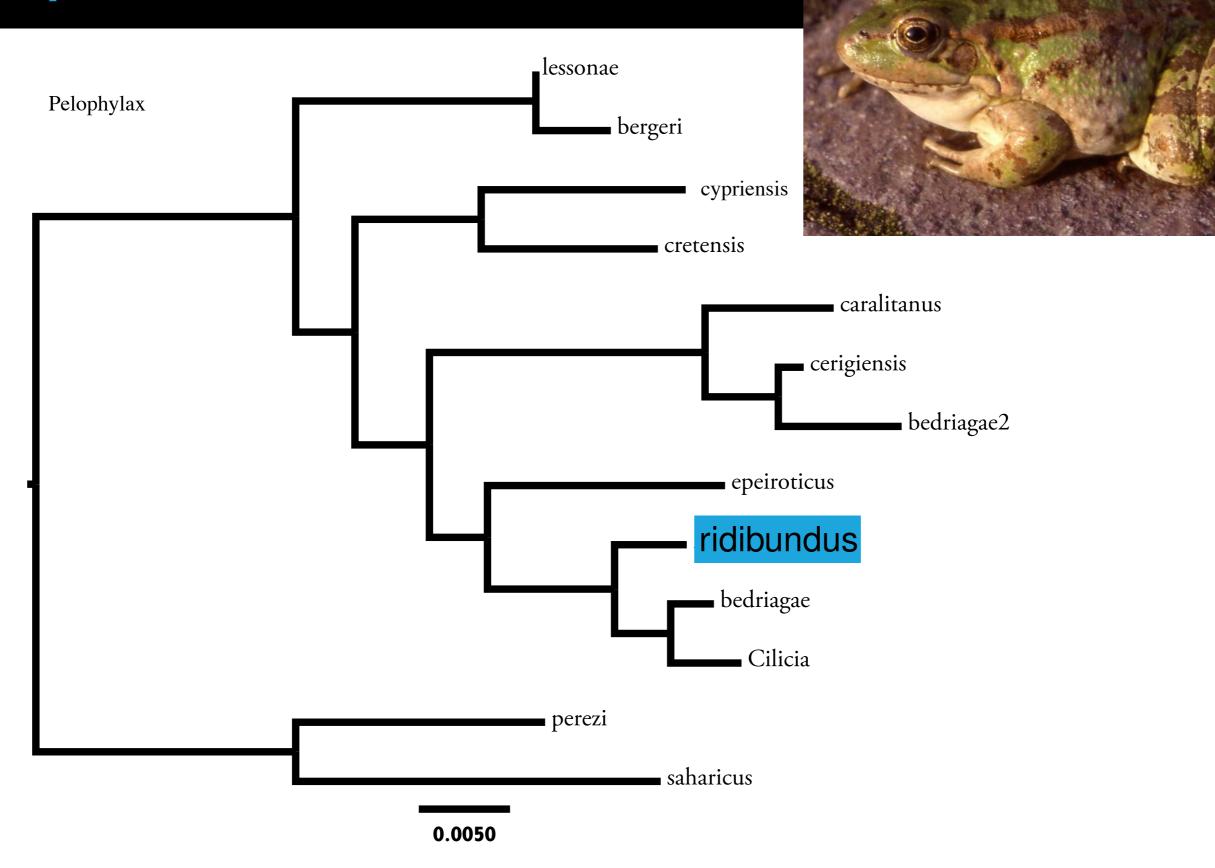
DERIVATIVES

```
co•a•les•cence |-'lesəns| noun
co•a•les•cent |-'lesənt| adjective
```

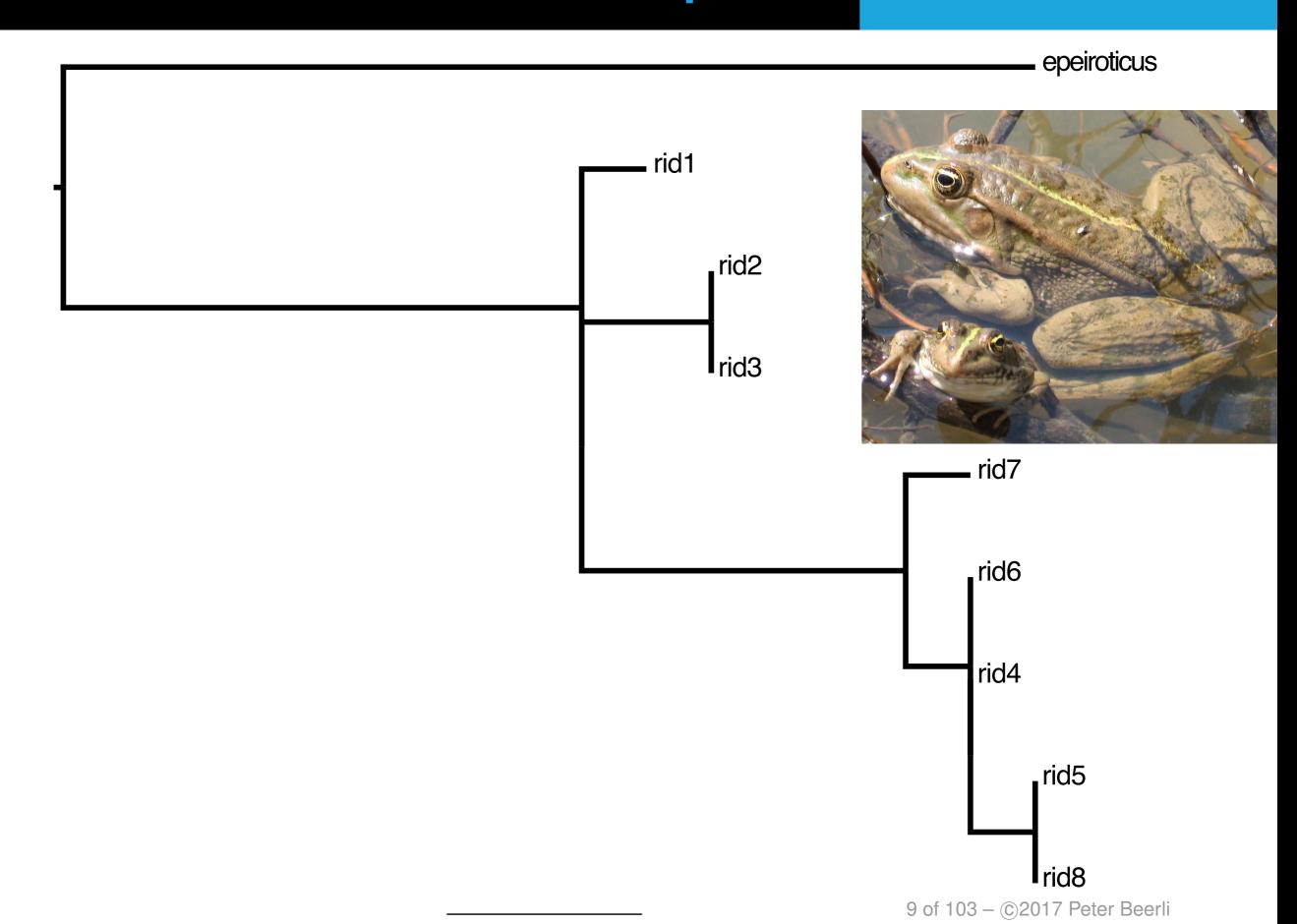
ORIGIN mid 16th cent. (in the sense [bring together, unite]): from Latin *coalescere*, from *co-* (from *cum 'with'*) + *alescere 'grow up'* (from *alere 'nourish'*).

Species trees

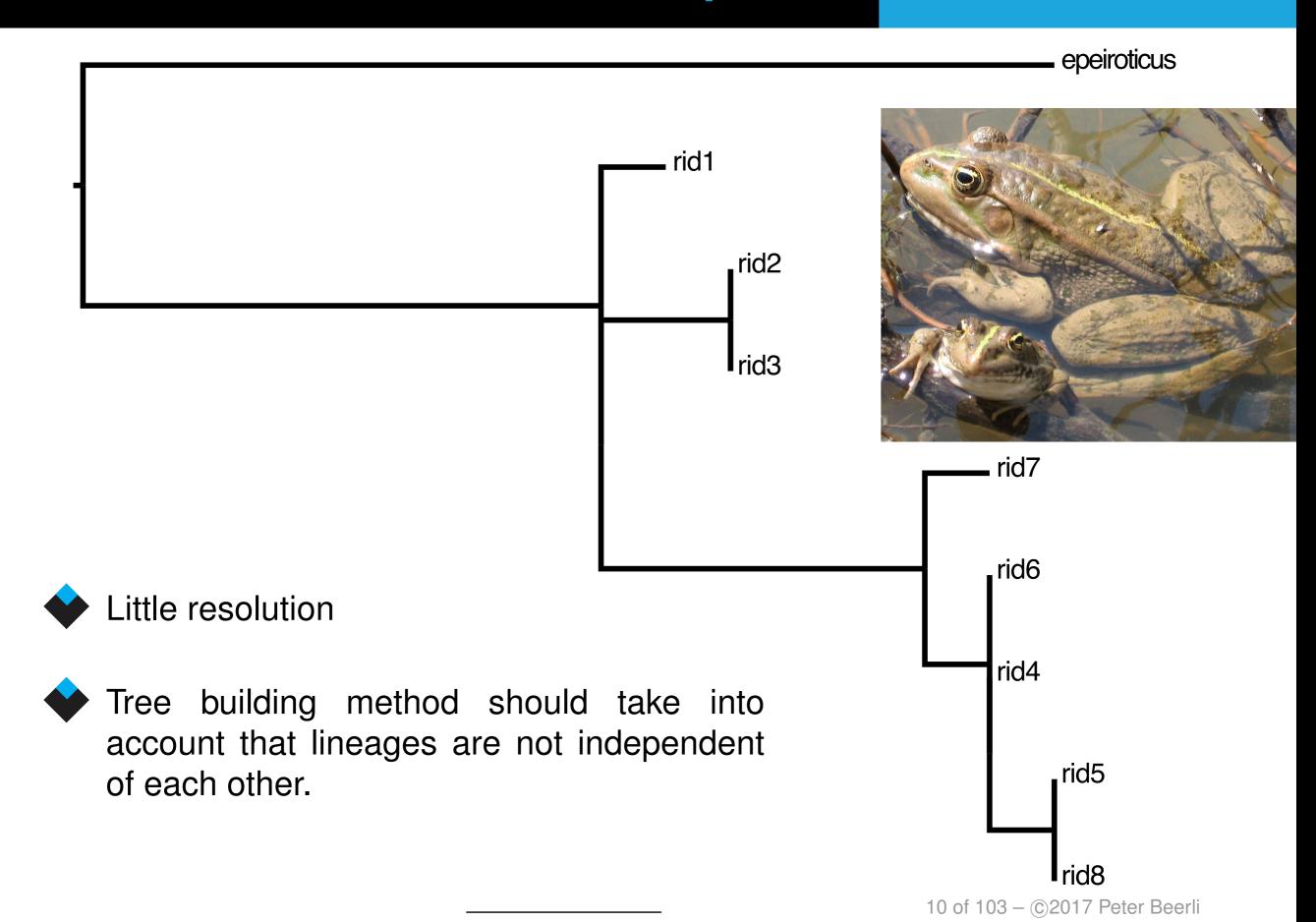
Species trees



Tree of individuals of same species

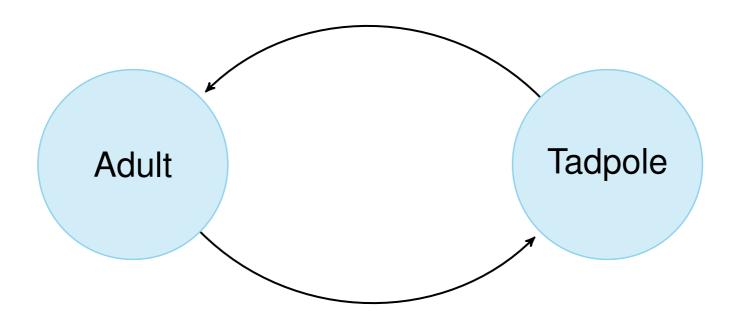


Tree of individuals of same species



Interaction among individuals

Interaction among individuals



Wright-Fisher population model

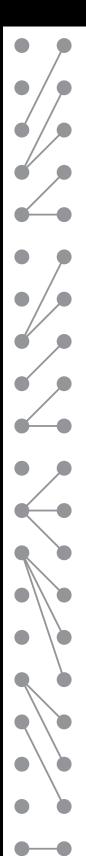
- All individuals live one generation and get replaced by their offspring
- All have same chance to reproduce, all are equally fit
- The number of individuals in the population is constant

Past

- •
- 0 0
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

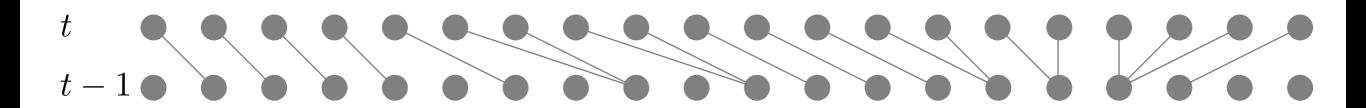
Past



Past

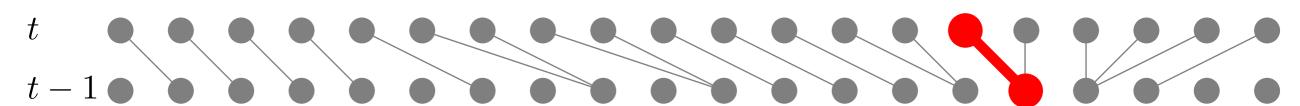


Sewall Wright evaluated the probability that two randomly chosen individuals in generation t have a common ancestor in generation t-1. If we assume that there are 2N chromosomes then the probability of sharing a common ancestor in the last generation is



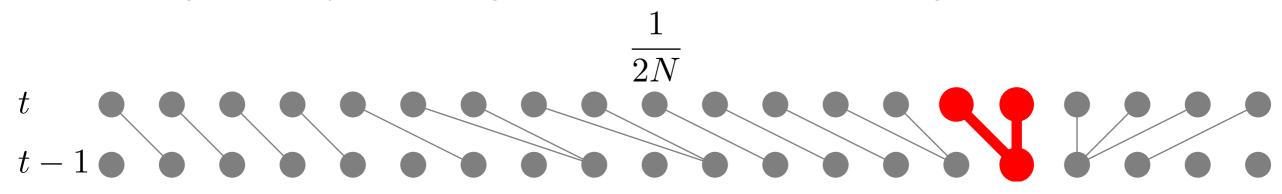
Sewall Wright evaluated the probability that two randomly chosen individuals in generation t have a common ancestor in generation t-1. If we assume that there are 2N chromosomes then the probability of sharing a common ancestor in the last generation is

1.0



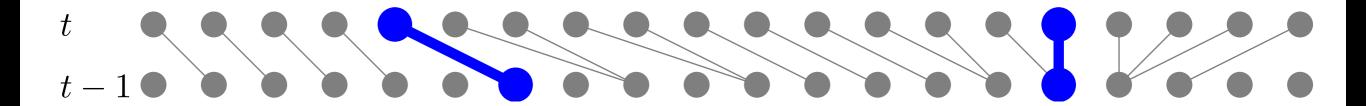
Sewall Wright evaluated the probability that two randomly chosen individuals in generation t have a common ancestor in generation t-1. If we assume that there are 2N chromosomes then the probability of sharing a common ancestor in the last generation is

Sewall Wright evaluated the probability that two randomly chosen individuals in generation t have a common ancestor in generation t-1. If we assume that there are 2N chromosomes then the probability of sharing a common ancestor in last generation is



The probability that two randomly picked chromosome do not have a common ancestor is

$$1 - \frac{1}{2N}$$



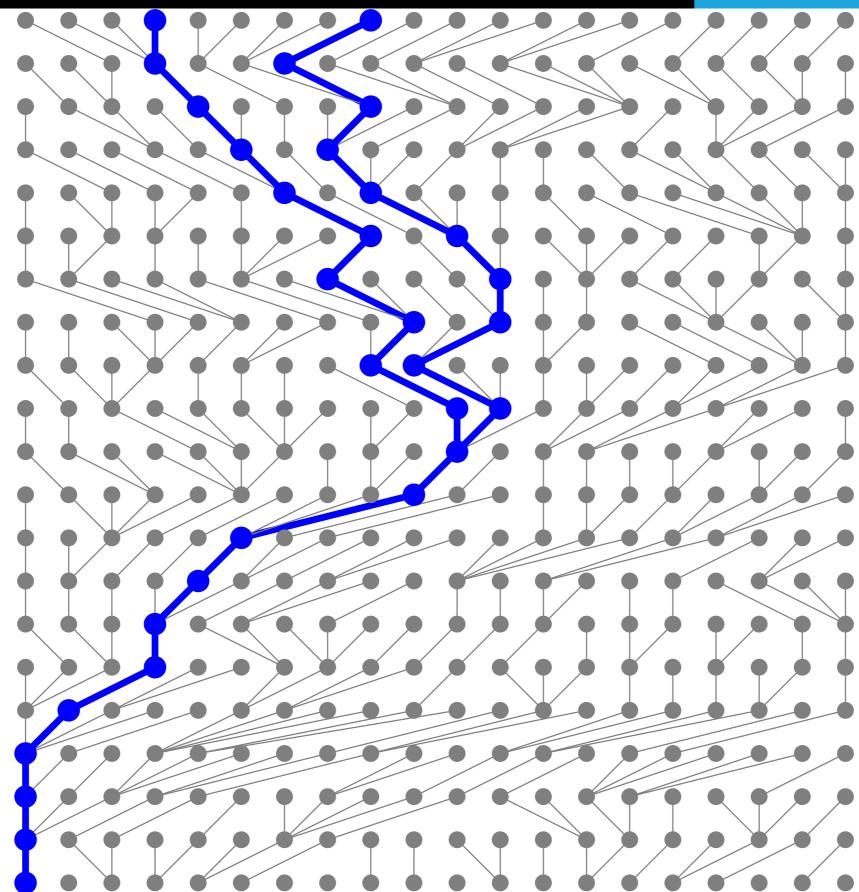
Population model

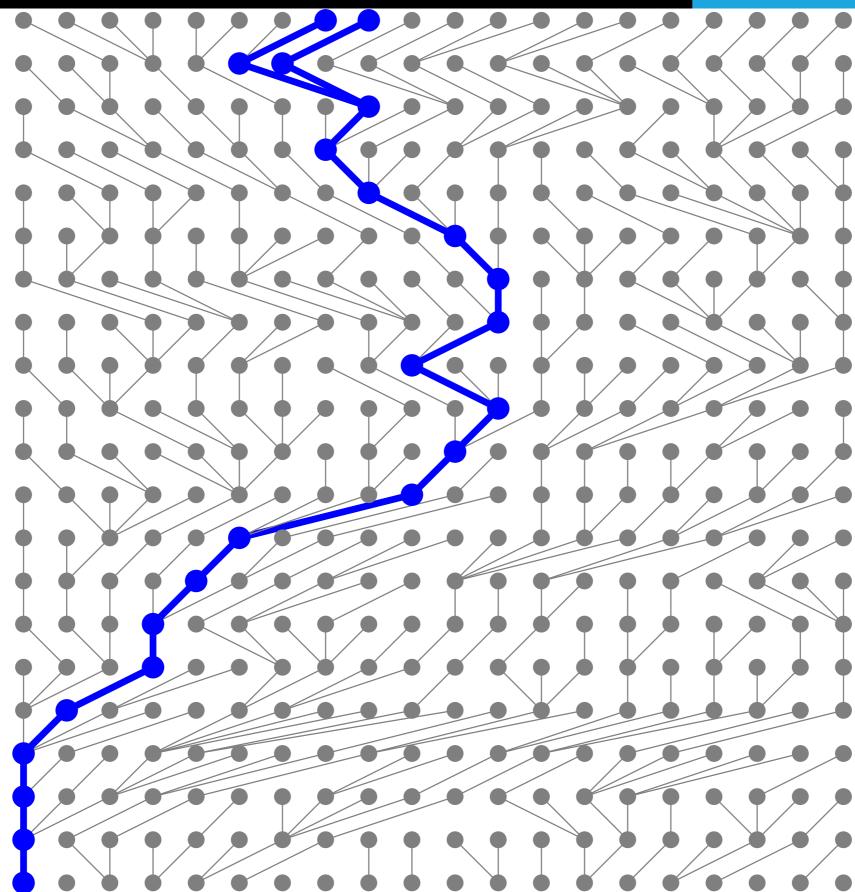
If we know the genealogy of the two individuals then we can calculate the probability as

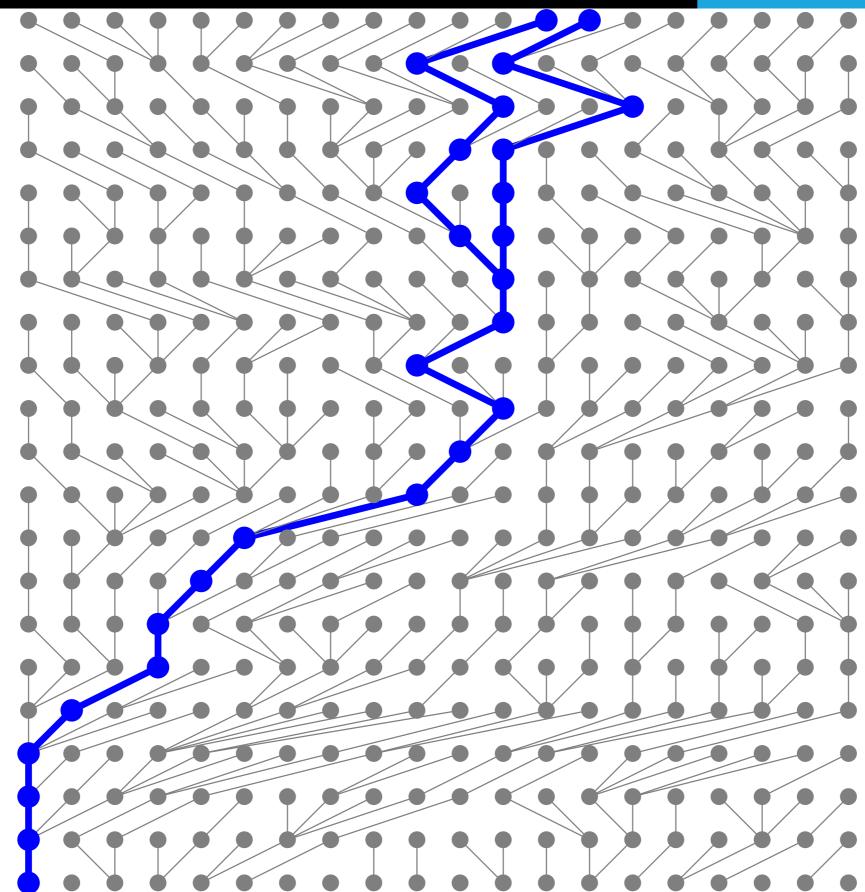
$$P(\tau|N) = \left(1 - \frac{1}{2N}\right)^{\tau} \left(\frac{1}{2N}\right)$$

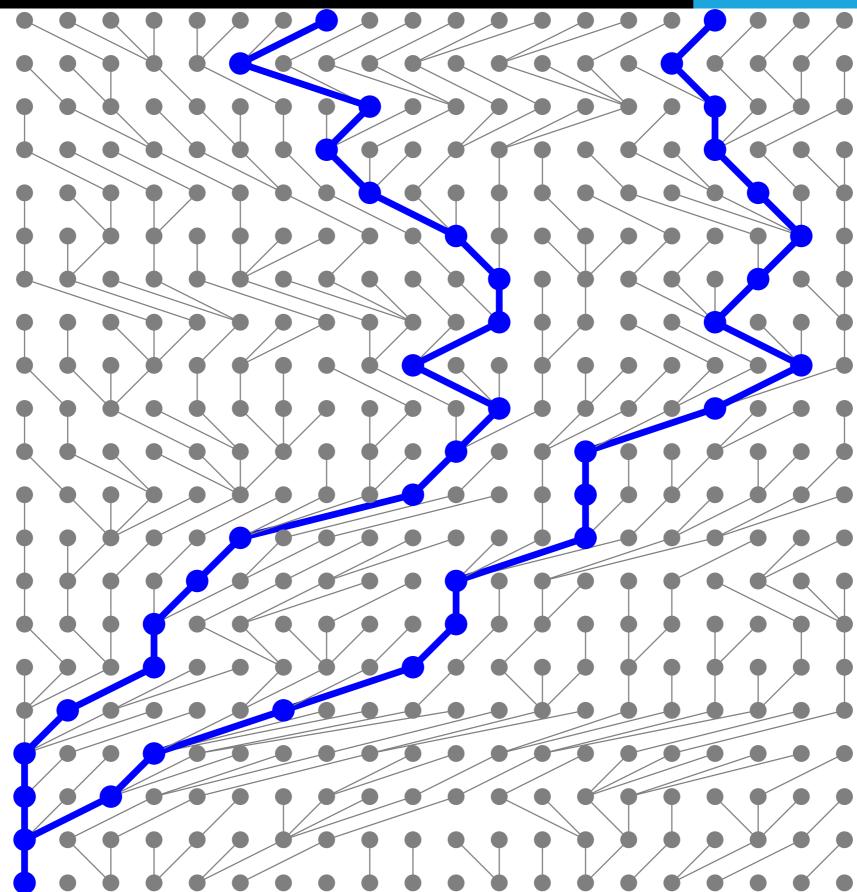
where τ is the number of generations with no coalescence. This formula is the Geometric Distribution and we can calculate the expectation of the waiting time until two random individuals coalesce:

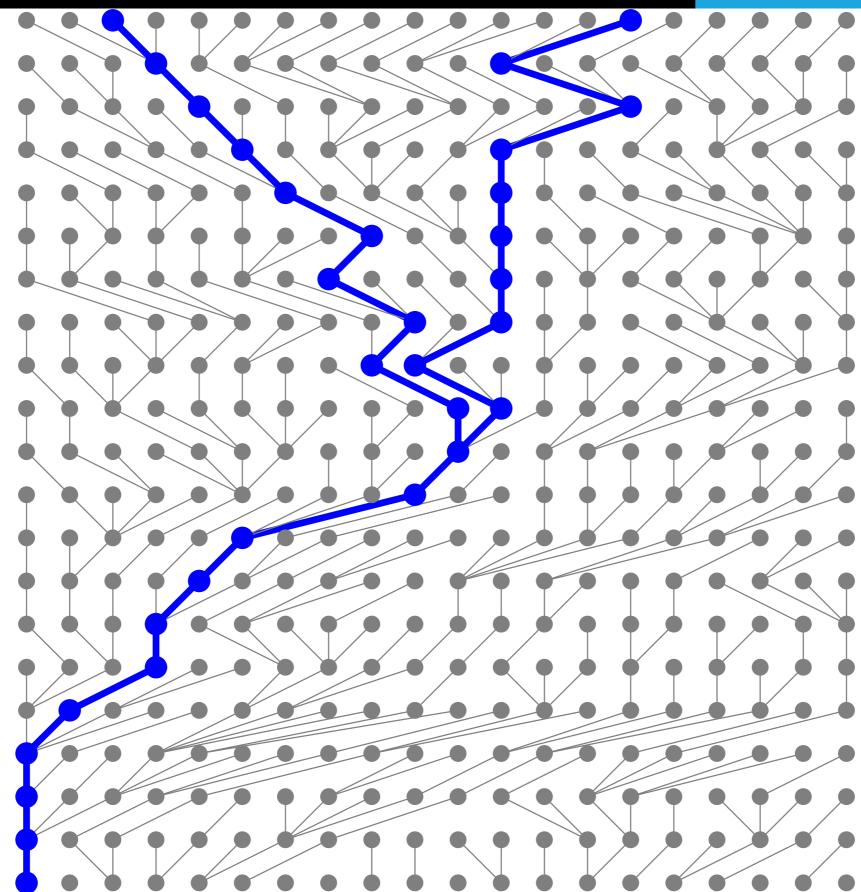
$$\mathbb{E}(\tau) = 2N$$

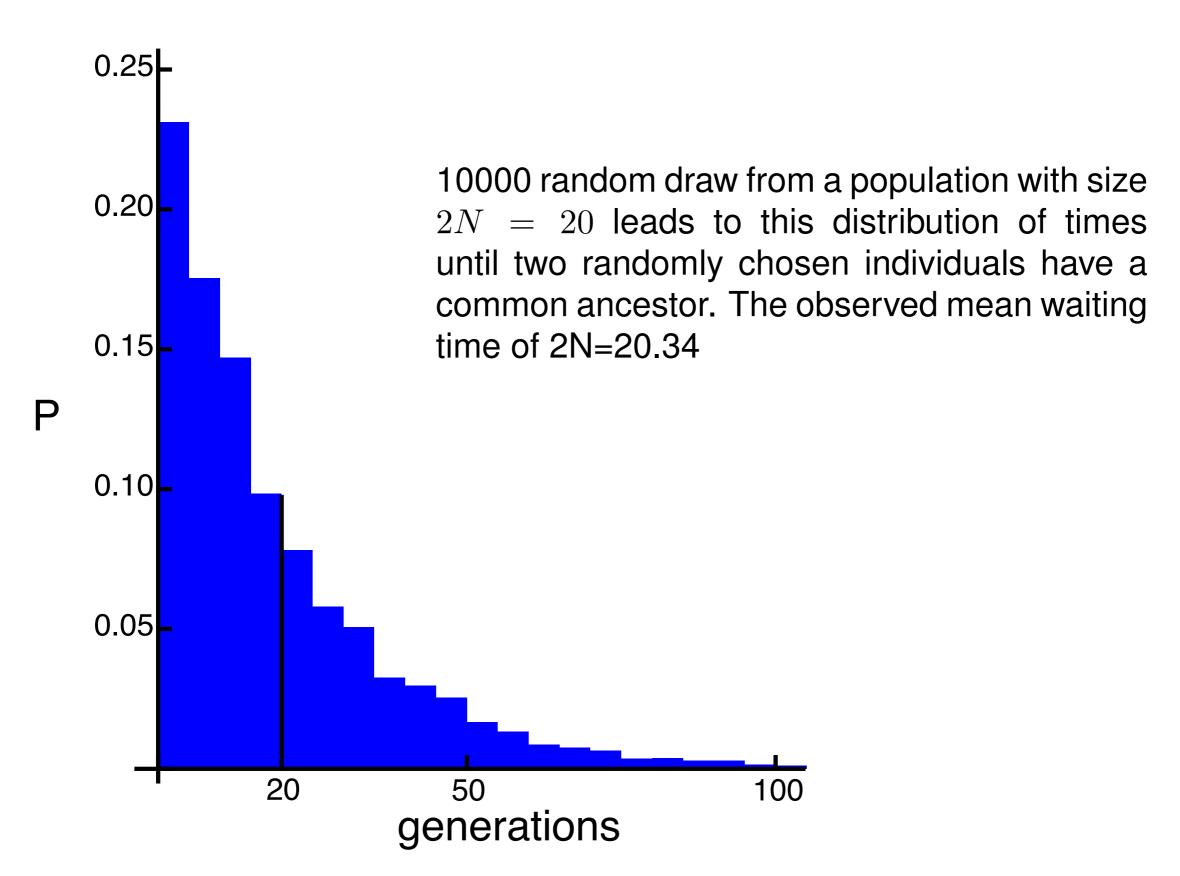








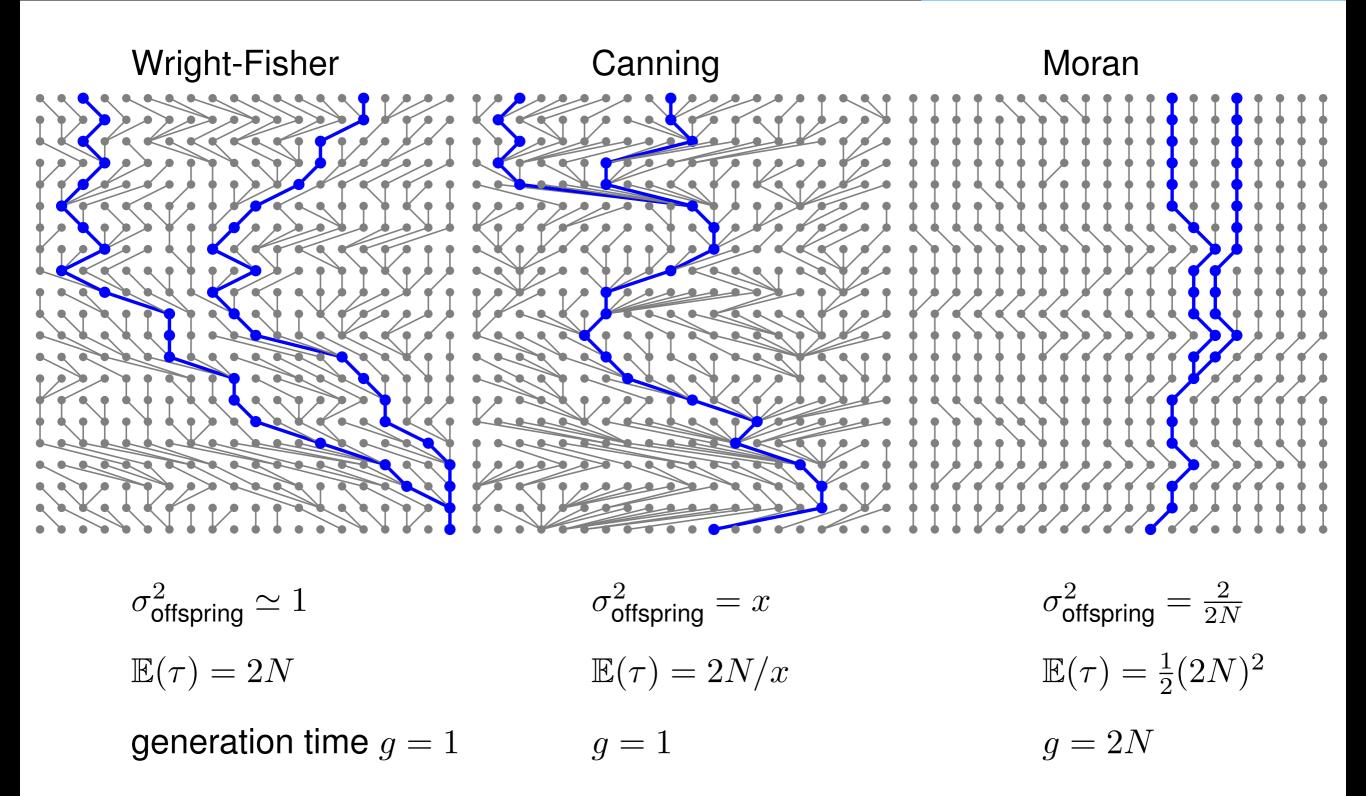




Observations

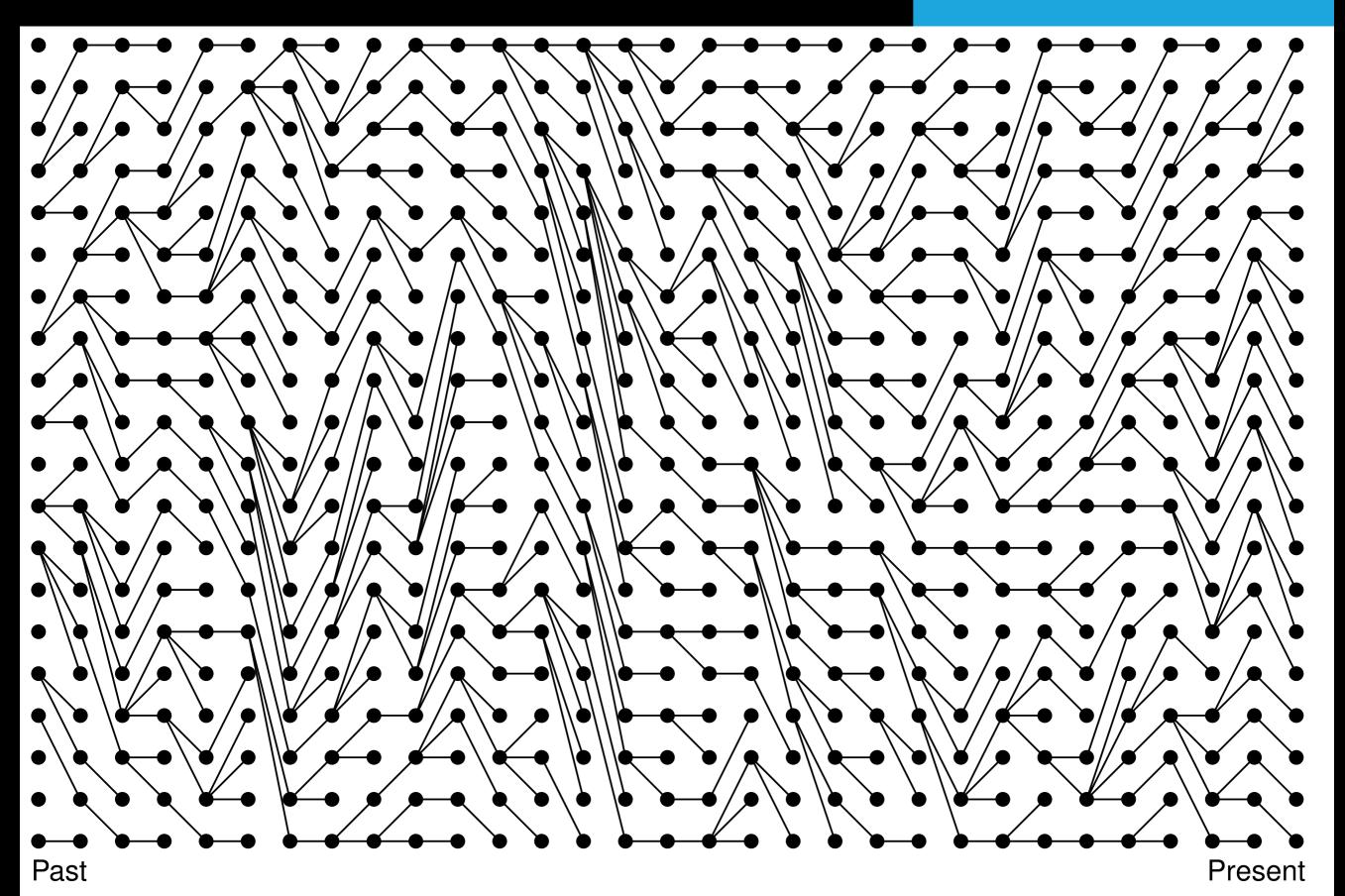
- For the time of coalescence in a sample of ${\sf TWO}$, we will wait on average 2N generations assuming it is a Wright-Fisher population
- The model assumes that the generations are discrete and non-overlapping
- Real populations do not necessarily behave like a Wright-Fisher (the 'ideal' population)
- We assume that calculation using Wright-Fisher populations can be extrapolated to real populations.

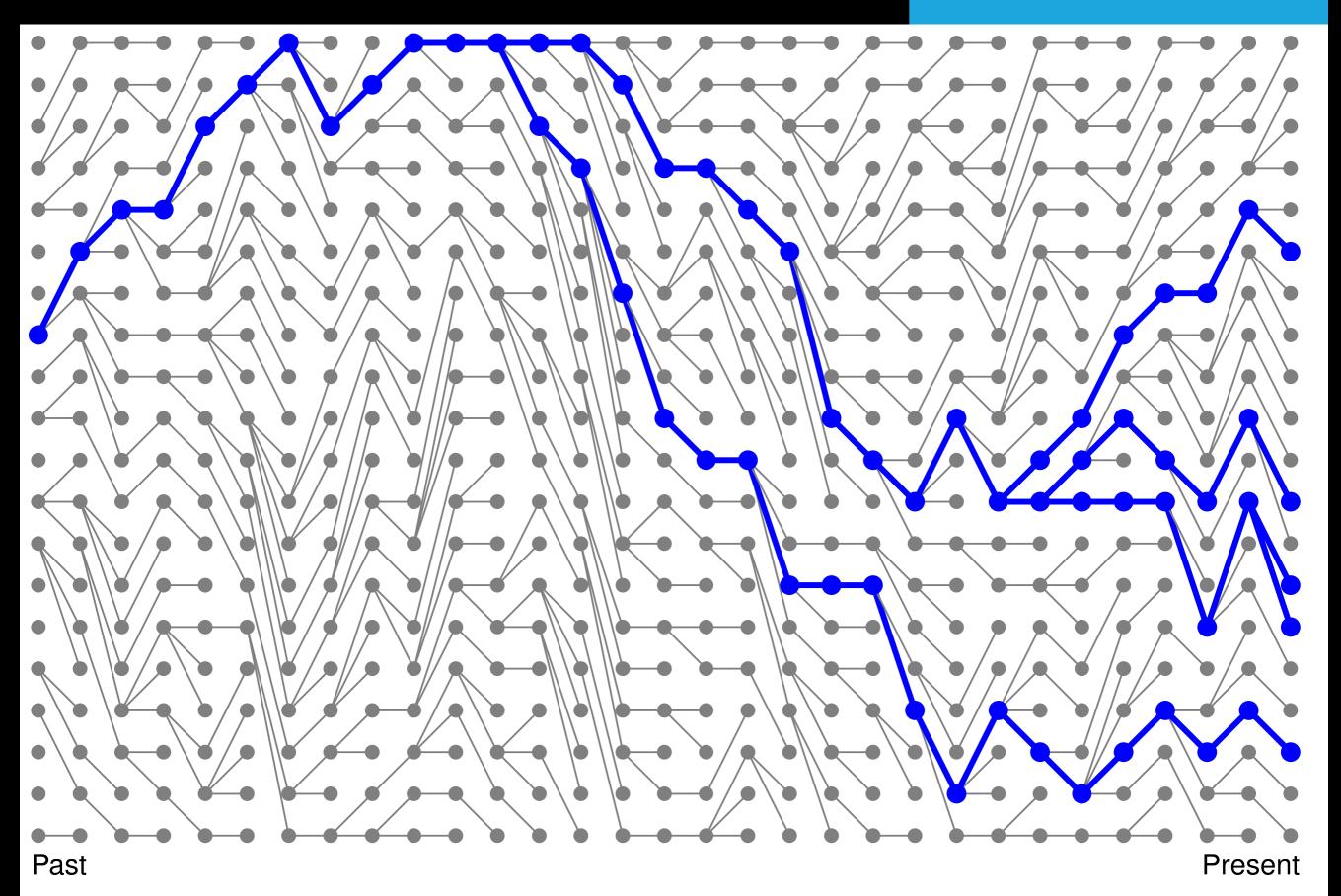
Other population models

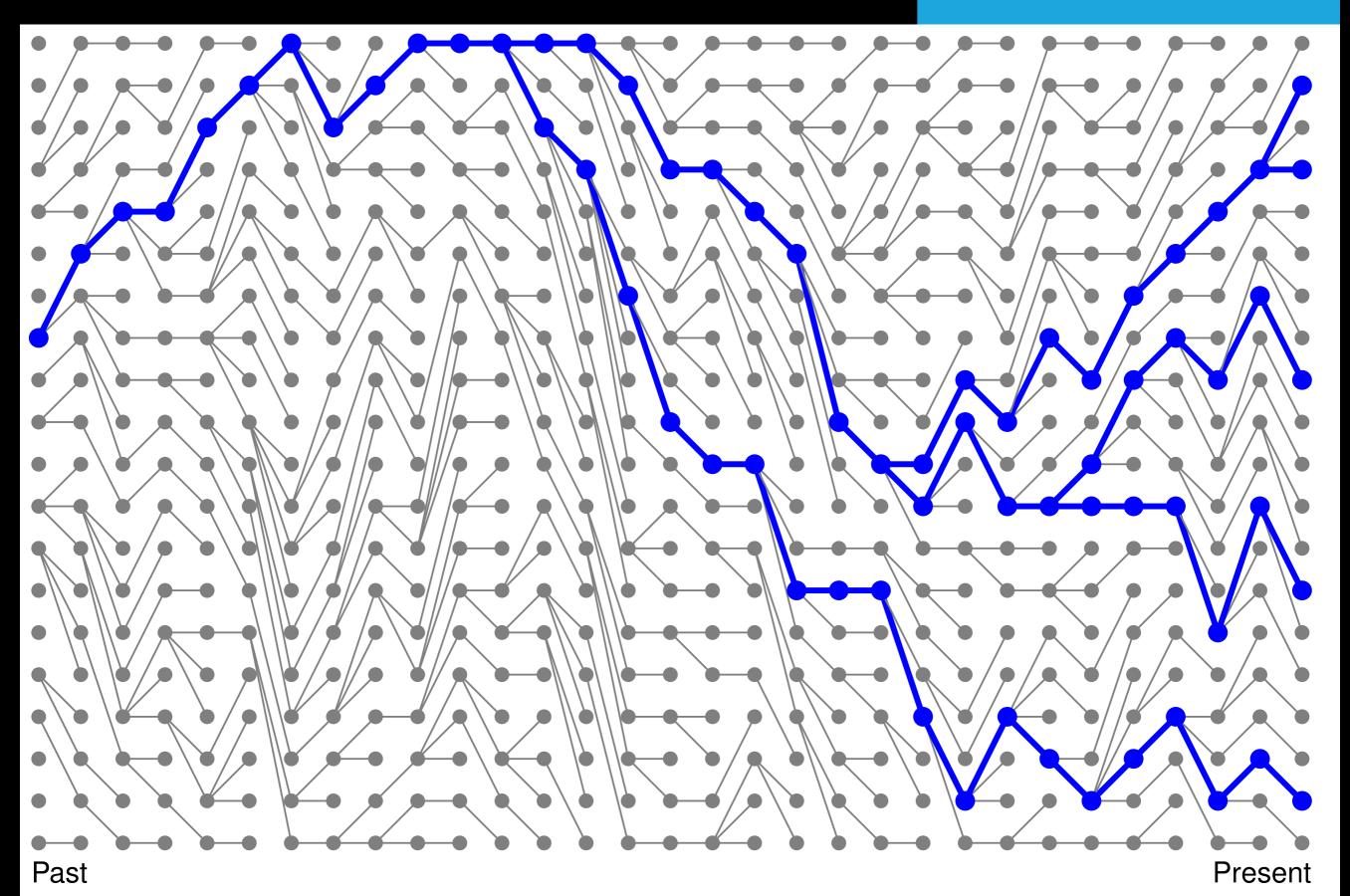


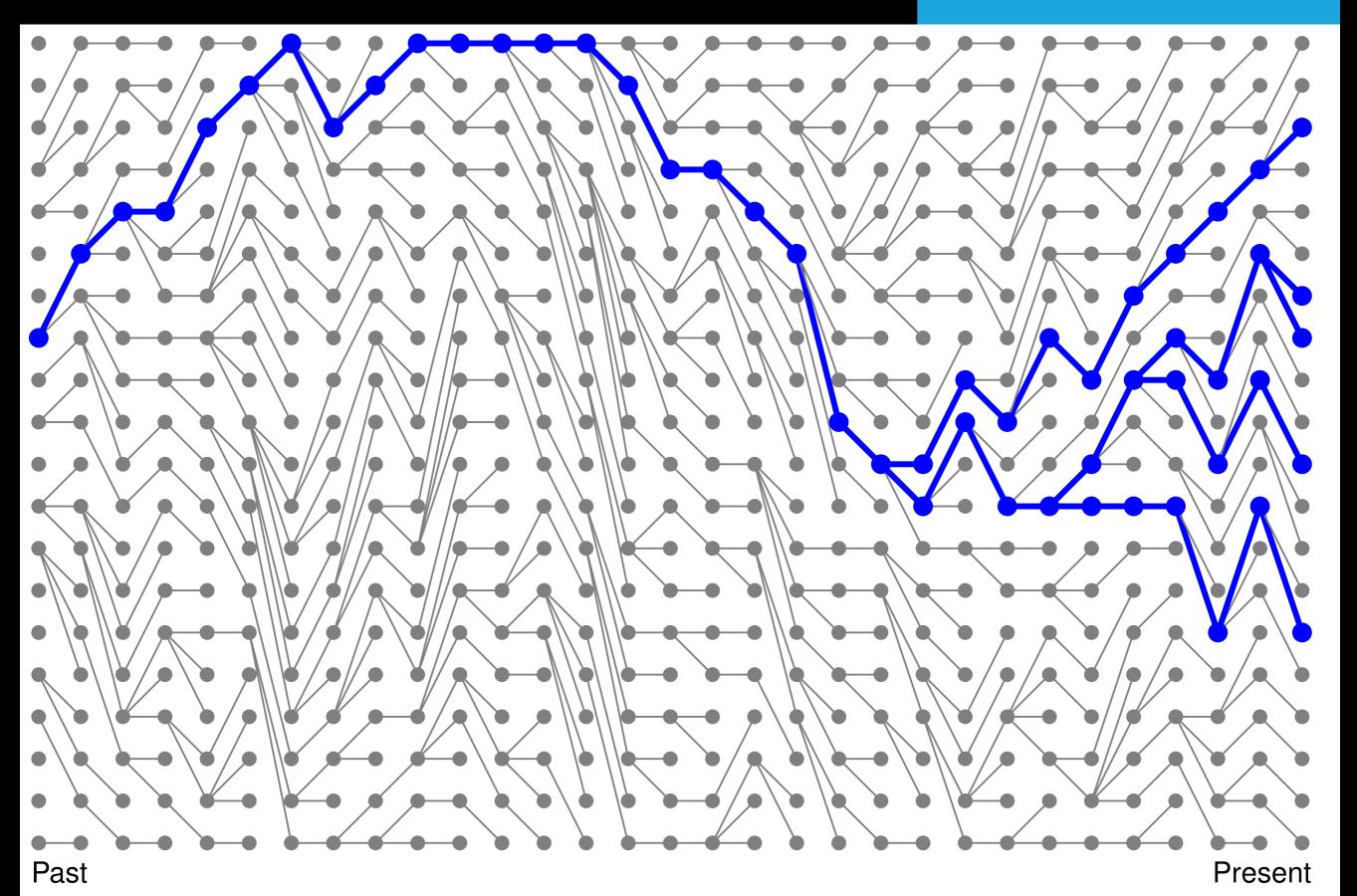
You can generate graphs like this using the python program *popsim* (check out my faculty page for the link)

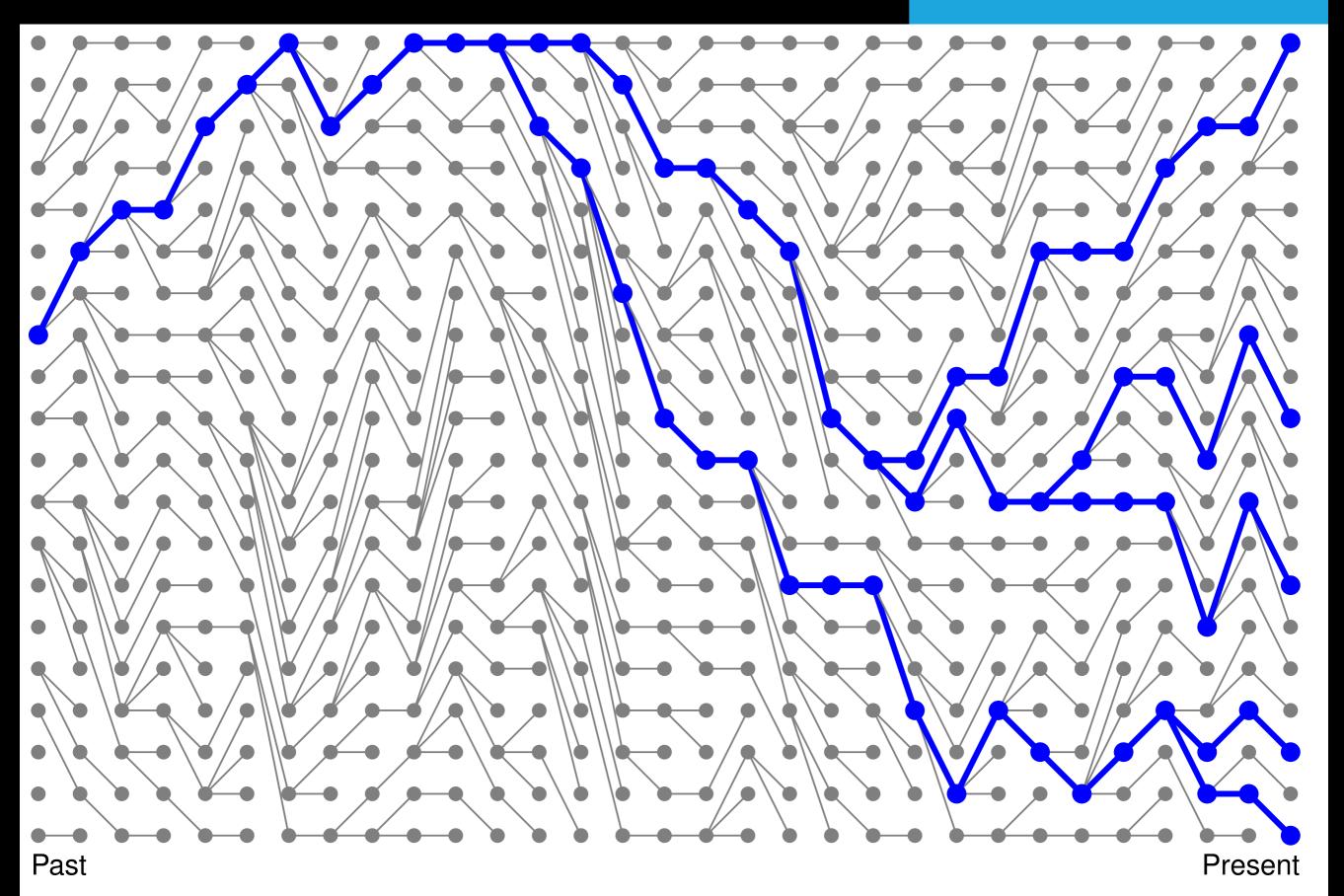
29 of 103 – ©2017 Peter Beerli











Samples larger than two

Sir J. F. C. Kingman described in 1982 the n-coalecent. He showed the behavior of a sample of size n, and its probability structure looking backwards in time.

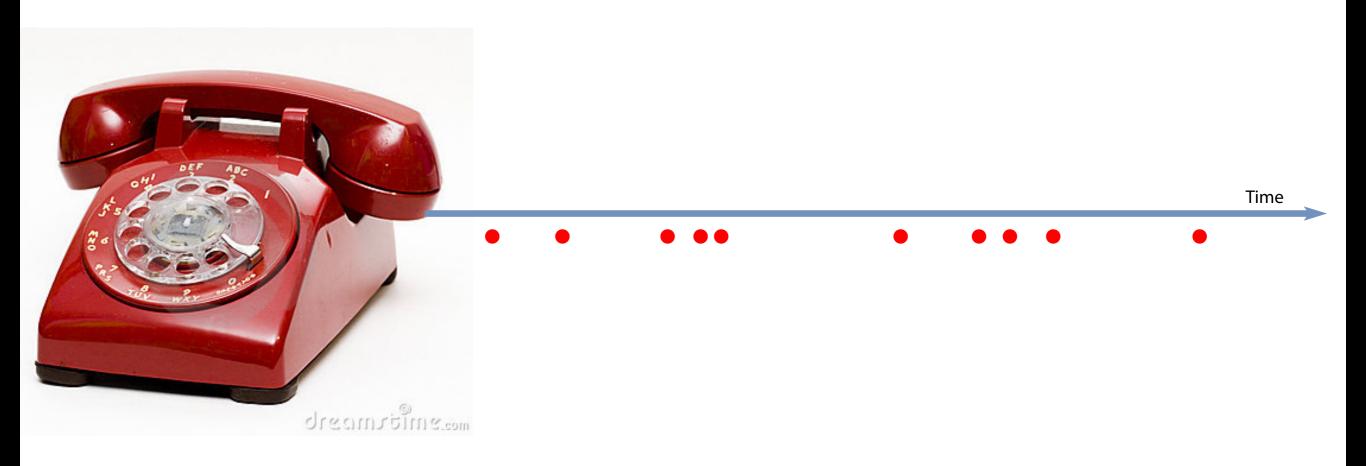
General findings:

coalescence rate
$$= \binom{n}{2} = \frac{n(n-1)}{2}$$

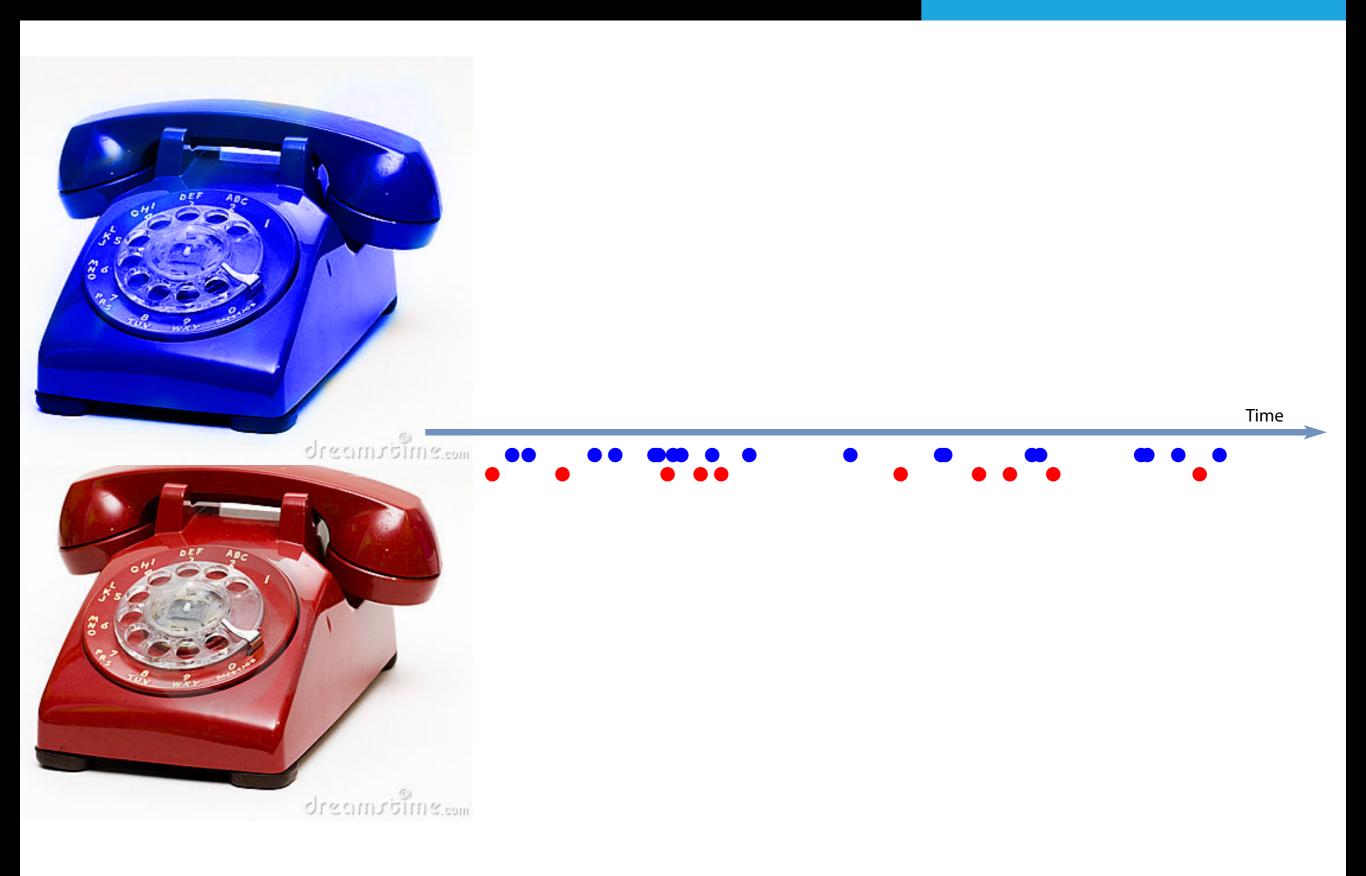
Once a coalescence happened n is reduced to n-1 because two lineages merged into one. He then imposed a continuous approximation of the Canning's exchangeable model to get results.

First analogy

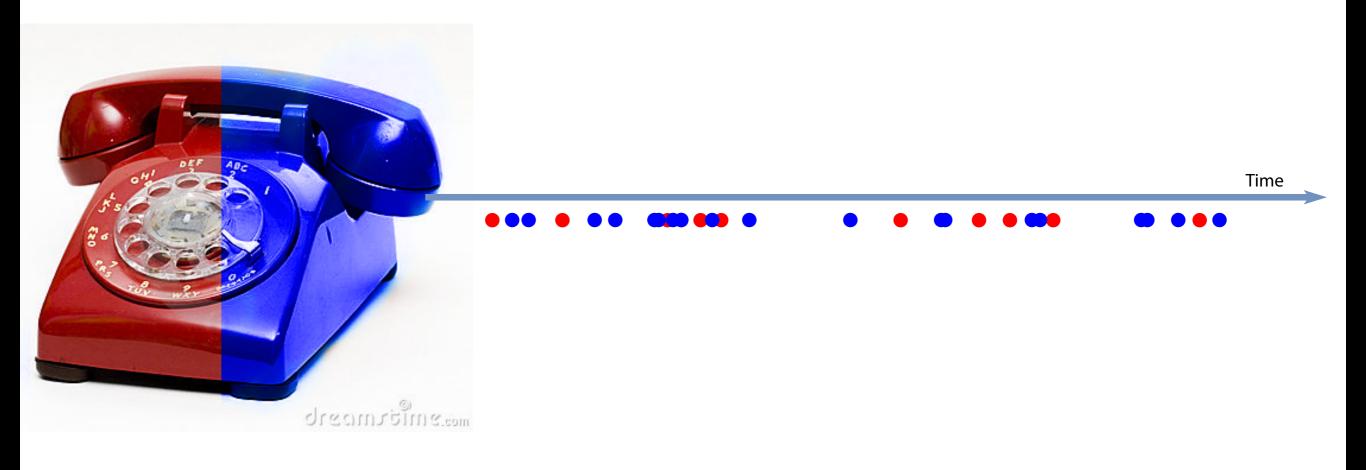
First analogy



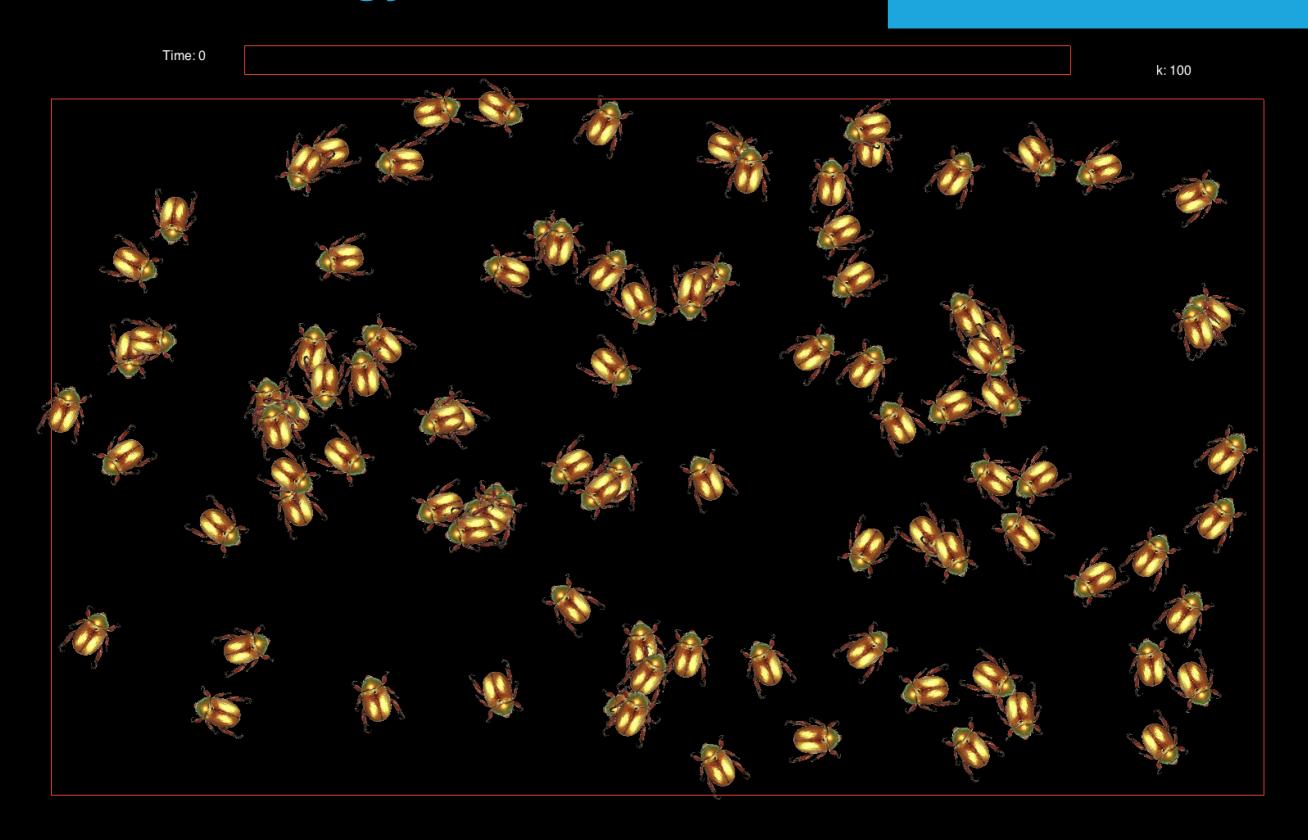
First analogy



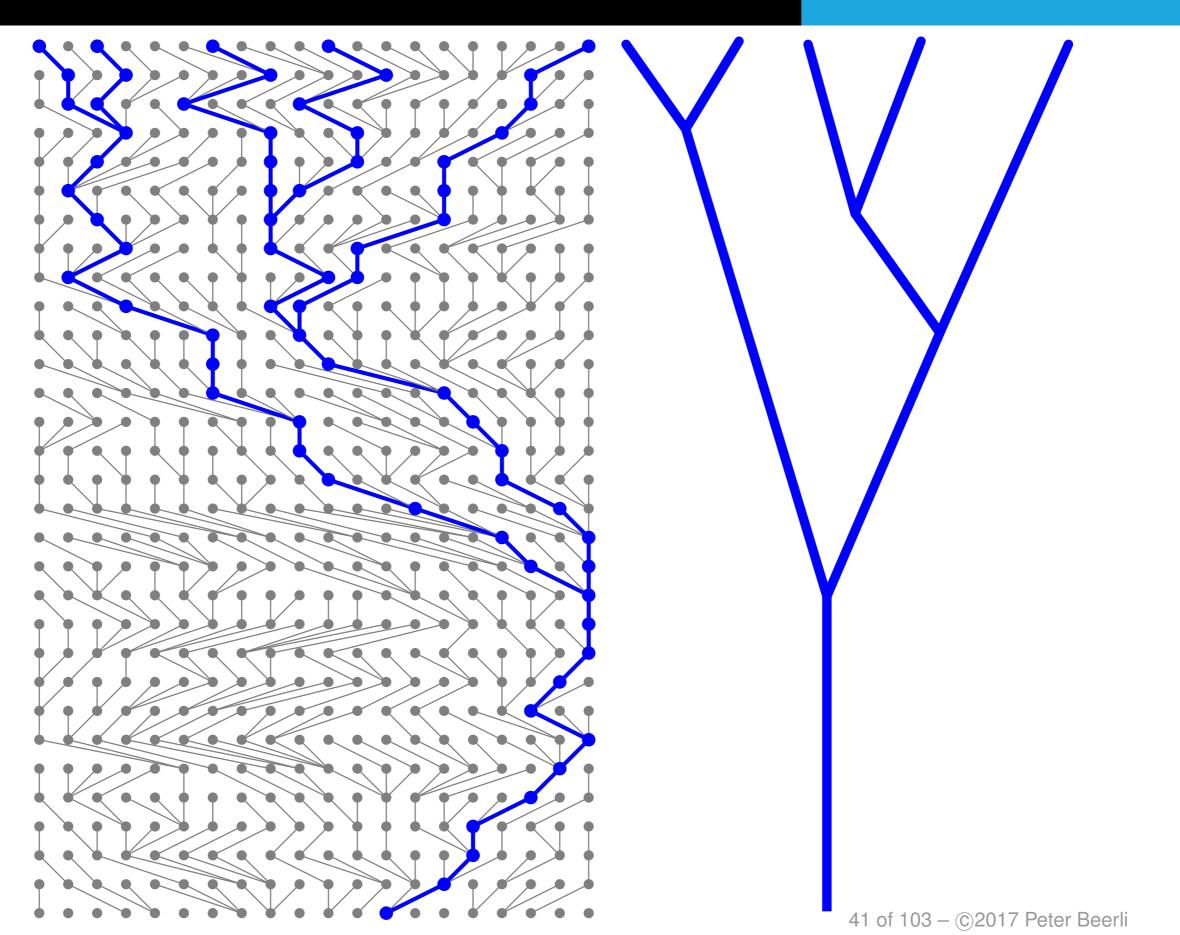
First analogy

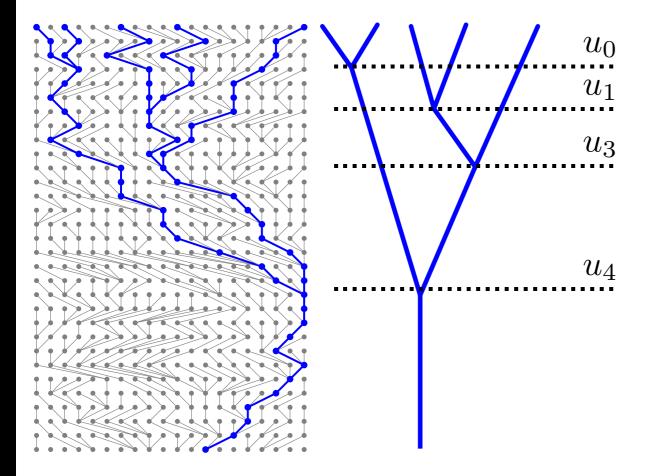


Second analogy

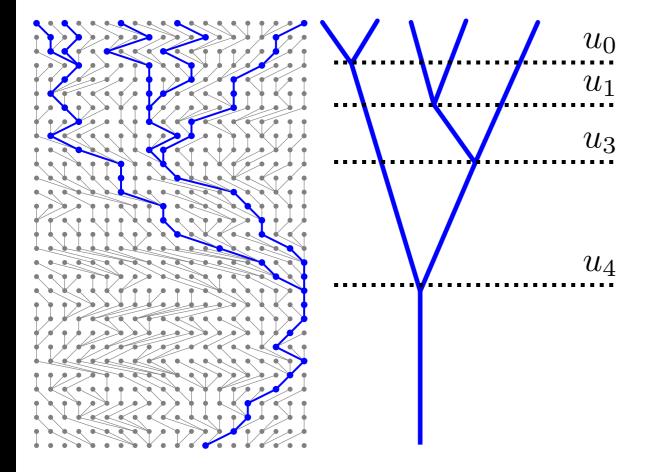


Press H for the help menu



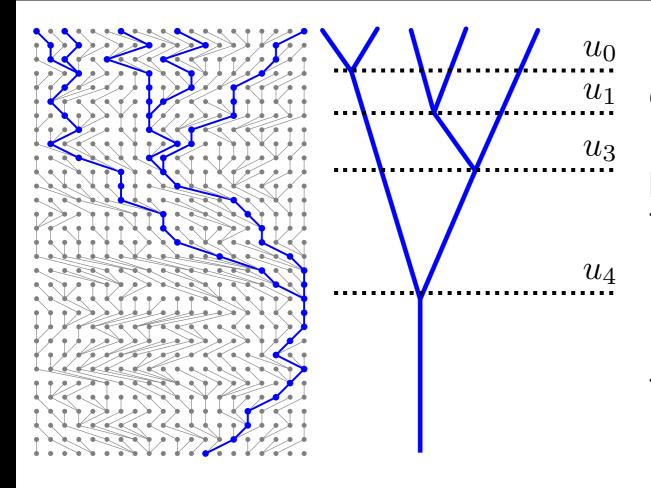


Looking backward in time, the first coalescence between two random individuals is the result of a waiting process that depends on the sample n and the total population size N.



Looking backward in time, the first coalescence between two random individuals is the result of a waiting process that depends on the sample n and the total population size N.

Using Kingman's coalescence rate and imposing a time scale we can approximate the process with a exponential distribution:



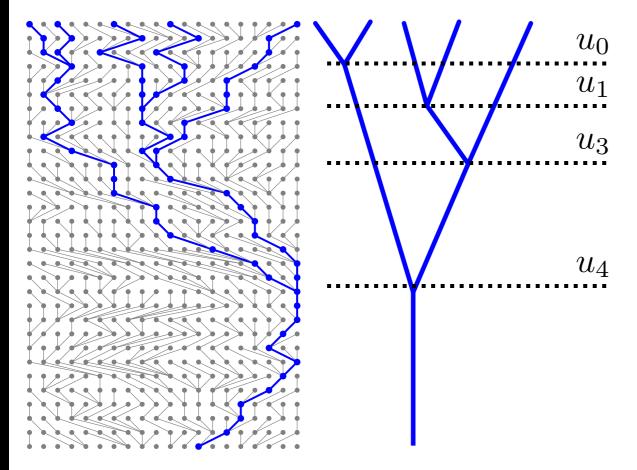
Looking backward in time, the first coalescence between two random individuals is the result of a waiting process that depends on the sample n and the total population size N.

Using Kingman's coalescence rate and imposing a time scale we can approximate the process with an exponential distribution:

$$P(u_j|N) = e^{-u_j\lambda}\lambda$$

with the scaled coalescence rate

$$\lambda = \binom{k}{2} \frac{1}{2N} \times \text{Prob}(\text{others do not coalesce})$$



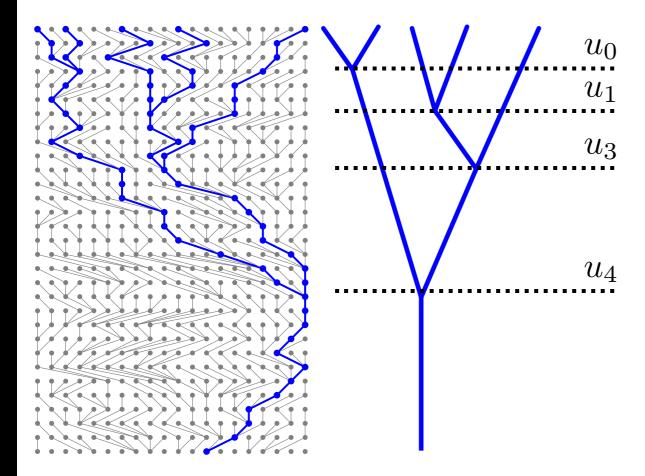
Looking backward in time, the first coalescence between two random individuals is the result of a waiting process that depends on the sample n and the total population size N.

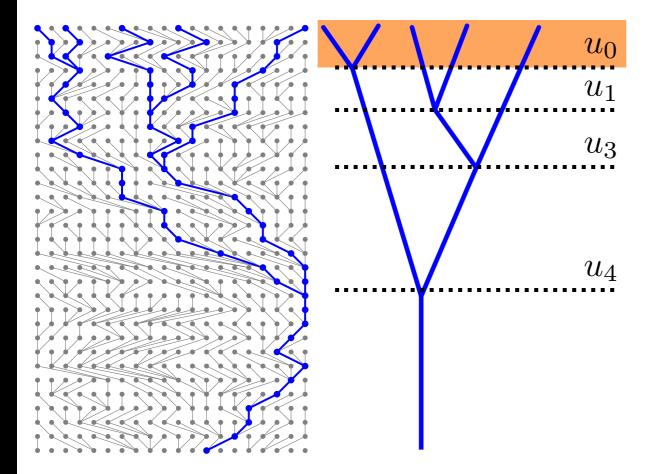
Using Kingman's coalescence rate and imposing a time scale we can approximate the process with a exponential distribution:

$$P(u_j|N) = e^{-u_j\lambda}\lambda$$

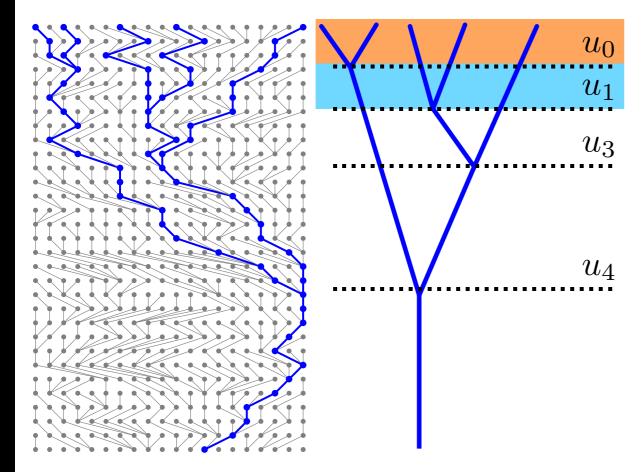
with the scaled coalescence rate

$$\lambda = \binom{k}{2} \frac{1}{2N} = \frac{k(k-1)}{2(2N)} = \frac{k(k-1)}{4N}$$

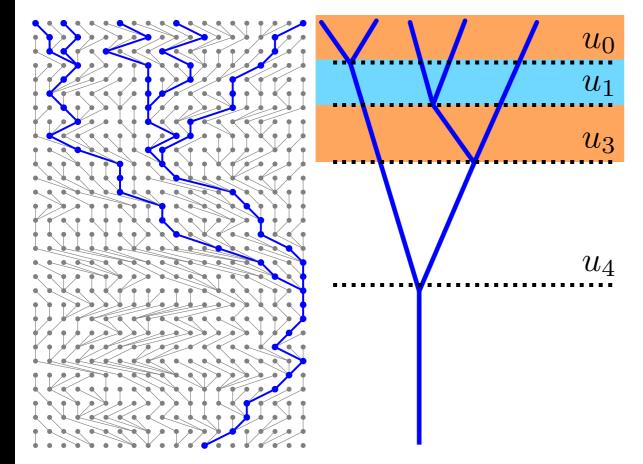




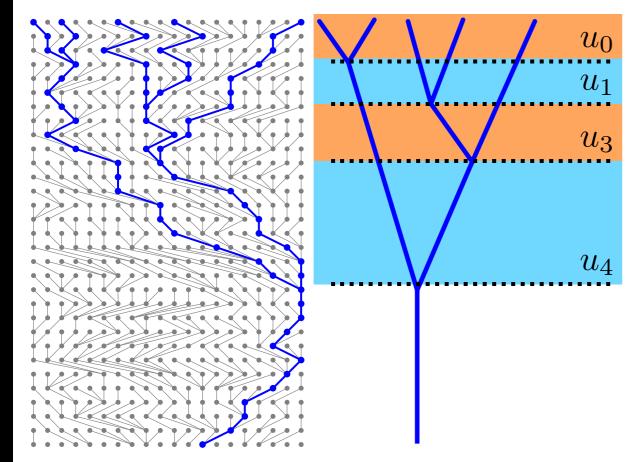
$$P(G|N) = P(u_0|N, i_1, i_2) \times$$



$$P(G|N) = P(u_0|N, i_1, i_2)$$
$$\times P(u_1|N, i_3, i_4)$$



$$P(G|N) = P(u_0|N, i_1, i_2)$$
 $\times P(u_1|N, i_3, i_4)$
 $\times P(u_3|N, i_{3,4}, i_5)$

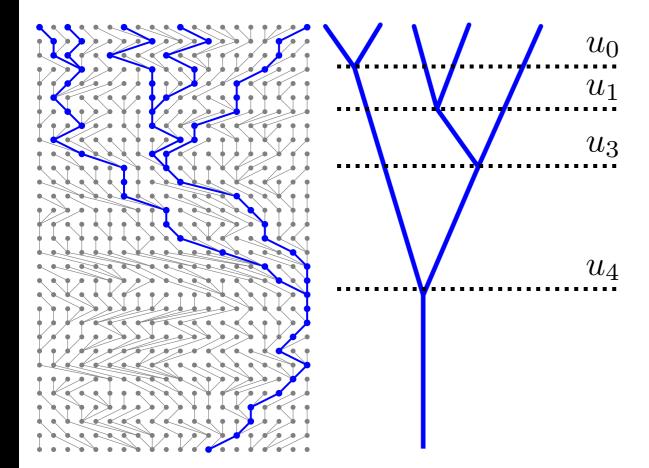


$$P(G|N) = P(u_0|N, i_1, i_2)$$

$$\times P(u_1|N, i_3, i_4)$$

$$\times P(u_3|N, i_{3,4}, i_5)$$

$$\times P(u_4|N, i_{1,2}, i_{3,4,5})$$



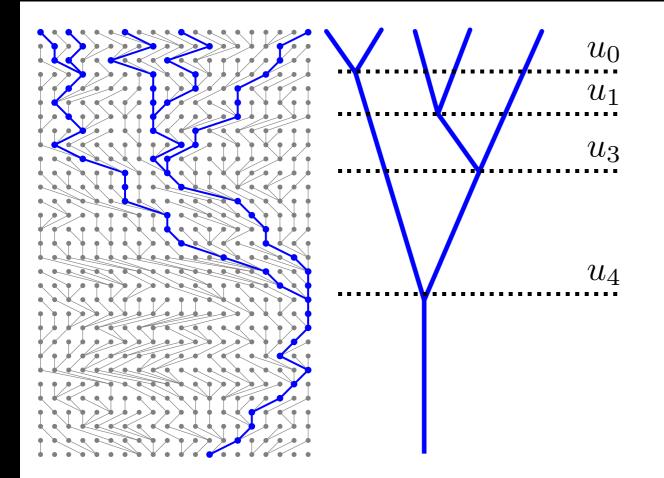
$$P(G|N) = P(u_0|N, i_1, i_2)$$

$$\times P(u_1|N, i_3, i_4)$$

$$\times P(u_3|N, i_{3,4}, i_5)$$

$$\times P(u_4|N, i_{1,2}, i_{3,4,5})$$

$$P(G|N) = \prod_{j=0}^{T} e^{-u_j \frac{k_j(k_j-1)}{4N}} \frac{2}{4N}$$



Each interval u_j is independent of the others, the expected length of the interval is the inverse of the coalescent rate. Thus we can sum these expectations to get to expectation of the depth of the genealogy.

$$\mathbb{E}(\tau_{\text{MRCA}}) = \text{Sum of the expectation of each time interval} = \sum_{j=0}^{J} \frac{4N}{k_j(k_j-1)}$$

$$\lim_{k\to\infty} \mathbb{E}(\tau_{\mathrm{MRCA}}) = 2N + \frac{2}{3}N + \frac{1}{3}N + \frac{1}{5}N + \frac{2}{15}N + \ldots = 4N \qquad \qquad \lim_{k\to\infty} \sigma(\tau_{\mathrm{MRCA}}) = 4N$$

What is it good for?

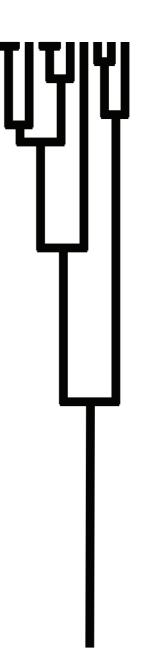
If we know the genealogy G with certainty then we can calculate the population size N. Finding the maximum probability P(G|N,k) is simple, we evaluate all possible values for N and pick the value with the highest probability.

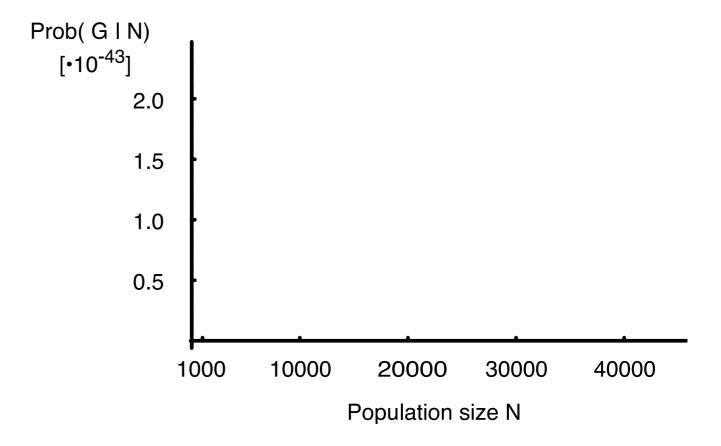
What is it good for?

If we know the genealogy G with certainty then we can calculate the population size N. Finding the maximum probability P(G|N,k) is simple, we evaluate all possible values for N and pick the value with the highest probability.

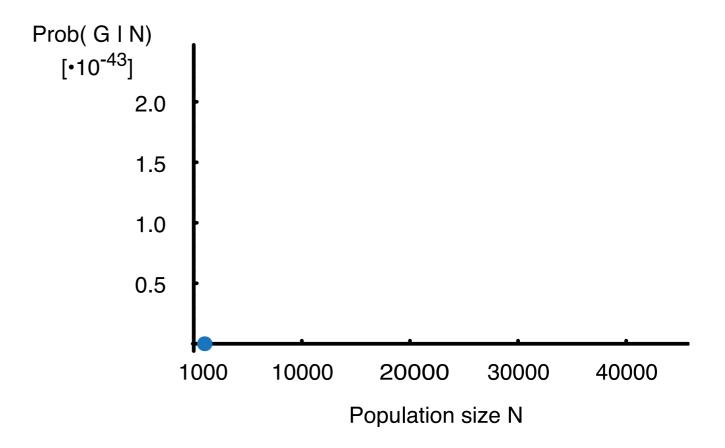
What is it good for?

If we know the genealogy G with certainty then we can calculate the population size N. Finding the maximum probability P(G|N,k) is simple, we evaluate all possible values for N and pick the value with the highest probability.

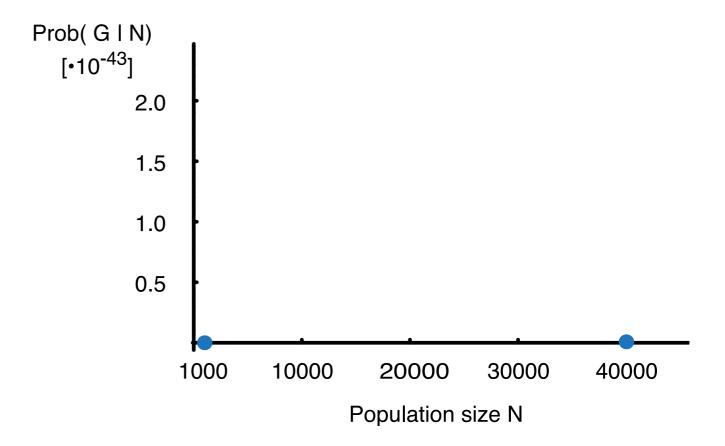




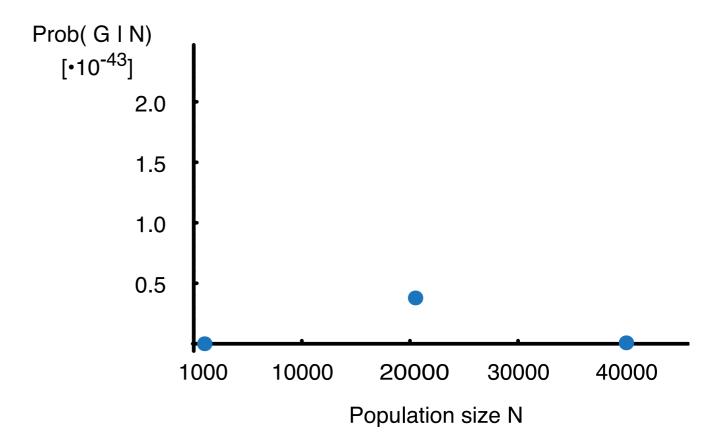
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



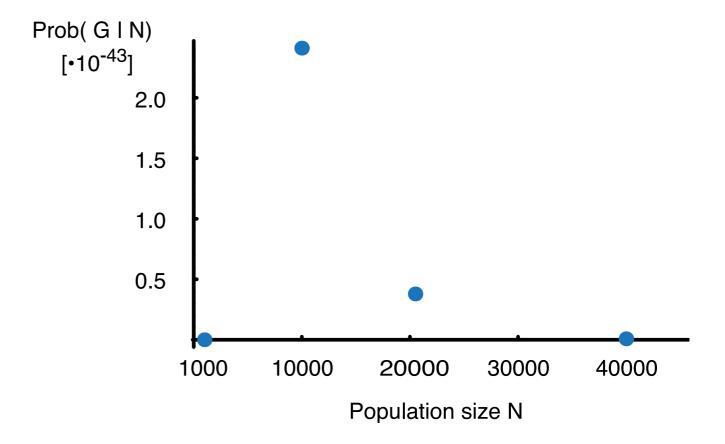
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



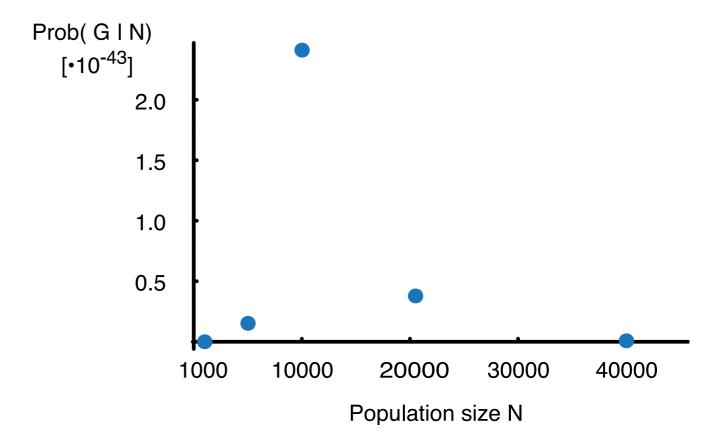
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



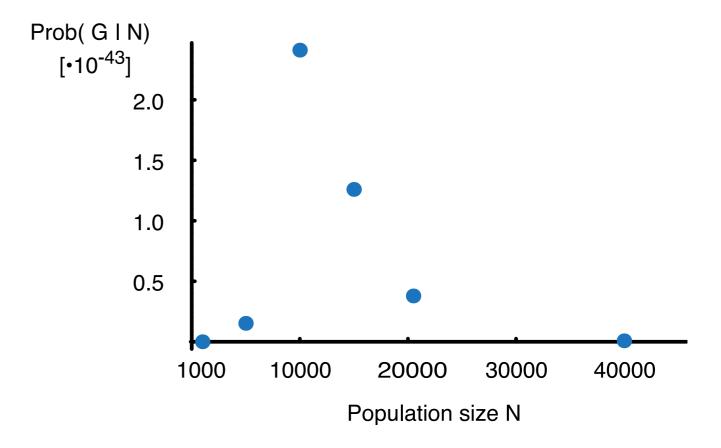
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



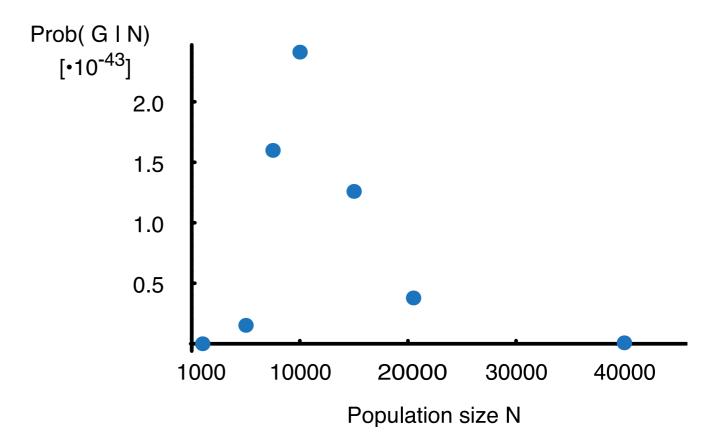
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



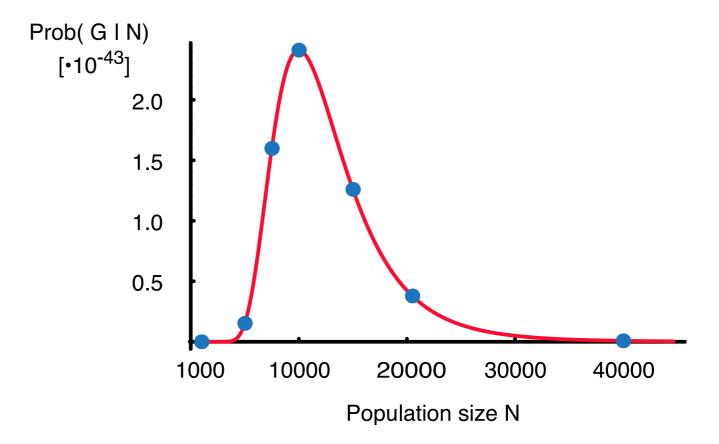
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



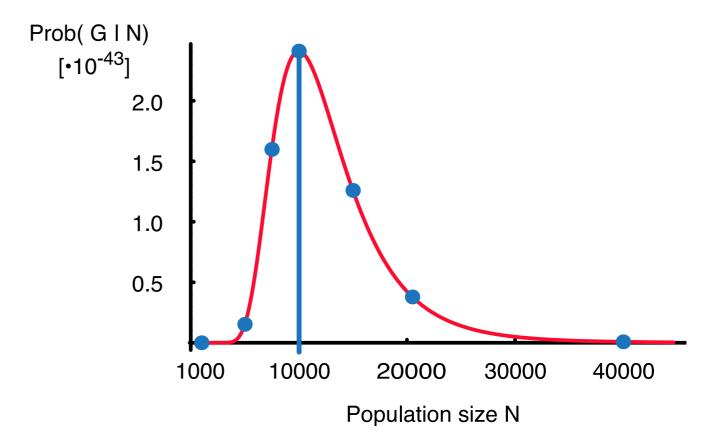
$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$



$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$

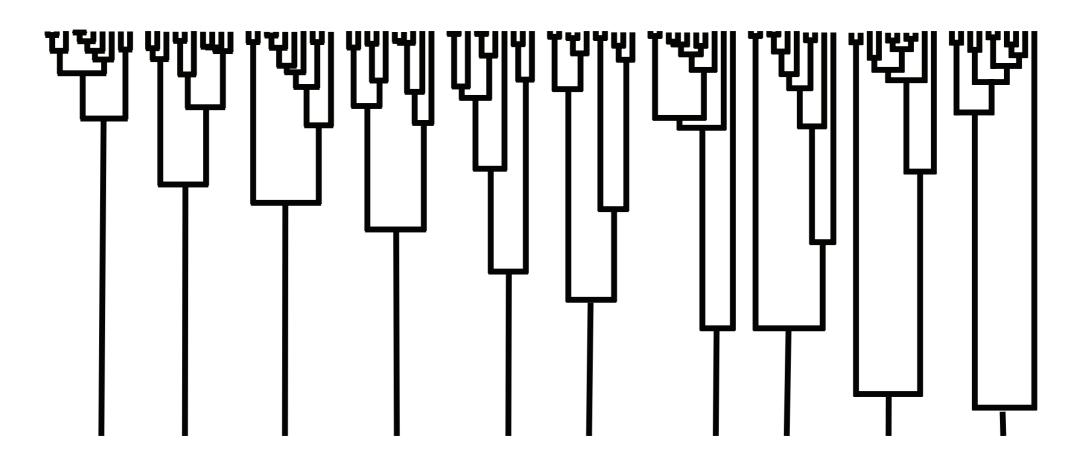


$$p(G|N,n) = \prod_{k=2}^{n} \exp\left(-u_k \frac{k(k-1)}{4N}\right) \frac{2}{4N}$$

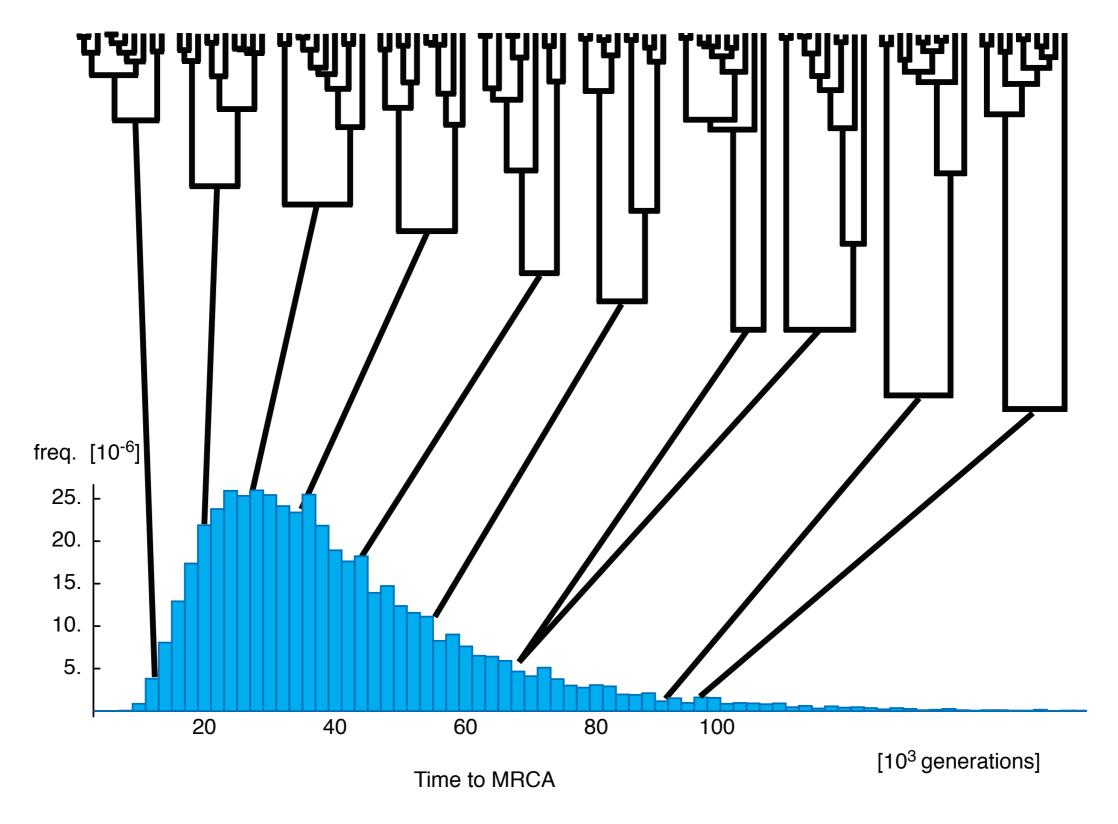
There are at least two problems with the oracle-approach:

- There is no oracle to gives us clear information!
- We do not record genealogies, our data are sequences, microsatellite loci!
- What about the variability of the coalescence process?

Variability of the coalescent process



All genealogies were simulated with the same population size $N_e=10,000$

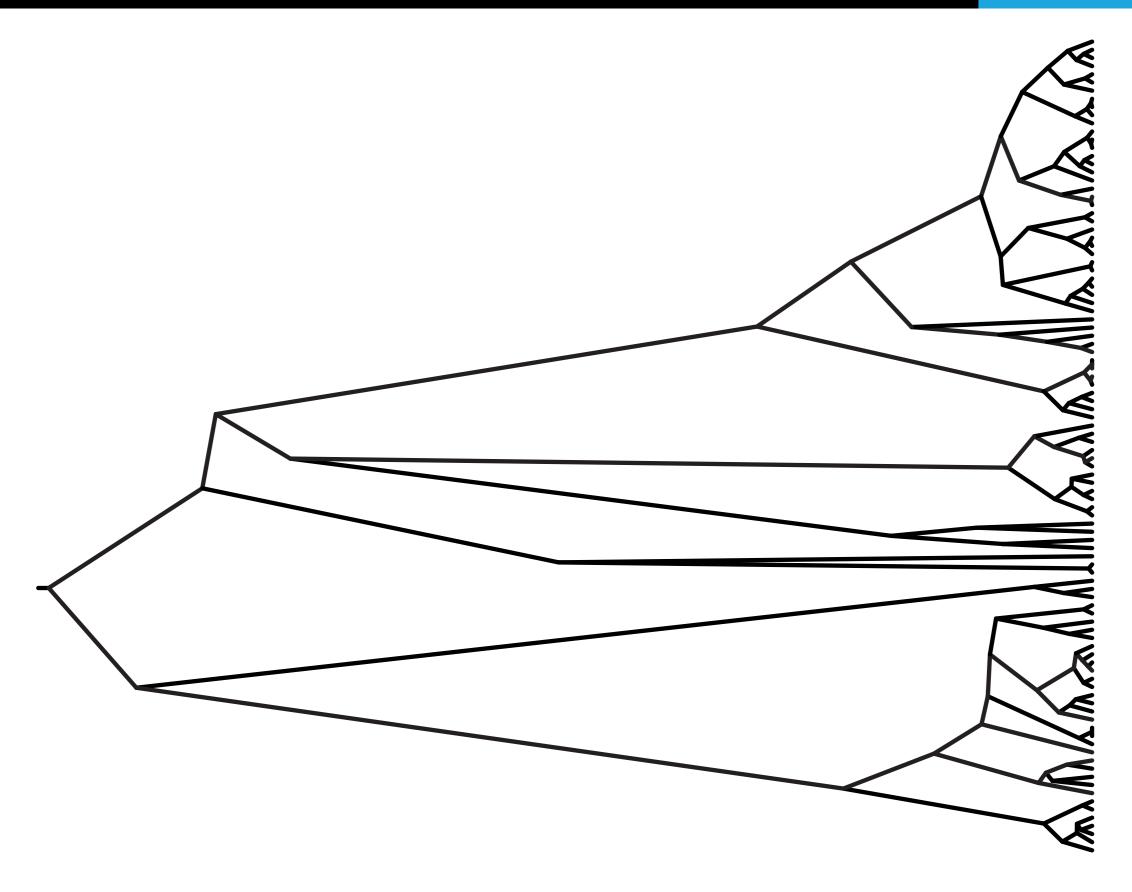


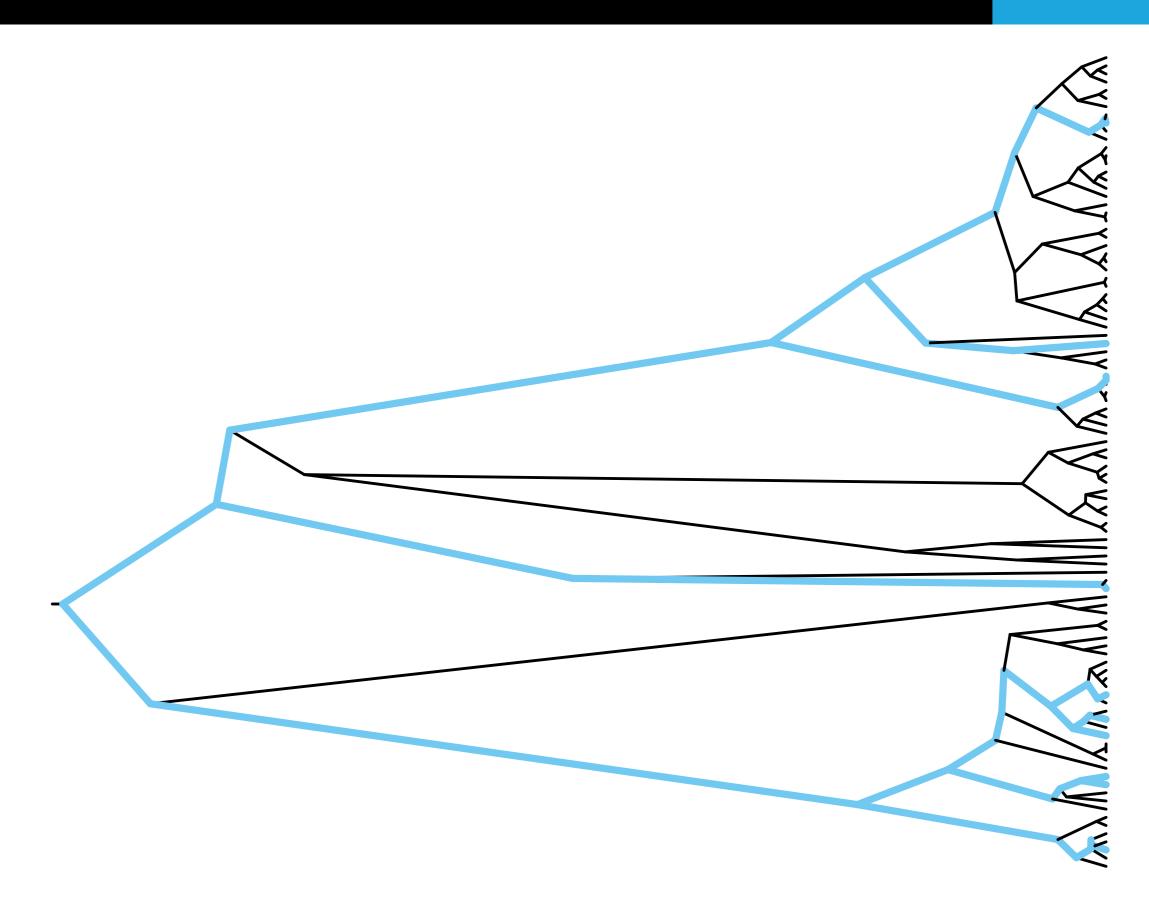
MRCA = most recent common ancestor (last node in the genealogy)

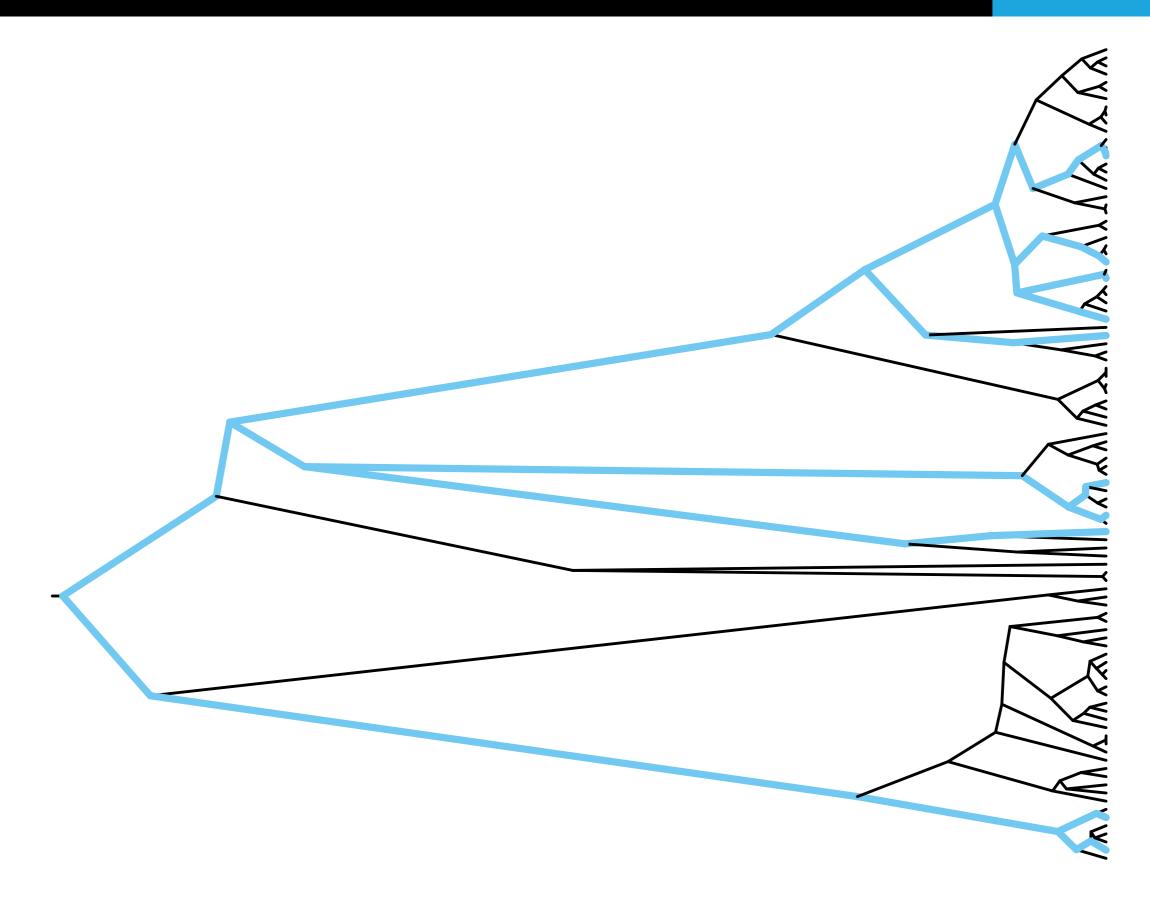
- All individuals have the same fitness (no selection).
- All individuals have the same chance to be in the sample (random sampling).
- The coalescent allows only merging two lineages per generation. This restricts us to to have a much smaller sample size than the population size.

$$n \ll N$$

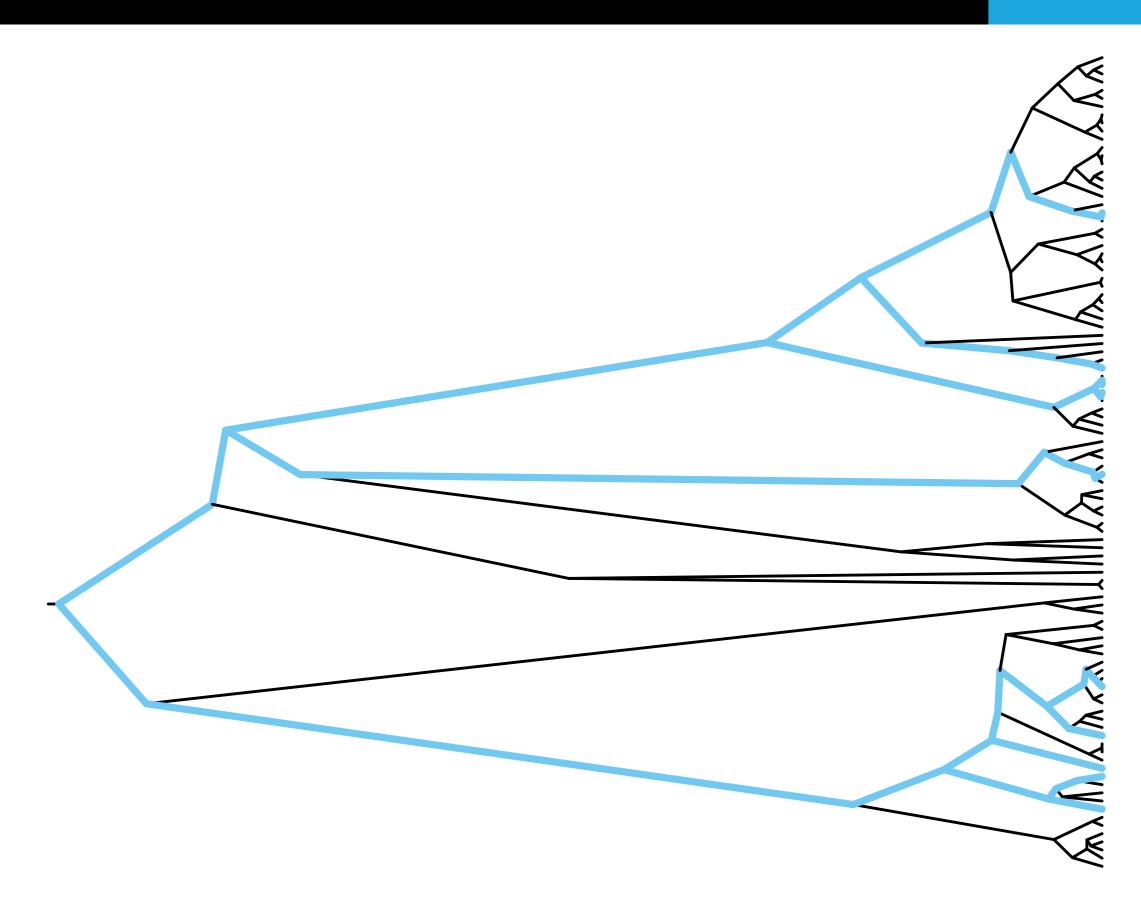
Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model and derived a maximal sample size $n < \sqrt{4N}$ for a diploid population. Although this may look like a severe restriction for the use of the coalescence in small populations, it turned out that the coalescence is rather robust and that even sample sizes close to the effective population size are not biasing immensely.







Kingman's n-coalescent is an approximation sample size



Observations

- lacktriangle Large samples coalesce on average in 4N generations.
- The time to the most recent common ancestor (TMRCA) has a large variance
- Even a sample with few individuals can most often recover the same TMRCA as a large sample.
- The sample size should be much smaller than the population size, although severe problems appear only with sample sizes of the same magnitude as the population size, or with non-random samples because Kingman's coalescence process assumes that maximally two sample lineages coalesce in any generation.
- With a known genealogy we can estimate the population size. Unfortunately, the true genealogy of a sample is rarely known.

Genealogy and data

our data looks like this:

rid1	CECTEC	BACCA	CECANCE		· cc	CARCAC	ecc	C	e cece		CEMEN	CAR	C	222			legge	ecce.	CCE
rid2	GACTA	CAAGCA	CAAC		GG	GAAGAG	ACCC		GAGGGG				2	AAA		GEN Č	cccc	ACCC	AGCA
rid3	CACHA	Carcal			CC		ACGC		and the second second second		GALA			222			GGCG		a CC a
rid4	C	TARCCA!			CC	GAAGAG					- H					SHA C	GGCG		CC
rid5		CCA			CC	CARCAC	accc		CACCCC					N. N. N.			GGCG		
rid6		CCA			CC	GAAGAG	accc		GAGGGG					N N N			GGCG		CC
rid7	CACCA	CAAGCA			GG	-	ACGC		GAGGGG		_			AAA			CO C	ACCC	nGC N
rid8	G		Garage		77.77	GAAGAG			and the second second second		7						2.700		
	G	CHAGUA	GAAC														GGCG		agua.
rid9ty1b	G					GAAGAG			GGGGGG					nan			GGCG		a Go
rid10ty2b	GACTA	CAAGCA	Gaac			GAAGAG.	acca		GGGGGG					AAA			GGCG		AGCA
bed1	GAC	CAAGCA.	AL GAAC	ACCCC	GGP	GAAGAG	ACGA		GGGGGG				G	AAA	ACT (GAC	GGCG		AGCA
cyp1	GEC	AAGUA	GARC		GG.	GAAGAG.	J. C.	G A	GGGGGG		58-6-			AAA.			GG G	ACCC	AGC A
cyp2	GAC	AAGCA	G B C		GG.	GAAGAG		G	GGGGGG				G	AAA			GG G	ACCC.	a GC A
сур3	GACTA	AAGCA	Garac	ATTATCE		GAAGAG.			GGGGGG					AAA		3	200	ACCC	AGCA
cyp4	GACTA	CAAGCA	GAAC	E CEC	GGP				GGGGGG	COR 1001	- AL PA		G	AAA		GIAC	GGTG	ACCC	AGCA
cilwestl	GACTAC	CAAGCA	CGAAC	CECEC	GG	GAAGAG.			GAGGGG		GALA	Care	G	AAA	ACT (G	GGCG	ACCC	AGCA
cilwest2	GACTAC	CAAGCA	GAAC	CECEC	GG	-	ACGC		GAGGGG		GATIA	0	G	AAA		G - 0	GGCG	ACCC	AGCA
cileastl	GACTA	CAAGCA	CEGAACET		20000	GAAGAG.			G <mark>A</mark> GGGG				GIA	CAAA	ACT	GEAC	GGCG	ACCC.	AGCA
cileast2	GACTAC	CAAGCA	C GAACEE.	ATTC CC		GAAGAG.	ACGC	GA	GAGGGG	ALA	GALA	CAA	GER	AAA	ACT(GEAC	GGCG		AGCA
cf.caral	GACTAC	CAAGCA	GAAC	AFFACEC	GG	<mark>GAAG</mark> AG	ACGA	GA	GGGGG	ALAL.	GATA	CAA	G	AAA	EC C	GEGC	GG G	ACC.	AG A
cf.cara2	GACTA	CAAGCA	GAAC	ATTATOTO	GG	GAAGAG	ACGA	GA	GGGGGG	ALIAS (GALA	CAA	G	AAA	ACT(GGC	GG G	ACC	AG A
cf.cara3	GACTA	CAAGCA	GAACEL	ATTAICE	GG	GAAGAG.			GGGGGG				G	AAA	ACT(GIAC	GG G	ACC.	AG A
cf.car4	GACTA	CAAGCA	GAACEE	AFFAICE	GGP	GAAGAG.	ACGA	GA	GGGGGG	ALA	GALA	CAA	GIA	AAA	ACT	GTAC	GG	ACC	AG A
cf.cerl	GACTAC	CAAGCA	GAAC	BETATCE	GG	GAAGAG.	ACGA	GA	GGGGGG		GALA	CAA	GTA	AAA	ACT (GIAC	GG G	ACC	AG A
cf.cer2	GACTAG	CAAGCA	GAAC	ETTE CEC	GG	GAAGAG	ACGA	GA	GGGGGG		GATIA	CAA	GIA	AAA	ACT (GHAC	GG G	ACC	AGTA
cf.cer3	GACTA	CAAGCA	GAACTI	ATTACEC	GGA	GAAGAG.	A <mark>C</mark> GA	GA	GGGGGG	ATIAT	GALLAL	CAA	G A	YAAA	ACT (GEAC	GG G	ACC .	AG A
cf.cer4	GACTAC		Y GAAC	ATTRICE	GG	<mark>GAAGAG</mark>	ACGA	GA	GGGGGG	ALAL	GAL A	CAA	GIA	AAA	ACT (GIAC	GGG	ACC	AG A
cf.bed1	GACTAC	CAAGCA	GAAC	ALL ALC DO	GGA	GAAGAG GAAGAG	A <mark>C</mark> GA	GA	GGGGGG				G			G AC	D40000 000		AG A
cf.bed2		CAAGCA				<mark>GAAG</mark> AG			GGGGGG			CAA	GIA	AAA		GERC	GG G	ACC	AGTA
cf.bed3	GACTA	CAAGCA	Y GAAC	ATTAICE		GAAGAG.	_		GGGGGG				GIR	AAA		GHAC	GGTG	ACC TI	AGTA
cf.bed4	GACTA	CAAGCA	CTGAACTT.			<mark>GAAGAG</mark> .						CAAT	GER	AAA		GTAC	GGTG	ACC T	AG A
cf.bed5	GACTA	CAAGCA	GAAC	ATTACE OF		GAAGAG.			GGGGGG	ATAT	GATAL	CAA	G	AAA			Description (Con-	ACC	AG A
cf.bed6		CAAGCA		PITATCE	GG	GAAGAG	ACGA		GGGGGG		GALA	CAA	GEA	AAA		GAC	GG G	ACC	AG A
cf.bed7	GACTA	CAAGCA	GAACTI	ATTATCTO	GGA	GAAGAG.			GGGGGG				GTA		ACE	GHAC	GG G		AG A
cf.bed8	GACTAC		GAACTE	ATTAICE	GGA	GAAGAG.	ACGA	GA	GGGGGG	ALAL	GALA	CAAT		AAA		GHAC	GG G	ACC	AG A
epe6-GR		CAAGCA	CEGAAC	CECEC	GG	GAAGAG	A <mark>C</mark> GA	TAA	GGGGGG	ALL ALL	GALA	CAA		CAAA		SHACE	GGCG	ACCC	AGCA
epe7-GR	GACTA	CAAGCA	CGAAC	CECEC	GG	GAAGAG	ACGA	MAA	GGGGGG		GAHA	CAA	GHA	AAA	ACT	STACE	GG <mark>C</mark> G	ACCC	AGC A
cre04a-GR	GACTA		CGAACC	TTCTCTC	GG	GAAGAG	ACGA	GA	GGGGGG	ATAT	GALA	CAA	GHA	CAAA		GLAC	GG G	ACC.	AGC A
cre5-GR	GACTA	CAAGCA	GAACC	CCC	GGP	GAAGAG	ACGA	GA	GGGGGG	AFAF	GALA	CAA	GHA	AAA	AC	GAC	GG G	ACC	AGCA
												7	E 04 :	100 (@00d	7.0		1.	

Genealogy and data

our data looks like this:

Genetic data and the coalescent

- Finite populations loose alleles due to genetic drift
- lacktriangle Mutation introduces new alleles into a population at rate μ
- With 2N chromosomes we can expect to see every generation $2N\mu$ new mutations. The population size N is positively correlated with the mutation rate μ .
- With genetic data sampled from several individuals we can use the mutational variability to estimate the population size.

Population size

The observed genetic variability

$$S = f(N, \mu, n).$$

Different N and appropriate μ can give the same number of mutations. For example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

\overline{N}	μ	$4N\mu$	\hat{S}	σ_S^2
$\overline{1250}$	10^{-5}	0.05	153.95	16.25
12500	10^{-6}	0.05	152.89	16.05

Using genetic variability alone therefore does not allow to disentangle N and μ .

With multiple dated samples and known generation time we can estimate N and μ independently.

Mutation-scaled population size

By convention we express most results as the compound $N\mu$ and an inheritance scalar x, for simplicity we call this the mutation-scaled population size $\Theta = xN\mu$,

where μ is the mutation rate per generation and per site. With a mutation rate per locus we use θ .

- igoplus for diploids: $\Theta = 4N\mu$.
- \bullet for haploids: $\Theta = 2N\mu$.
- For mtDNA in diploids with strictly maternal inheritance this leads to $\Theta=2N_f\mu$, and if the sex ratio is 1:1 then $\Theta=N\mu$

Most real populations do not behave exactly like Wright-Fisher populations, therefore we subscript N and call it the effective population size N_e , and consider Θ the mutation-scaled EFFECTIVE population size.

Mutation-scaled population size

By convention we express most results as the compound $N\mu$ and an inheritance scalar x, for simplicity we call this the mutation-scaled population size

$$\Theta = xN\mu$$
,

where μ is the mutation rate per generation and per site. With a mutation rate

per locus we use θ .

- igoplus for diploids: $\Theta = 4N\mu$.
- igoplus for haploids: $\Theta = 2N\mu$.

Gag Grouper starts out as a female and later in live becomes male.

For mtDNA in diploids with strictly maternal inheritance this leads to $\Theta = 2N_f\mu$, and if the sex ratio is 1:1 then $\Theta = N\mu$

Most real populations do not behave exactly like Wright-Fisher populations, therefore we subscript N and call it the effective population size N_e , and consider Θ the mutation-scaled EFFECTIVE population size.

Historical humpback whale population size

Historical humpback whale population size

using the data by Joe Roman and Stephen R. Palumbi (Science 2003 301: 508-1510)

$$\Theta = 2N_{\rm Q}\mu$$

0.01529 Population size of the North Atlantic population; estimated using migrate

$$N_{
m Q}=rac{\Theta}{2\mu}$$

31,854 with $\mu = 2.0 \times 10^{-8} \mathrm{bp^{-1}year^{-1}}$ and a generation time of 12 years

$$N_e = N_{
m Q} + N_{
m G}$$

63,708 Sex ratio is 1:1

$$N_B = 2N_e$$

127,417 ratio N_B/N_e assumed, using other data

$$N_T = N_B rac{N_{
m juveniles} + N_{
m adults}}{N_{
m adults}}$$

203,867

from catch and survey data (used a ratio of 1.6)

More modern estimates for mtDNA: 150,000 [improved estimation of mutation rate]; for nucDNA: 112,000(45,000-235,000) [Conservation Genetics (2013) 14:103114]

Genetic data and the coalescent

Using the infinite sites model we use the number of variable sites S per locus to calculate the mutation-scaled population size:

$$\theta_W = \frac{S}{\sum_{k=1}^{n-1} \frac{1}{k}}$$

from a sample of n individuals. For a single population the Watterson's estimator works marvelously well, but it is vulnerable to population structure.

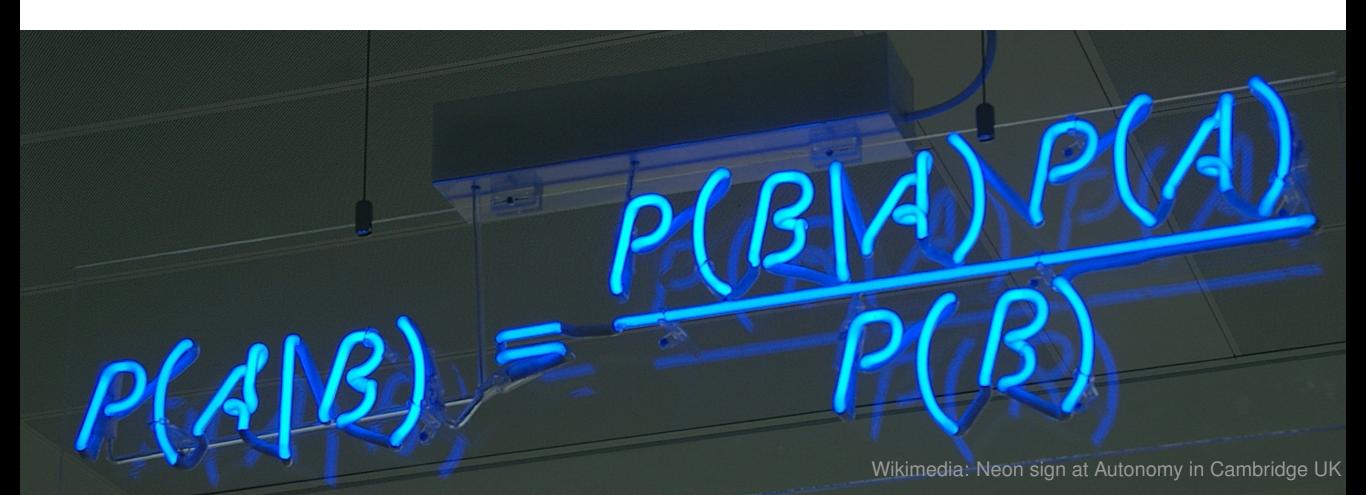
Watterson's θ_W uses a mutation rate per locus! To compare with other work use mutation rate per site.

Construction of a versatile estimator

For Bayesian inference we want to calculate the probability of the model parameters given the data $p(\mathsf{model}|D)$.

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.

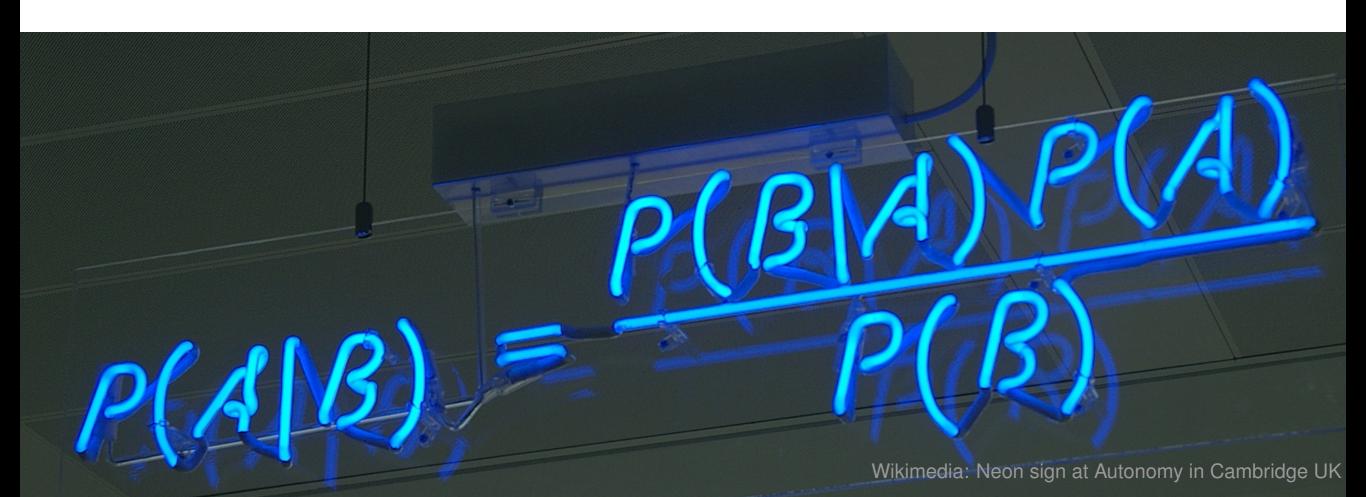


Construction of a versatile estimator

We calculate the Posterior distribution $p(\Theta|D)$ using Bayes' rule

$$p(\Theta|D) = \frac{p(\Theta)p(D|\Theta)}{p(D)}$$

where $p(D|\Theta)$ is the likelihood of the parameters.



(almost) Felsenstein equation

$$p(D|\mathbf{\Theta}, G) = p(G|\mathbf{\Theta})p(D|G)$$

 $p(G|\mathbf{\Theta})$

The probability density of a genealogy given parameters.

p(D|G)

The probability density of the data for a given genealogy. Phylogeneticists know this as the tree-likelihood.

Felsenstein equation

$$p(D|\mathbf{\Theta}) = \int_G p(G|\mathbf{\Theta})p(D|G)dG$$

 $p(G|\mathbf{\Theta})$

The probability density of a genealogy given parameters.

p(D|G)

The probability density of the data for a given genealogy. Phylogeneticists know this as the tree-likelihood.

Felsenstein equation

$$p(D|\mathbf{\Theta}) = \sum_{G} p(G|\mathbf{\Theta})p(D|G)$$

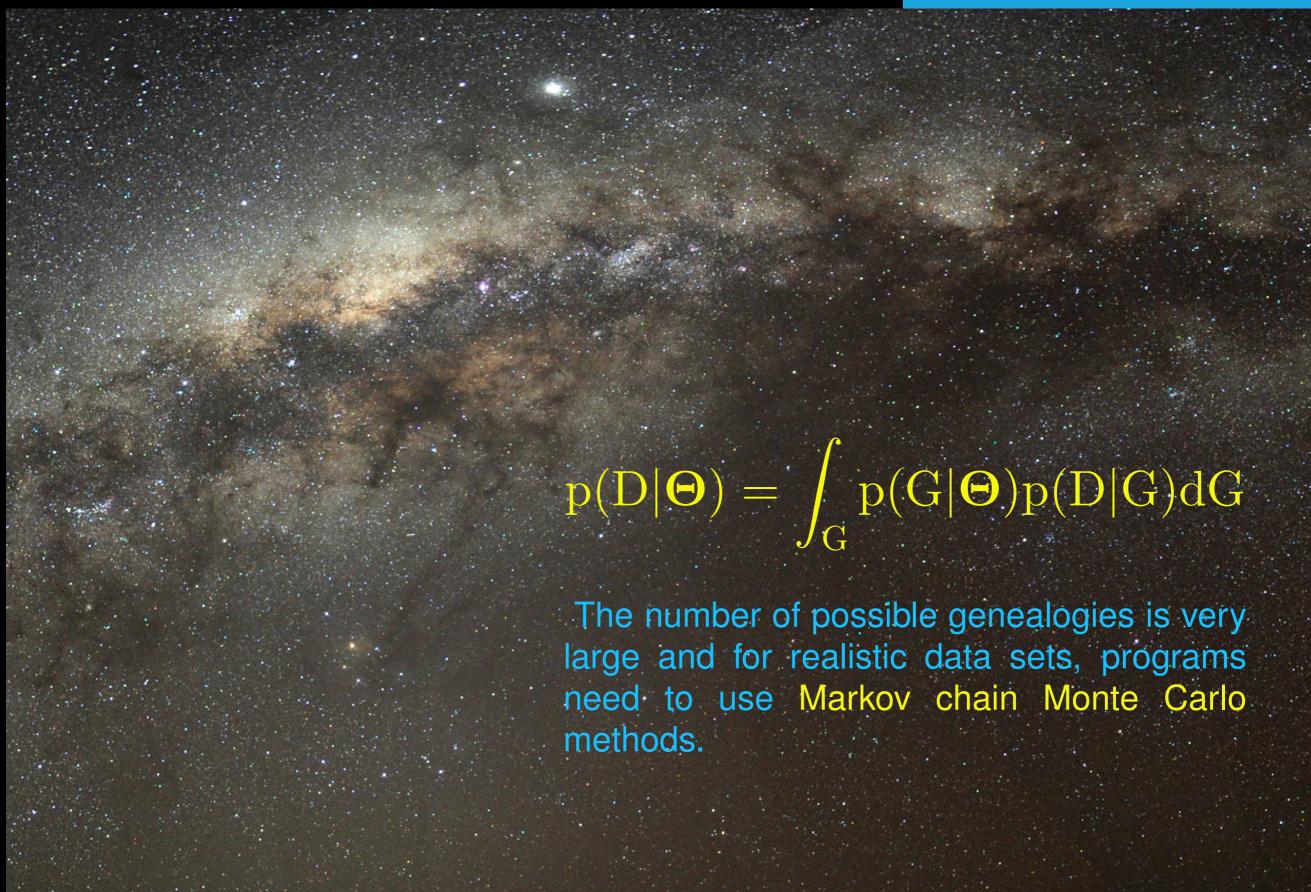
 $p(G|\mathbf{\Theta})$

The probability of a genealogy given parameters.

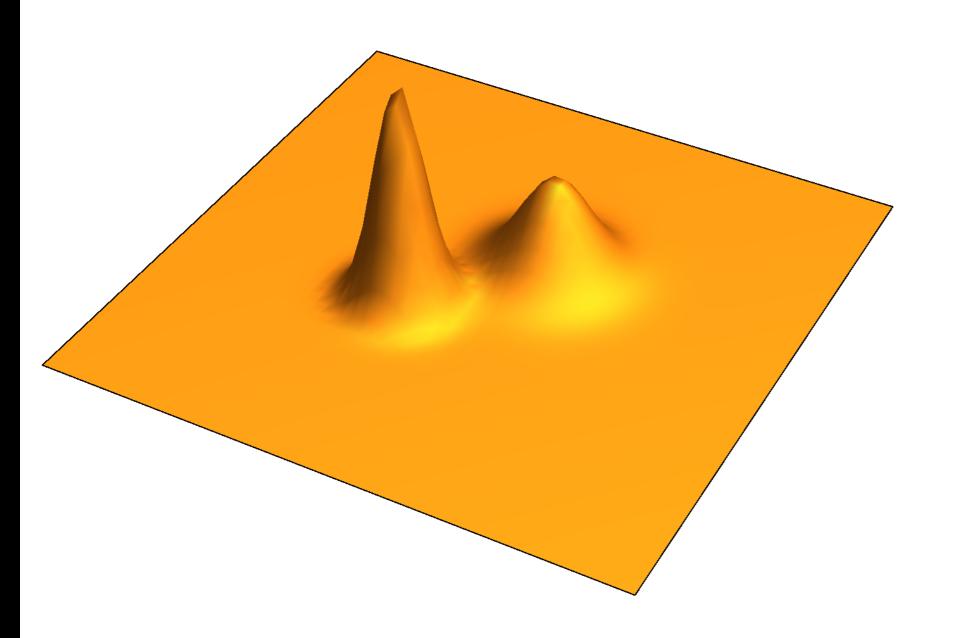
p(D|G)

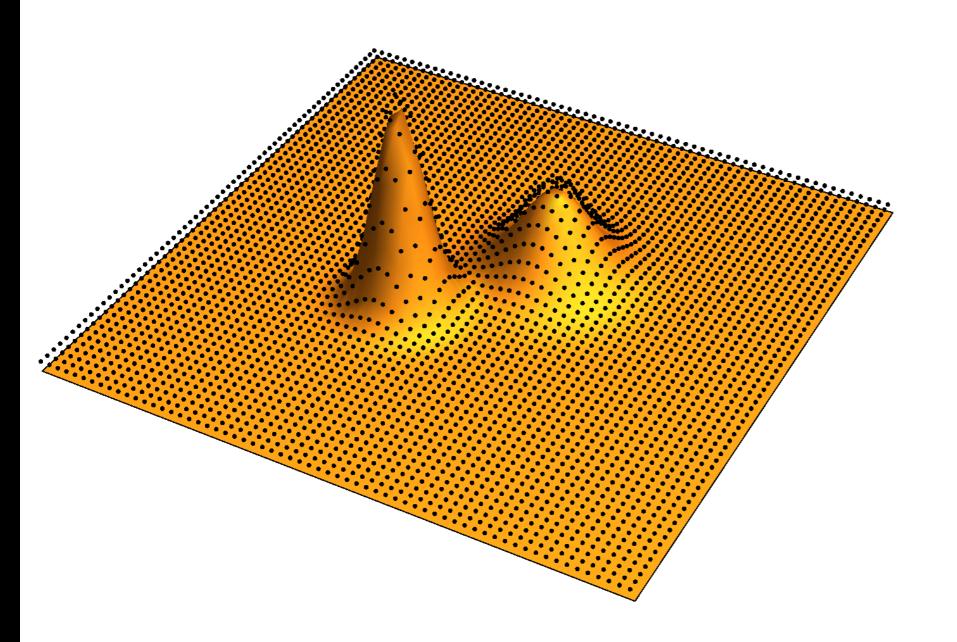
The probability of the data for a given genealogy. Phylogeneticists know this as the tree-likelihood.

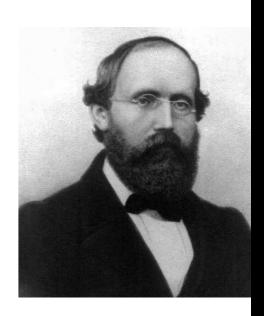
Problem with integration formula



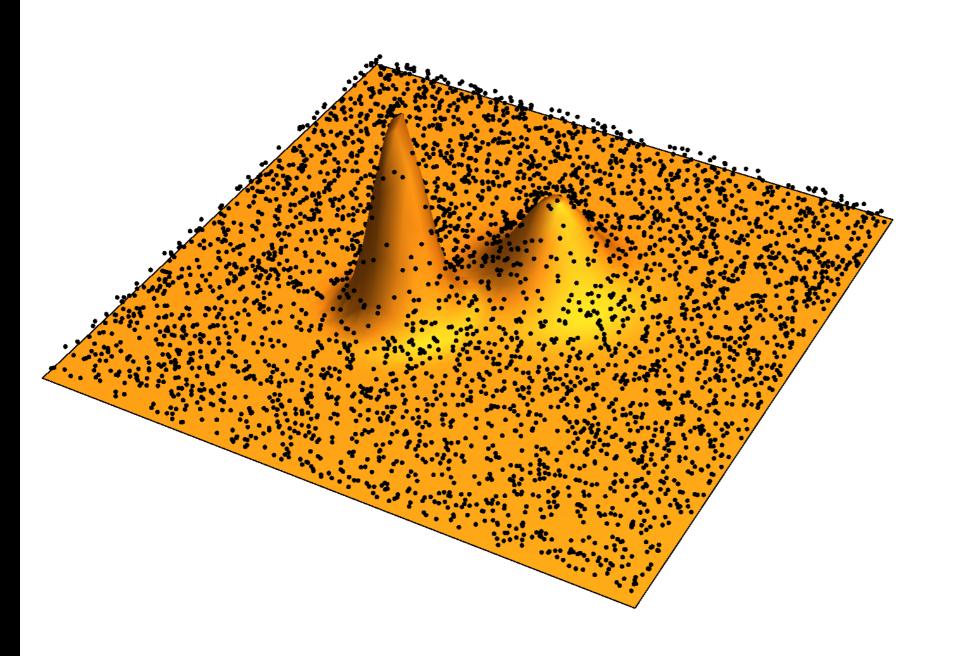
Naive integration approach

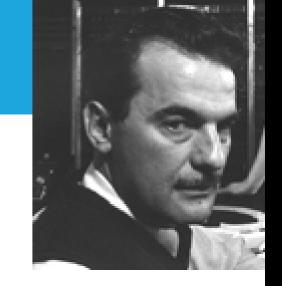


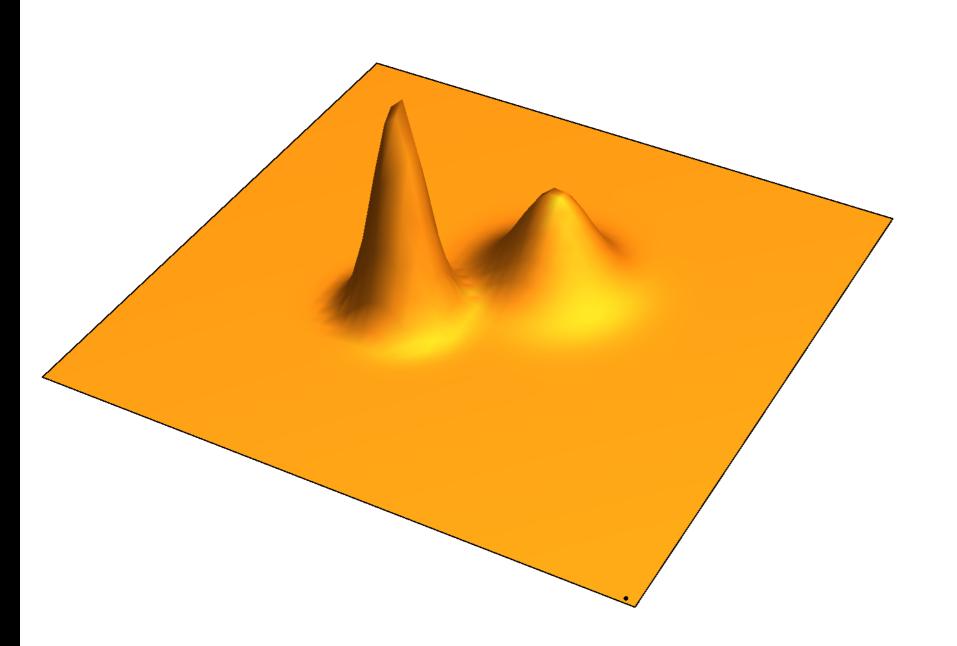


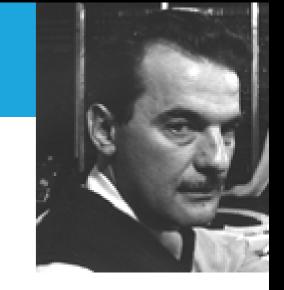


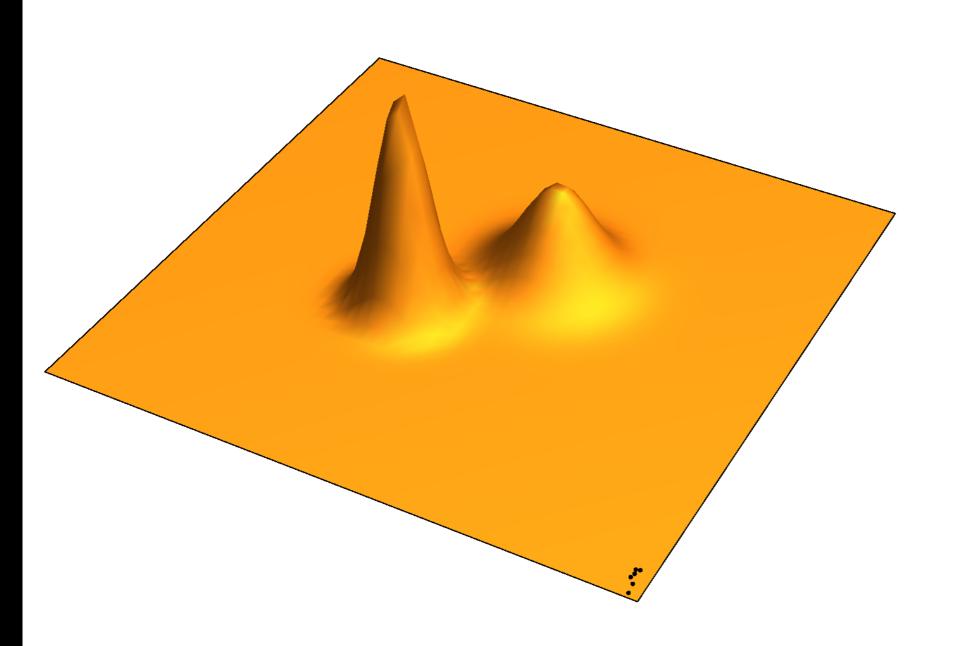
Another naive integration approach

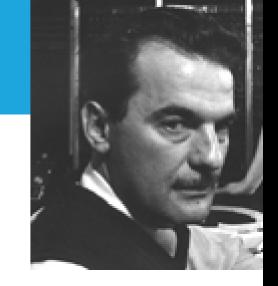


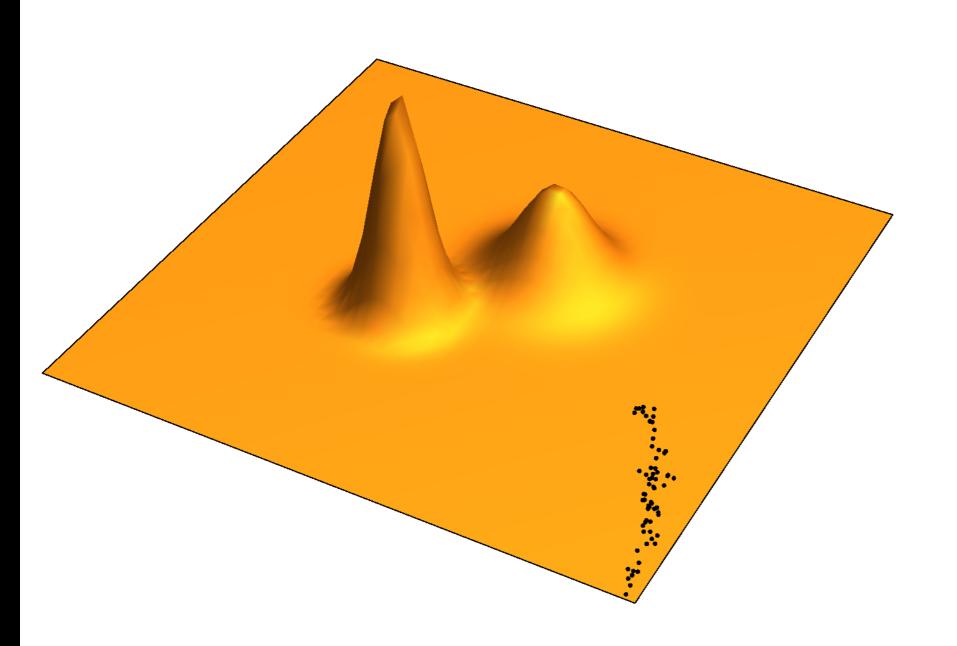


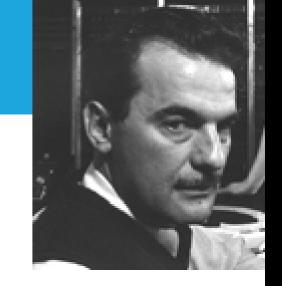


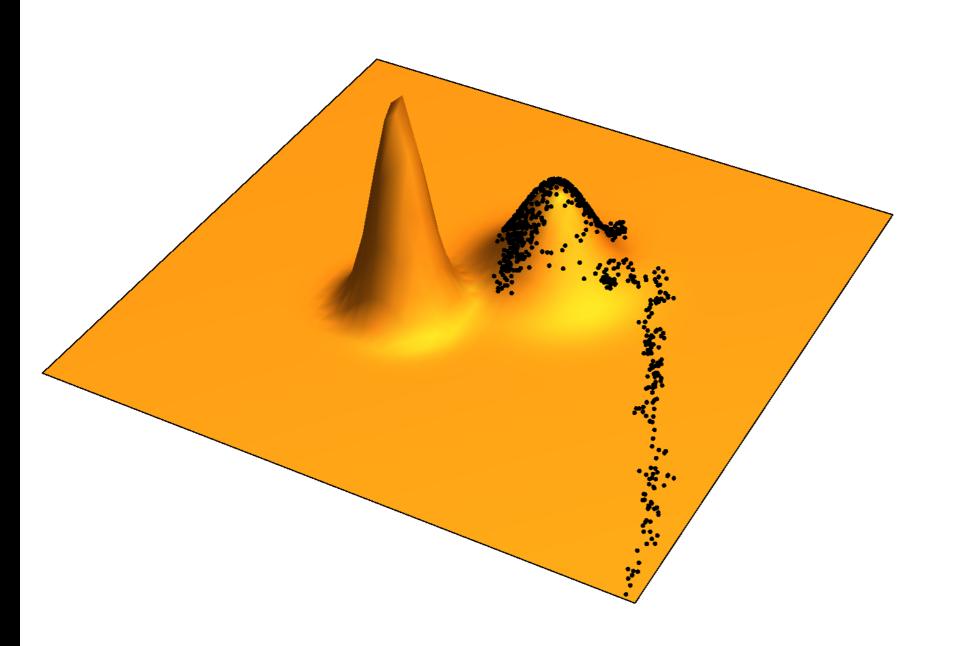


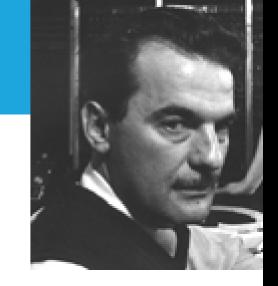


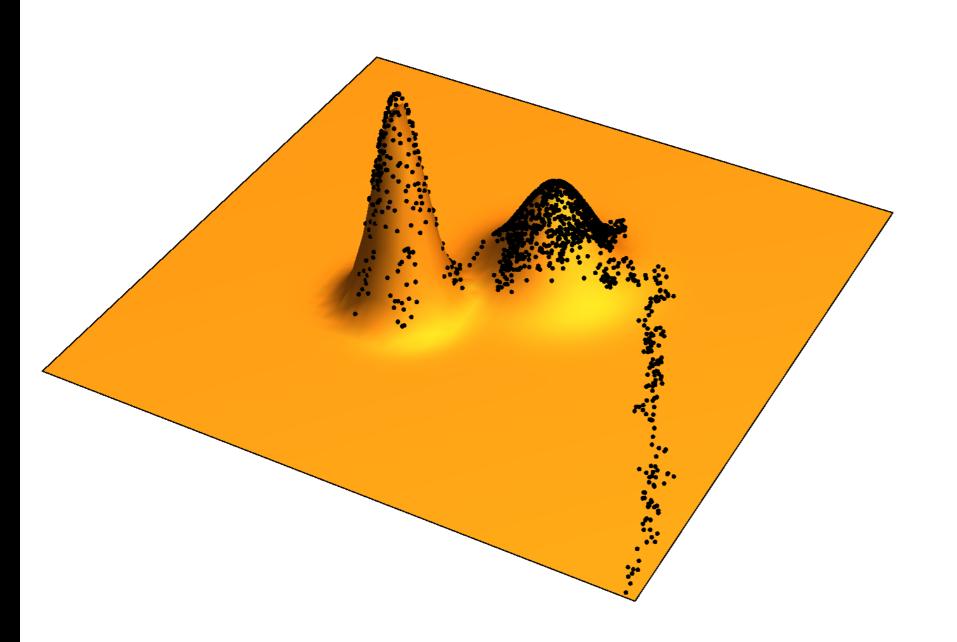


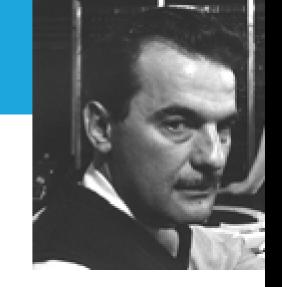


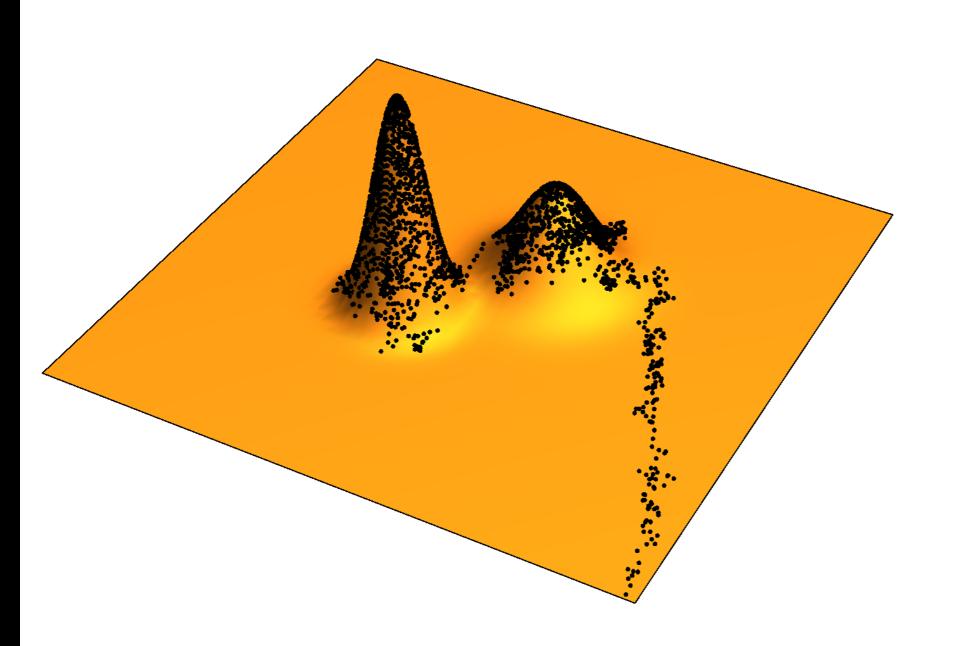


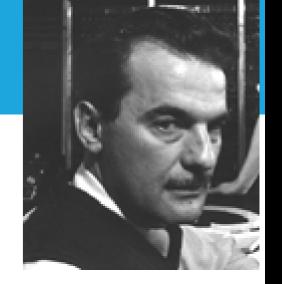


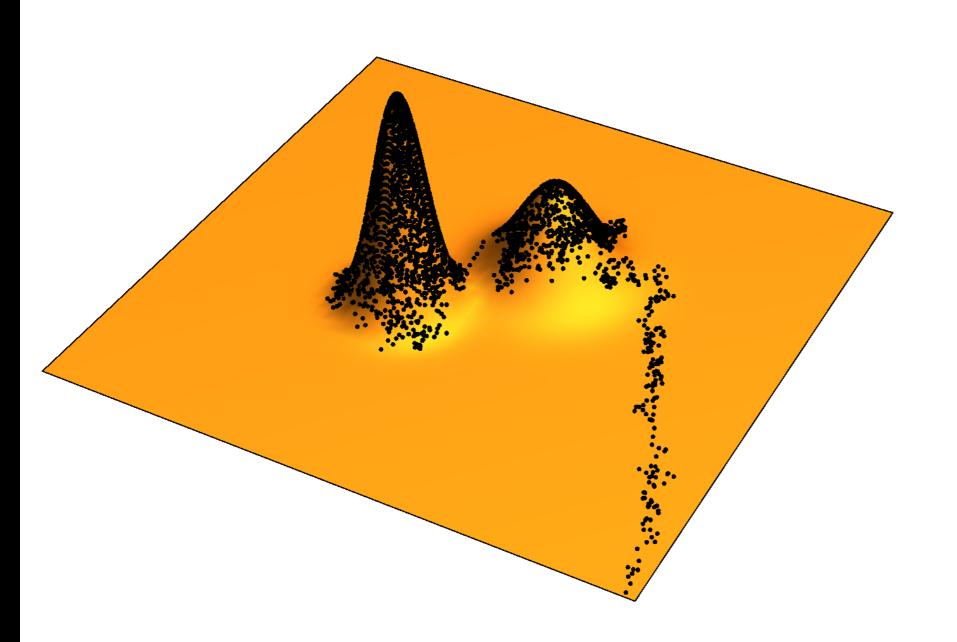












Inference of population size

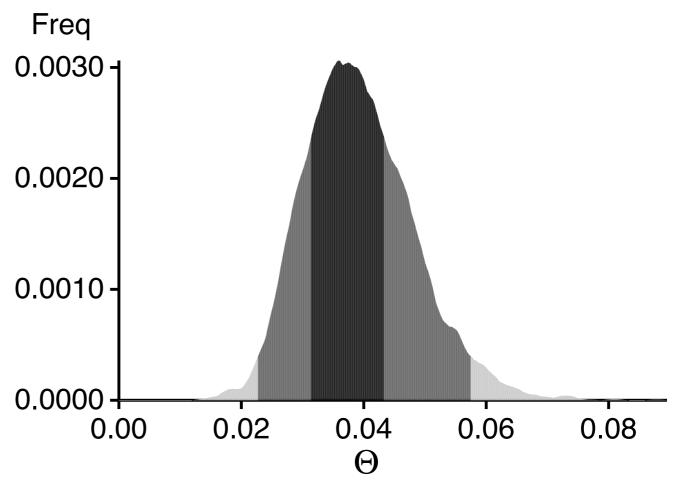
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 8720-8724, October 1991 Evolution

Extensive mitochondrial diversity within a single Amerindian tribe (population genetics/molecular anthropology/Pacific Northwest/human evolution)

R. H. Ward*, Barbara L. Frazier*, Kerry Dew-Jager*, and Svante Pääbo†

*Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and †Department of Zoology, University of Munich, Luisenstrasse 14, D-8000 Munich 2, Federal Republic of Germany

[The Nuu-Cha-Nulth are organized in 14 nations totaling 8147 (Nuuchahnulth tribal council Indian registry from February 2006)]



Bayesian inference: $\Theta = 0.036$

Ward *et al* calculated $\Theta_{Ewens} = 0.043$

With a mutation rate of 0.32/site/million year and a generation time of 27 years we get $N_{\rm women}=2082$. Assuming same numbers of men and women and on average 2 children we get N=8328.

Inference of population size

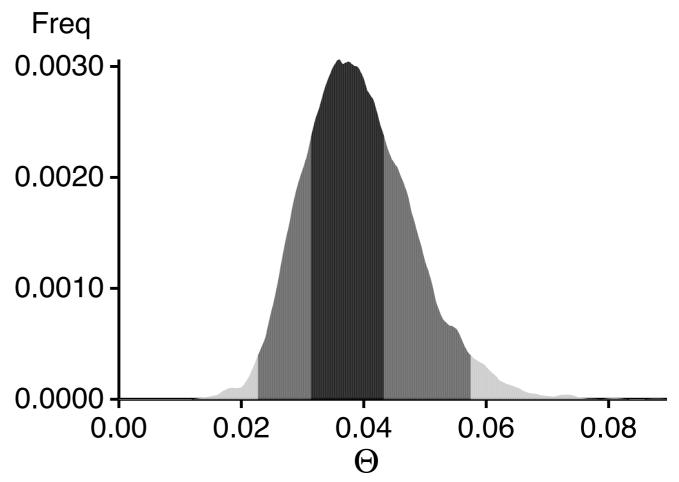
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 8720–8724, October 1991 Evolution

Extensive mitochondrial diversity within a single Amerindian tribe (population genetics/molecular anthropology/Pacific Northwest/human evolution)

R. H. Ward*, Barbara L. Frazier*, Kerry Dew-Jager*, and Svante Pääbo†

*Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and †Department of Zoology, University of Munich, Luisenstrasse 14, D-8000 Munich 2, Federal Republic of Germany

[The Nuu-Cha-Nulth are organized in 14 nations totaling 8147 (Nuuchahnulth tribal council Indian registry from February 2006)]



Bayesian inference: $\Theta = 0.036$

Ward *et al* calculated $\Theta_{Ewens} = 0.043$

With a mutation rate of 0.32/site/million year and a generation time of 27 years we get $N_{\rm women}=2082$. Assuming same numbers of men and women and on average 2 children we get N=8328.

This sounds very good, but the 95%credibility interval is 5000-13500

References

Coalescent:

- Nuu-Cha-Nulth population size: J. Felsenstein. 1971. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68:581-597;
- R. H. Ward, B. L. Frazier, Kerry Dew-Jager, and S. Pääbo. 1991. Extensive mitochondrial diversity within a single Amerindian tribe. PNAS 88:8780-8724;
- Sigurğardóttir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P. 2000. The mutation rate in the human mtDNA control region. Am J Hum Genet. 66:1599-609;
- S. Matsumura and P. Forster. 2008. Generation time and effective population size in Polar Eskimos. Proc. R. Soc. B 275:1501-1508.

Sample size:

- Felsenstein, J.2005. Accuracy of coalescent likelihood estimates: Do we need more sites, more sequences, or more loci? MBE 23: 691-700.
- Pluzhnikov A, Donnelly P. 1996. Optimal sequencing strategies for surveying molecular genetic diversity. Genetics 144: 1247-1262.